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Abstract 

 
Place cells are pyramidal neurons in CA1, 2, and 3 of the hippocampus that fire preferentially when 
an animal is located in a certain position in an environment. The location to which a place cell 
maximally responds (its place field) is randomly assigned within an environment. Place fields can 
be re-assigned depending on changes to local sensory cues within an environment, a phenomenon 
called “remapping”. Research has established that place field formation is affected by input from the 
local network in the hippocampus. Interneurons in CA1 are known to provide inhibitory input into 
place cells, but no causal link between local inhibition and place map remapping has been 
demonstrated. Here, we sought to understand if directly driving local inhibitory networks in CA1 
could induce place field remapping. To do this, we used optogenetic stimulation to excite 
interneurons while concurrently monitoring neural activity using a red-shifted calcium indicator 
(jRCaMP1b) in freely moving mice. Microendoscopic calcium imaging was performed over multiple 
days as the mouse explored an open field. After the animal had explored the field for several days, 
interneurons in CA1 were optogenetically activated at certain positions in the 
environment.  Unfortunately, the low signal to noise level of the red-shifted calcium indicator 
prevented analysis of this dataset. In lieu of this, we analyzed data from a green fluorescent calcium 
indicator (GCaMP6f) that we used to initially test out our experimental technique. The results of 
this analysis revealed aberrant neural activity during calcium imaging sessions, suggesting that the 
calcium imaging technique may have unexpected, pathological effects on neural activity in the 
hippocampus. The work described here sets the groundwork for further concurrent use of 
optogenetics with calcium imaging in investigations into the cellular mechanisms behind place field 
formation. 
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Introduction 

When Henry Molaison was a child, he experienced epilepsy which could not be controlled 

by any medications. The seizure episodes, which increased in severity as he grew older, originated 

from his medial temporal lobes (MTL). When he was 27 years old, Molaison underwent surgery to 

have his MTL removed bilaterally, in the hopes that it would cure his seizures. The procedure 

successfully removed the hippocampus, medial entorhinal cortex, and part of the amygdala, and 

Molaison’s seizures stopped. However, because of the brain tissue removed, Molaison experienced 

deficits in explicit memory—he could not remember certain facts about his own life (like the death 

of a favourite uncle three years ago) and could not form any new memories.  

Despite Molaison’s extensive memory loss, he could still navigate novel environments after 

enough practice. Five years after his surgery, Molaison moved with his family to a new house. 

Although he had not been exposed to the layout of the house before his procedure, Molaison was 

eventually able to create detailed floor plans of his new home (Corkin, 2002), suggesting his spatial 

memory abilities were not lost. This ability was unexpected, as other patients who had bilateral 

damage to their hippocampus and medial temporal lobe were not able to recall the neighborhoods 

they had moved to after developing amnesia (Teng and Squire, 1999; Rosenbaum et al., 2000). 

However, the state of Molaison’s spatial memory is controversial, as formal testing revealed chance-

level performance of spatial location recall (Smith, 1988). After Molaison’s death, researchers 

examined his brain to confirm the brain regions removed and discovered that portions of his 

hippocampus were not removed as initially expected, which may explain how he retained portions 

of his spatial memory (Annese et al., 2014). More importantly, the case study of H.M. demonstrates 

the importance of the hippocampus in forming new spatial memory. 

The role of the hippocampus in spatial memory formation 

Lesion studies done in rats support the hypothesis that the hippocampus is critically 

involved in spatial memory formation. In comparison to rats who had cortical lesions or control 
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rats, those who had their hippocampi aspirated did not perform as well on the Morris water maze 

task, as they were unable to learn the location of a hidden platform in a water maze after repeated 

trials (Morris et al., 1982). Further animal studies distinguishing dorsal and ventral hippocampal 

lesions demonstrated that the main region responsible for normal performance on the Morris 

water maze, and therefore for spatial memory formation, was the dorsal hippocampus (Bannerman 

et al., 2002). 

A region called the Cornu Ammonis 1 (CA1) takes up most of the dorsal hippocampus and 

contains cells that are thought to be critical for the acquisition of spatial memory, called “place 

cells”(O’Keefe and Dostrovsky, 1971; Wilson and McNaughton, 1993). First discovered through 

cellular recordings in rats, place cells become active when the organism is in a specific place within 

an enclosed environment (O’Keefe and Dostrovsky, 1971). The places in the environment where a 

specific place cell is active is referred to as a “place field”. The activity of thousands of these cells 

across a spatial environment collectively form a “place map”. This map is likely used by the 

organism to infer its position relative to salient sensory landmarks within an environment, for 

instance visual, auditory, and olfactory cues (Maaswinkel and Whishaw, 1999). The activity of the 

cells comprising this map are thought to be critical for both real-time position estimation during 

foraging as well as acquisition (Hasselmo et al., 2002) of spatial memory following navigation 

(Wilson and McNaughton, 1994). 

Place fields can change 

Unlike the organization of the visual system, where there is a correspondence between 

neurons in the visual cortex and the visual field, place cells do not appear to be organized by their 

place fields. Two adjacent cells can have place preferences for either ends of the environment in 

one instance and have place fields right next to each other in another environment. Place fields are 

formed based on a complex combination of factors in the environment. Most studies into the factors 

influencing place map stability involve monitoring place cell activity while an animal is exploring an 



 9 

enclosed space, marked with landmarks (Muller and Kubie, 1987; O’Keefe and Burgess, 1996; Lever 

et al., 2002).  

These studies into place map stability aim to see whether place fields change their spatial 

preferences within the same environment—commonly called “remapping”. Experiments have 

shown that place fields often remap when spatial relationships between salient cues are changed. 

For example, in a completely empty circular environment encircled by a grey wall, changing the 

placement of the single white cue card present on the wall rotated place fields, despite the maze 

walls not shifting position with respect to the rest of the room (Muller and Kubie, 1987). The same 

study also distorted the environment by scaling up the diameter of the circular environment and 

the height of the walls and found that a third of the place fields stretched along with the 

environment, so that their angular and radial positions remained the same. Whether the place fields 

remap also depended on whether the animal witnessed the environment changing or not. A 

separate study in rats found that place fields only rotated with a moving cue when the animal did 

not know that the cue was moved (Jeffery and O’Keefe, 1999).  

When an environment’s cues remain unchanged, there is still variation in place fields from 

day-to-day. However, place maps are preserved in spite of this daily variation, so the place map 

observed on any given day can still be used to interpret place cell activity and infer the animal’s 

location one month after the reference day (Ziv et al., 2013). 

Place fields can contain multiple points in the same environment 

While it is easiest to think of each place cell being active in just one spot within an 

environment, place cells can represent multiple positions within an environment (Rich et al., 2014). 

When rats were run on long linear tracks, researchers found that the same place cell was active at 

multiple points along the track and that these points were randomly spaced (Rich et al., 2014). 

Therefore, place fields do not form in a predictable pattern.  
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One important note is that place field remapping is not the same as place fields changing 

between environments. In studies that have exposed animals to separate configurations of visual 

cues within a single environment, rapidly switching the cues from one configuration to the other 

resulted in place fields flickering between the two representations, before settling on the field for 

the current configuration (Jezek et al., 2011). 

The winner-takes-all model of spatial memory formation 

While most of the past research into spatial memory formation has focused on how an 

animal’s experience influences the representation of an environment (Muller and Kubie, 1987; 

Maaswinkel and Whishaw, 1999; Zhang and Manahan-Vaughan, 2015), attention is now being 

turned to investigating how the representations are generated on a cellular level. In a study 

involving a linear track, silent place cells were depolarized via a constant current injection while 

their activity pattern was observed (Lee et al., 2012). These previously silent cells became active 

when the animal encountered specific positions on the linear maze, suggesting that they may have 

formed a place field (figure 1).  

 

One explanation for this observation is that the constant current injection resulted in 

depolarization that freed the place cells from local inhibition, so that they became more easily 

excitable. This supports the winner-takes-all model of neural computation, which posits that the 

presence of excited neurons in a large network can discourage more neurons from becoming 

Figure 1.  Previously silent place cells 
became active in a spatially-linked manner 
following constant current depolarization 
of cell somas. Rats were implanted with a 
patch clamp in the dorsal CA1 region and 
placed on a circular “o”-shaped track to freely 
explore. After at least two laps, if the cell 
targeted by the patch clamp was not active, a 
constant current was injected with increasing 
voltage to depolarize the cell. During current 
injections, the cell’s activity was recorded 
using the same patch clamp. Figure adapted 
from Lee et al. (2012).  
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excited. Place cells that are activated by sensory input provide excitatory input into interneurons 

and thus increase the inhibition of the overall population. Current injection removes the source of 

inhibition on the place cells and thus disrupts the winner-take-all process, therefore freeing more 

cells to develop a spatial spiking preference. 

The winner-takes-all theory is supported by observations of place cell activity during initial 

place field formation and studies perturbing cells in the network. Place map formation involves an 

initial period where place cells are more active than usual (Epsztein et al., 2011) and interneuron 

activity is lower than normal (Wilson and McNaughton, 1993). This period of low inhibition makes 

it harder for any neuron to influence the activity of the entire population and explains how the high 

place cell activity can arise from the cellular network. Similarly, inhibiting place cells lead to new 

place fields replacing the old ones, while inhibiting interneurons increased the rate of place cell 

firing without place field remapping (Schoenenberger et al., 2016). Therefore, place cells seem to 

only develop new place maps when their activity is inhibited.  

The proposed experiment 

While it is clear that place cell activity and place map formation are affected by input from 

interneurons (Schoenenberger et al., 2016), the causal link between the two is has not been 

demonstrated. Until now, studies have only manipulated the activity of place cells directly or 

decreased interneuronal input into place cells. Therefore, further work is still needed to investigate 

whether local inhibition is sufficient to induce remapping. My proposed study aims to address this 

need through optogenetic excitation of interneurons with concurrent calcium imaging of place cell 

activity. 

Research methods used to record cellular activity 

Traditionally, studies of rodent place cell activity in relation to spatial memory relied on 

electrophysiological recordings to measure place cell activity (O’Keefe and Dostrovsky, 1971). This 

remains the main technique used in the field. While electrophysiological technologies have 
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improved dramatically in the last few decades (Cogan, 2008; Kim et al., 2013; Patil and Thakor, 

2016), there are weaknesses in the technique that are especially relevant to the recording of place 

cell activity over long time periods. Namely, the electrodes used in electrophysiological recordings 

can shift position over time, referred to as “electrode drift” (Pachitariu et al., 2016), which may 

result in different cells being recorded day-to-day. Since place fields are a property of individual 

cells, incorrectly assigning activity from different cells to one cell will lead to the incorrect 

conclusion that place fields have changed during the recording time. Therefore, any research 

technique used to record place cell activity must accurately identify cells and keep track of those 

cells over the experimental period.   

Recording long-term cellular activity using calcium imaging 

Calcium imaging is a relatively new technique that addresses the major weakness of 

electrophysiological recordings. Using indicator molecules that change their fluorescence when 

bound to calcium, cellular activity can be monitored using a camera sensor (Ghosh et al., 2011). 

Using this technique, long-term observation of the same cells is easier since the frame of view on 

the camera sensor theoretically stays the same throughout the animal’s lifetime and processing can 

be performed to account for small movement artifacts in collected video (Pnevmatikakis and 

Giovannucci, 2017). Additional benefits to calcium imaging include a larger cell yield in comparison 

to electrophysiological recordings and the ability to record from specific neural populations via 

cell-type-specific expression of calcium indicators.  

 The most widely used fluorescent indicator is GCaMP, which contains a green-fluorescent 

protein (GFP) fused with calmodulin and a peptide from smooth-muscle myosin light-chain kinase 

(RS20) (Nakai et al., 2001). Calcium ions induce calmodulin to bind to RS20, which increases the 

fluorescence of the GFP molecule it is bound to (Figure 2) (Schoenenberger et al., 2016). Since 

intracellular calcium levels increase whenever an action potential is fired, the natural influx of 

calcium into the cell increases the fluorescence of GCaMP and thus can be used as a measure of 
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neuronal activity. GFP fluorescence can be detected by exciting GFP molecules with blue light and 

measuring the emitted green light with a camera sensor (Chen et al., 2013).  

 

While calcium imaging enables more accurate cell identification across days, its main 

drawbacks are that its slow kinetics make it difficult to extract spike activity from the raw video 

data. Further, when used with widefield imaging technique, the data contain out-of-focus 

background fluorescence. 

Manipulating cellular activity using optogenetics 

Investigating if interneuron inhibition is sufficient to induce new place map formation 

required a way to perturb the interneuron population activity. Ideally, this method should allow 

stimulation of a large group of interneurons at a biologically relevant timescale and not interfere 

with calcium imaging. Optogenetics uses a light-sensitive ion channel to influence cellular activity. 

Channelrhodopsin 2 (ChR2) is the main excitatory channel used in optogenetics and is composed of 

a light-sensitive opsin molecule attached to a non-specific cation channel (Boyden et al., 2005). The 

opsin molecule is most sensitive to blue light (~480nm) and changes conformation to open the 

channel when stimulated (Boyden et al., 2005; Zhang et al., 2006). Since ChR2 has around one 

millisecond dynamics, it is commonly used to stimulate neurons.  

Figure 2. Mechanism of action for GCaMP proteins. Once there is a calcium influx, 
calcium ions bind to the calmodulin domain of the GCaMP protein. This induces the RS20 
domain to bind to calmodulin, which in turn changes the conformation of the GFP 
protein linking both domains, thus increasing GFP fluorescence. Taken from (Lin and 
Schnitzer, 2016). 
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Conveniently, the light path used for calcium imaging can be modified to support 

optogenetic stimulation hardware. However, one major problem in combining calcium imaging 

with optogenetic stimulation is the risk of overlapping excitation wavelengths. Since GCaMP and 

ChR2 are both excited by blue light, imaging calcium activity in a ChR2-expressing animal would 

automatically lead to optogenetic stimulation. To avoid overlapping excitation spectra, we used a 

red-shifted calcium indicator called jRCaMP1b, which emits red light when stimulated by green 

light (Dana et al., 2016) and the standard ChR2, which is excited by blue light. 

Red-shifted Calcium Indicators 

Similar to GCaMP, red-shifted calcium indicators like RCaMP contain a red fluorescent 

protein, calmodulin, and RS20 (Dana et al., 2016). For my experiments, I will be using jRCaMP1b, 

which has one of the fastest decay kinetics and calcium affinities of all RCaMP molecules (Dana et 

al., 2016). jRCaMP1b still is slower than GCaMP6f in its decay, does not have as high a maximum 

emission peak as GCaMP6f (Figure 3) and has a shallower increase in fluorescence as stimulation 

frequency increases (Figure 4). Whereas the slower decay dynamics of the RCaMP may make the 

data analysis more difficult, the ability to use RCaMP and ChR2 simultaneously provides a novel 

opportunity to simultaneously perturb neural activity and observe its effects.  

 

 

Figure 3. jRCaMP1b has a smaller peak 
signal level than GCaMP6f. Plasmids 
containing the genetic material of various 
calcium indicators were injected separately in 
zebrafish larvae. The larvae were paralyzed, 
embedded in agarose, and stimulated with five 
pulses at 20Hz. Response fluorescence 
amplitudes were observed in the zebrafish 
trigeminal neurons. Adapted from Dana et al 
(2016).  
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Calcium Signal Analysis 

To infer neural activity from widefield fluorescence levels measured with a camera sensor, 

one needs to identify the outline of each active cell within the video frame (referred to as the 

“spatial footprint”), distinguish background fluorescence from the fluorescence associated with 

neural activity, and take into account the kinetics of the fluorescent molecule when back-calculating 

the spiking activity. Pnevmatikakis et al. (2016) have created a calcium imaging analysis suite 

(CaImAn) that approaches these three challenges from a mathematical modelling perspective.  

They model the fluorescent activity observed in the video frame at any given time, y(t), as a 

weighted sum of the calcium concentration due to spiking activity, c(t), the baseline calcium 

concentration, b, and the noise,  𝜖(𝑡) (see equation 1). In the equation below, 𝛼 is a nonnegative 

scalar and the noise is assumed to be constant and have a gaussian distribution.  

 
𝑦(𝑡) =  𝛼(𝑐(𝑡) + 𝑏) +  𝜖(𝑡), 𝜖(𝑡) ~𝑁(0, 𝜎2)   

 
A few assumptions are made so that the above equation can be solved through numerical 

optimization. First, the spiking activity is assumed to be greater than zero (that is, the raw video is 

assumed to contain spiking cells). Second, the spike-related calcium activity is assumed to be due to 

the simplest (sparsest) combination of spiking activity.  Third, while the spatial footprints of 

Equation 1. Observed fluorescence modeled in relation to calcium concentration. y(t) is 
the fluorescence activity observed, is a nonnegative scalar multiple, c(t) is the calcium 
concentration due to spiking activity, b is the baseline calcium concentration within the cell, 
and 𝜖(𝑡) is the noise in the observed fluorescence. From Pnevmatikakis et al. (2016). 

Figure 4. jRCaMP1b has a shallower 
frequency-tuned response in comparison 
to GCaMP6f. Various calcium indicators were 
expressed separately in the neuro-muscular 
junction of Drosophila larvae using transgenic 
flies. The segmented motor nerve of the larvae 
was stimulated while the fluorescent activity 
was measured at the presynaptic bouton. 
Adapted from Dana et al (2016).  
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different cells can overlap, individual spatial footprints are assumed to be as sparse and compact as 

possible while still accurately capturing the data. Lastly, due to our inability to determine the value 

of 𝛼, the scalar multiple of spike-related calcium activity, only a relative firing rate can be extracted 

from the fluorescence.  

Cell Tracking Across Days 

Since our experiments require comparing place fields and place cell activity between days, 

we needed a way to keep track of the same cell between different videos. The main challenge in 

analyzing multi-day endoscopic calcium imaging data is accounting for the day-to-day shifts in the 

visual field. The method used to register cells across days in this project is called Cell Reg 

(Sheintuch et al., 2017). Using multiple days’ worth of spatial footprints produced by the CaImAn, 

Cell Reg calculates the distance between centers of mass of the spatial footprints and the Pearson 

correlation between the spatial footprints of cells in a local neighborhood (“spatial correlation”).  

Upon plotting the distribution of centroid distances and spatial correlations, a bimodal 

distribution is observed (Figure 5), which visually isolated two subpopulations of spatial footprints. 

Sheintuch et al. (2017) modelled the observed distribution of centroid distance and spatial 

correlation as the sum of two subpopulations. The group that has low spatial correlation and large 

centroid distance are most likely different cells while the group with high spatial correlation and 

small centroid distance are most likely the same cell. Using that model, one can calculate Psame— the 

probability that 2 cells from two different recording sessions are the same cell—from the spatial 

correlation and centroid distance values. By setting a minimum threshold for Psame, one can sort the 

spatial footprints of each day into either the same cells or different cells.  
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Statement of objectives 

This study aims to investigate the hypothesis that interneurons can induce place map formation by 

providing inhibitory input to place cells. To test this hypothesis, we will be using a red-shifted 

calcium indicator, jRCaMP1b, to record neural activity of individual neurons in animals roaming 

around an open field maze. Concurrently, we will optogenetically excite the interneurons to 

examine their effect on place field stability.  

Figure 5. Neighboring cell pairs can be modeled as a bimodal distribution composed of 
subpopulations of same-cell pairs and different-cell pairs. Spatial footprints of cells were 
extracted from multiple days’ worth of calcium activity video. Each spatial footprint was 
projected into all the days’ video frame to identify cells in each other’s vicinity. Distribution of 
centroid distances (A) and spatial correlations (B) were compared between sessions and 
modeled as the sum of two subpopulations: same-cell pairs (green dashed line) and different-
cell pairs (red dashed line) in graphs C and D, respectively. Figure adapted from Sheintuch et 
al., 2017. 
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Materials and Methods 

Animals 

All experimental protocols were approved by the Committee on Animal Care at 

Massachusetts Institute of Technology (MIT). Animals were maintained in MIT’s Animal Care 

Facility on a 12 hr/12 hr light/dark cycle. The mice were housed with littermates upon weaning 

and transferred to individual cages after the first surgical procedure. Each cage contained cotton 

pads for nesting material, as well as food and water ad libitum. 

Three strains of mice (Mus musculus) with C57BL/6 genetic background were used to breed 

the experimental mice: Ai32, VGAT-Cre, and PV-Cre. Ai32 mice (Jackson Laboratories, stock 

#024109) express a ChR2/EYFP fusion protein following exposure to Cre recombinase. VGAT-Cre 

mice (Jackson Laboratories, stock #028862) express Cre recombinase in inhibitory GABAergic 

neuron cell bodies. PV-Cre (Jackson Laboratories, stock # 017320) express Cre-recombinase in 

parvalbumin-expressing neurons, which includes a subset of interneurons. Experimental animals 

were male or female mice that were either VGAT-CrexAi32 or PV-CrexAi32. 

Animal husbandry 

Male homozygous Ai32 mice were housed with either two homozygous VGAT-Cre or two 

homozygous PV-Cre mice, to produce heterozygous VGAT-CrexAi32 or PV-CrexAi32 pups (Fig. 6). 

Pups were weaned and genotyped at three weeks old.  

Figure 6. Breeding scheme for ChR2-expressing animals. Male mice that are 
homozygous for a Cre-dependent ChR2 gene are crossed with homozygous females 
expressing Cre in either PV or VGAT cells. The offspring are heterozygous, having either PV-
dependent or VGAT-dependent expression of ChR2. 
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Opto-G-scope: a fluorescent microendoscope with an integrated optogenetic stimulator 

The filter tube of the opensource UCLA miniscope (Cai et al., 2016) was elongated to include 

space for an additional excitation LED and dichroic mirror for optogenetic stimulation. The 

modified miniscope, nicknamed the “opto-G-scope”, contained two excitation LEDs—one green for 

calcium imaging, and one blue for optogenetic stimulation (Fig. 7). The filters used in the opto-G-

scope include an excitation filter for the green LED (ET560/40x), an emission filter (Chroma 

ET630/75m), and two dichroic filters to filter and direct the light (Chroma T495lpxr and T585lpxr). 

An achromatic lens (Edmund Optics, catalog # 45-207) was used to focus the incoming parallel light 

rays onto the sensor (figure 8). These light rays came from a gradient-index lens (“GRIN lens”), 

whose index of refraction is a function of radial position in the cylindrical lens. Magnets were glued 

to the bottom of the scope body to allow for easy attachment to the traditional aluminum mounting 

plate (“baseplate”) for in-vivo imaging.  

 

Figure 7. Overview of the miniscope 
and opto-G-scope. (A) A baseplate is 
glued to the animal’s skull so that the 
miniscope can be attached. The 
miniscope interfaces with the computer 
via the data acquisition board. (B) Design 
of the plastic case of the miniscope, 
which contains three slots for optical 
lenses, a place for an LED light at the 
right end of the bottom piece, a sliding 
body to allow for focusing, and a mount 
for a camera sensor at the top. (C) Design 
of the plastic case of the opto-G-scope, 
which contains an additional slot for an 
optical lens and an additional place for 
the optogenetics stimulating LED. (D) A 
diagram showing the light paths within 
the opto-G-scope. The green rectangle is 
the green LED for stimulating RCaMP, the 
blue rectangle is the blue LED for 
stimulating ChR2. Only red wavelengths 
pass through the emission filter to reach 
the camera sensor at the top. 
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Surgical procedures for calcium imaging 

The following procedures were adapted from techniques developed by the Golshani and 

Silva labs (Cai et al., 2016). Animals were given 1.0mg/kg of slow-release buprenorphine at the 

start of any invasive procedure. 

 

Viral injections 

To express calcium indicators in the target cell population, viral injections were used to 

deliver the calcium indicator gene to experimental animals. 0.5ul of GCaMP6f (Penn Vector Core, 

Figure 8. Schematic of light rays passing through a GRIN lens. The index of 
refraction within a GRIN lens is a function of radial position in the cylinder. Since light 
bends sinusoidally with a well-defined period in a GRIN lens, cutting the lens to a 
quarter of its pitch will turn light rays emitted at one point on one end of the lens (red 
star) into parallel beams exiting the other end of the lens. 

Figure 9. Overview of all surgical 
procedures for calcium imaging. Virus 
containing the genetic material for 
calcium indicators is injected lateral to the 
imaging site to minimize the amount of 
damaged tissue being imaged. Following 
aspiration of portions of the cortex, a 
gradient index (GRIN) lens is implanted 
above CA1 of the hippocampus. Lastly, a 
baseplate is glued to the skull to allow for 
easy attachment of the miniscope for 
imaging sessions. (A) A dorsal view of the 
mouse skull with all surgical procedures 
visualized. (B) A coronal view of the 
mouse brain (2.055mm posterior of 
bregma) with all surgical procedures 
visualized. Image of brain slice from Allen 
Online Brain Atlas. 
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AAV1.Syn.GCaMP6f.WPRE.SV40) at 1.00x10 ^13 genome copies (GC)/ml or 0.5ul of jRCaMP1b 

(Penn Vector Core, AAV1.Syn.NES-jRCaMP1b.WPRE.SV40) at 6.69x10^13 GC/ml were injected into 

the right dorsal hippocampus (-2.1mm posterior, 2.1mm right of, and -1.7mm dorsal to bregma) 

when animals were at least 2 months old (figure 9). 

Lens implants 

Two weeks after the viral injection surgery, mice were implanted with a gradient-optics 

lens (“GRIN lens”; Edmund Optics, catalog #64-519). A craniotomy was made at -2.1mm posterior 

and 1.5mm right of bregma and brain tissue is aspirated to a depth of -1.35mm (figure 9B).  The 

GRIN lens was lowered into the bottom of the craniotomy and secured to the skull via a head cap 

made with cyanoacrylate glue (Starbond EM-02), cyanoacrylate gel (Loctite 454 Prism Gel 

Adhesive) and dental acrylic (Contemporary Ortho-Jet Powder, black).  

Baseplating 

Three to four weeks following the implant surgery, cells are imaged through the GRIN lens 

using an opto-G-scope. The angle, position, and focus length of the scope is manually adjusted over 

the GRIN lens until cells can be clearly seen. Additionally, we try to include blood vessels in the field 

of view to act as static landmarks that are useful during motion correction. Upon finding 

satisfactory position, the aluminum baseplate is glued to the head cap to preserve the field of view 

and the focus adjustment set screw tightened in place (figure 9A). Following baseplating, the opto-

G-scope can be attached and detached from the animal’s head using a set of inset magnets during 

behavioural experiments to achieve the same field of view day-to-day. 

Behavioural experiment 

Each animal was exposed to a control environment, where there were no perturbations to 

the environment, and an experimental environment, where they experienced a perturbation. The 

environments were made of white corrugated plastic, with 30cm tall walls forming a four-sided 

polygon. Each wall had a differently-shaped cue on it, made with black contact paper.  
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Experimental periods were divided into three stages: pre-perturbation, perturbation, and 

post-perturbation. In the pre-perturbation stage, calcium activity was recorded for 15 minutes 

while the animal was exploring the environment. In the perturbation stage, calcium activity was 

recorded while the animal experienced an altered environment. In the post-perturbation stage, 

animals were placed into their respective environments and calcium activity was recorded for 15 

consecutive minutes.  

Recording Rig Design 

 A mobile recording rig, comprised of a computer, the recording frame, and detachable 

mazes (see next section for details), was used for data collection (figure 10). The recording frame 

was made of extruded aluminum “t-slot” bars (111cm tall) and held the overhead behaviour 

camera, along with the data acquisition circuit that served as the interface between the miniscope 

and the computer, and a coaxial commutator to allow the miniscope tether to be untwisted during 

freely moving behavior. The base of the recording frame was attached to a plywood board (76cm x 

75cm) that also served as the base for attaching the mazes.  

  

Figure 10. A labelled diagram of 
the recording rig. The metal frame 
(111cm tall) held the behaviour 
camera and data acquisition board. 
The miniscope was connected to the 
data acquisition board through a 
commutator and suspended from the 
metal frame. Two USB connectors 
interfaced with the data collection 
computer, one for the miniscope’s 
data acquisition board and one for 
the behaviour camera. The mazes 
were detachable (76cm x 68cm) and 
secured to the wooden base of the 
recording rig with metal pegs 
inserted through holes in the plastic 
base of the mazes. 
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Maze Design 

Mazes were made from white corrugated plastic. Each maze was a simple, convex 

quadrilateral, with approximately 2500 cm2 area. Each of the four walls was decorated with a 

different visual cue made of black contact paper. The walls were held together using hot glue and 

attached to a floor of the same material. Holes were drilled into each of the four corners of the base 

board, so as to align with the holes in the wooden base, and metal pegs were used to secure each 

detachable plastic maze to the plywood base for each behavioural session. Each maze had distinct 

allocentric cues as well, as they were placed amongst 2-3 different rooms. One room was divided 

into 2-3 distinct recording regions using a black curtain and a table. 

Data Collection  

 Data collection was performed using Bonsai, an open-source software created to process 

heterogenous streams of data (Lopes et al., 2015) using a plugin developed by Dr. Jonathan 

Newman (https://github.com/jonnew/Bonsai.Miniscope). Data was collected from two cameras: a 

behaviour camera mounted to the frame of the recording rig and the imaging sensor of the 

miniscope. For each frame of behavioural video collected, Bonsai extracted the location of the 

animal by tracking the location of the large red sticker on top of the miniscope and calculated its 

speed (figure 11). If the animal was designated for optogenetic stimulation, stimulation would be 

delivered when the animal was within a certain third of the maze and moving above a minimum 

speed. The trigger for the optogenetic stimulation was given by Bonsai, delivered to a Cyclops LED 

driver (Newman et al., 2015), which provided the current for the optogenetics LED.  
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Preliminary image analysis with ImageJ  

To produce figures 12 and 13, videos of calcium activity from the first day of recording for 

each animal were examined using ImageJ, an opensource image processing program (Schindelin et 

al., 2012). Video files were loaded as a stack of tiff images and a projection of maximum intensity 

was created by selecting “Image>Stacks>Z-project>Max Intensity”. These maximum intensity 

projections were used to identify putative neurons. One such neuron identified was outlined using 

the ellipse tool and a plot of intensity over time was created by selecting “Image>Stacks>Plot Z-axis 

Profile”. A plot of intensity over time was also created for a section of the background of the same 

size as the neuron outlined.  

Figure 11. Recording workflow used in Bonsai. Bonsai acquired two video sources and saved 
seven different files: the raw behaviour video, the raw calcium activity video, time stamps for each 
frame of video collected, the speed for the animal calculated through Bonsai, and the miniscope 
settings used during each recording session. 
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Calcium Data Analysis 

RCaMP activity recorded during behavioural sessions were processed using the CaImAn 

analysis suite (Pnevmatikakis et al., 2016). To identify the optimal parameters for analysis, a 

parameter sweep was done with the variables listed in table 1. The final parameter values used to 

analyze all data collected is also listed in table 1. 

Table 1. Variables used in CaImAn that were optimized in the parameter sweep. 

Variable Values 
tested 

Value 
used 

Description 

Gsig 2, 3, 5, 
10 

2 The diameter of a neuron in the calcium activity video. 
Width of Gaussian kernel used to spatially smooth data 
before determining areas of high local correlation, which 
are used as putative neurons to seed the algorithm.  

Gsiz 4, 5, 6, 
7, 8 

5 The size of the background ring around each neuron 
identified. Used to model the local background fluorescence 
around the neuron.  

Merge_thresh 0.6, 
0.7, 
0.8 

0.75 The threshold value for spatiotemporal correlation that is 
used to determine whether two neighboring spatial 
footprints should be merged together to form a single 
neuron. 

Neurons_per_patch 10, 50, 
100, 
200 

200 Related to the maximum number of neurons that are 
allowed to be identified in each video. Whole video frames 
are divided into patches so that parallel processing can be 
used to speed up the processing time. Each patch can have 
a maximum of neurons_per_patch cells.  

Nb_patch 8, 16, 
32 

16 The maximum number of background components used to 
model the static background of the video. Similar to how a 
Fourier series represents a function as the sum of multiple 
sine waves, the static background image of videos is 
represented as a weighted sum of gaussian sources of 
background fluorescence.  

 

Alternate calcium data analysis from Ziv et al. (2013) 

 For the GCaMP6f fluorescence data collected, one day’s activity analyzed by CaImAn was 

also processed using an alternate analysis outlined in Ziv et al. (2013). Rather than deconvolving 

the spiking times from the calcium signal, they defined calcium transients due to neural activity as 

peaks in fluorescence greater than two standard deviations from the baseline fluorescence. 

Following video denoising, these peaks in fluorescence were identified for each neuron’s spatial 
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footprint (generated from the CaImAn analysis). Place fields were then created by correlating the 

times of calcium transients with the animal’s location.   

Confirmation of implant/imaging sites 

At the conclusion of behavioural experiments, animals were transcardially perfused with 1x 

phosphate buffered solution (1xPBS) followed by a 4% formalin solution. Their brains were stored 

overnight in a 4% formalin solution and then sliced into 50um coronal sections. Slices were 

mounted with mounting medium containing DAPI (Vector Laboratories, catalog # H-1200). Slides 

were imaged using a Nikon TE2000 widefield microscope using brightfield, DAPI, TRITC, and FITC 

filters at 2x and 10x magnification to confirm implant and imaging sites and tissue health. 

Ad hoc analysis of abnormal bursting activity 

 The start of abnormal bursting activity was identified in the collected GCaMP data by 

summing the amplitude of all traces produced by CaImAn, calculating the Z-score for each summed 

value, and identifying the times at which the Z-score of the summed amplitude exceeded 2. 

Correlations with animal behaviour were made by inspecting animal position 2 seconds before and 

after the onset of each identified burst.   
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Results 

Implementing GCaMP calcium imaging 

To verify the functionality of our behavioral setup and imaging system, we started by 

imaging GCaMP in wild-type animals. GCaMP is ~10x brighter than RCaMP and therefore allowed 

us to troubleshoot our experimental apparatus with more confidence than a weaker indicator. 

Wildtype mice were injected with virus containing genetic material for GCaMP6f (Chen et al., 2013), 

implanted with a GRIN lens, and affixed with a baseplate. Following recovery from baseplating, the 

animal was habituated to human handling and placed in an open field maze to freely explore. 

Calcium activity in CA1 was imaged using a conventional UCLA miniscope during this exploration 

(Cai et al., 2016). Videos were processed using ImageJ and active cells were identified within the 

video (figure 12).  

Implementing RCaMP calcium imaging 

Following successful GCaMP calcium imaging in wildtype mice, ChR2-expressing mice were 

transfected with jRCaMP1b (Dana et al., 2016) and underwent the same surgical and imaging 

procedures. Although jRCaMP1b was expressed within cells of CA1 (figure 13), spikes in RCaMP 

fluorescence were much harder to distinguish from background fluorescence than in the GCaMP 

model.   

Figure 12. GCaMP Activity. A video of raw GCaMP activity was collected from a GCaMP-
expressing mouse and processed using ImageJ. (A) A projection of maximum intensity of each 
pixel over all video frames yielded outlines of active cells. (B) A time series of intensity, 
measured in 8-bit pixel values, for a region of interest (circled in green in A) thought to be a 
neuron upon visual inspection of the video. Blue arrows indicate likely spikes in activity of the 
neuron (C) A time series of intensity, measured in 8-bit pixel values, for region of interest not 
thought to contain a neuron upon visual inspection of the video (circled in red in A). All videos 
had a 30Hz frame rate. 
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The changes in fluorescence levels were visibly slower and active cells were hard to identify 

by eye (figure 14A). Video analysis using ImageJ supported this observation, as the fluorescent 

intensity of neurons had a low signal to noise ratio and it was hard to distinguish neurons from 

background when looking at plots of the intensity changes over time (figure 14B-C).  Poor signal 

quality persisted even when we increased the brightness of the excitation LED for jRCaMP1b. As the 

analysis depended on the quality of the video data, we chose to process the videos of GCaMP6f 

activity first before those of jRCaMP1b. Due to time constraints of this thesis project, only analyses 

from the GCaMP data were performed. 

 

  

Figure 13. Histology of ChR2-expressing animal infected with jRCaMP1b. 
jRCaMP1b was injected into the hippocampus of a mouse expressing ChR2 in 
parvalbumin-expressing neurons. After behavioural experiments, the animal was 
euthanized, and the brain sectioned in 50um increments. The slices were mounted with 
a mounting medium containing DAPI and imaged at (A) 2x, scale bar is 600um and (B) 
10x image of the region in (A) outlined in blue, scale bar is 300um. Blue is DAPI stain, 
green is ChR2-EYFP fluorescence, and red is jRCaMP1b fluorescence. Imaged slice is 
2.1mm posterior to bregma, right under the center of the craniotomy and the GRIN lens 
implant site.  
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CaImAn parameter optimization for GCaMP data 

The calcium imaging analysis suite CaImAn (Pnevmatikakis and Paninski, 2013; 

Pnevmatikakis et al., 2016; Pnevmatikakis and Giovannucci, 2017) was used to process the calcium 

activity videos collected from the GCaMP-expressing wildtype mice. Since there were a few 

variables within the analysis suite that needed to be optimized, we first performed a parameter 

sweep with these variables (see Methods for more details). The analysis corrected for motion 

artifacts and yielded spatial footprints. These footprints were visually compared to determine 

which set of parameters created footprints the best. For example, changing the value of g_sig from 2 

to 5 yielded spatial footprints that were too large and led to inaccurate spatial footprints (white 

arrows in figure 15). The set of parameters that yielded the best spatial footprints were used for the 

rest of the analysis. In the following results, all video analyses were performed with gsiz = 2, gsig = 

5, neurons_per_patch = 200, nb_patch = 16 (see Methods for explanation of parameters). 

  

Figure 14. RCaMP Activity. A video of raw RCaMP activity was collected from an RCaMP-
expressing mouse and processed using ImageJ. (A) A projection of maximum intensity of each pixel 
over all video frames yielded faint outlines of active cells. (B) A time series of intensity, measured in 
8-bit pixel values, for a region of interest (circled in green in A) thought to be a neuron upon visual 
inspection of the video. Blue arrow indicates likely spikes in activity of the neuron (C) A time series 
of intensity, measured in 8-bit pixel values, for region of interest not thought to contain a neuron 
upon visual inspection of the video (circled in red in A). All videos had a 30Hz frame rate.  
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GCaMP CaImAn analysis 

The behavioural videos were used to generate a histogram of occupancy within each maze 

(figure 16A-B). We also calculated the animal’s speed from the video and categorized the animal’s 

behaviour within the maze as “in-motion”, when moving greater than 0.10m/frame, or “stationary”. 

The in-motion occupancy of the animal (figure 16C) was used later in normalizing all neural 

activity, to account for the sampling bias created by the animal’s uneven occupancy. 

Using the results of the parameter sweep, the entire multi-day data set for one GCaMP-

expressing mouse was processed to generate a set of spatial outlines of active neurons. The 

fluorescent activity contained within each spatial footprint was then analyzed and the neural 

activity was extracted for each cell (figure 17A). Following normalization by in-motion occupancy, 

each cell’s activity was correlated with the location of the animal during the recording session to 

yield place fields (figure 17B-E).  

 

  

Figure 15. Comparison of spatial footprints generated from two sets of CaImAn 
parameters. 15 minutes of calcium activity from a GCaMP-expressing mouse was processed in 
CaImAn with the gsig variable set to either (A) 5 or (B) 8 while all other variables were held 
constant (see method for explanation of variables). The background image shows the 
spatiotemporal correlation of each pixel with its neighbors, with yellow indicating high 
correlation and blue indicating low correlation. Overlying white outlines are the spatial 
footprints generated by CaImAn. White arrows point to the same neuron in both (A) and (B). 
Scale bars indicate 100um. All videos had a 30Hz frame rate. 
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Figure 16. Tracking and occupancy data from behavioural videos. Behavioural videos 
recorded for each maze for one animal was analyzed to yield: (A) Red lines indicate animal 
trajectory, black indicates positions where animal was stationary during the entire behaviour 
recording. (B) Histogram of animal’s occupancy within the maze. (C) Histogram of animal’s 
occupancy within the maze only when moving. Scale bar indicates 20cm. 
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Figure 17. Inferred neural activity from CaImAn. Calcium activity recorded over a period of 
eleven days for one animal was processed by CaImAn (A) Sample of activity inferred from 
CaImAn. Each line represents one cell. Black lines are the denoised calcium concentration 
calculated from CaImAn, while red lines are the inferred spiking activity. (B-E) Four cells that 
showed spatially-tuned inferred spiking. The highest relative spiking rate for each cell is 
represented by bright yellow, while the lowest relative spiking rate is dark red. Each individual 
neuron’s activity is normalized to the animal’s in-motion occupancy within the maze. Maze 
shape is outlined in black. Scale bar indicates 20 cm. 
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Comparison with another method of analysis 

We compared our CaImAn-generated place fields with place fields generated from a 

different analysis of calcium activity (Ziv et al., 2013). Data from the GCaMP-expressing animal 

during one session of one day was processed by both analyses (see Methods for details) and place 

fields were created from the spiking activity extracted (fig. 18). The analysis method by Ziv et al 

(2013) seems to have identified more instances of high activity, which can be seen in the multiple 

local clusters of yellow pixels in figure 18.  

Multi-day cell tracking 

 With the CaImAn-generated spatial footprints for each day’s calcium videos, we used the 

CellReg analysis package (Sheintuch et al., 2017) to track cells within the video frame across days 

(see Methods for details). The place fields of the same cell between multiple days within the same 

environment were then compared to each other (figures 19).  

Figure 18. Comparison of place fields generated from two different analysis 
methods. The same day’s data was processed using two different analyses (see 
methods for details). Top row is CaImAn. Bottom row is Ziv. Scale bar indicates 20cm. 
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Figure 19. Place fields of cells that were detected in 10 or more days of recording. 

Calcium activity recorded over a period of eleven days for one animal was processed by 

CaImAn and CellReg was used to track cells across all days (see methods for details). The 

highest relative spiking rate for each cell is represented by bright yellow, while the lowest 

relative spiking rate is dark red. Each individual neuron’s activity is normalized to the 

animal’s in-motion occupancy within the maze. Scale bar at top left indicates 40cm. 
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Discussion 

The goal of this project was to investigate how local inhibitory input to place cells might 

affect the stability of existing place fields. This would provide a mechanistic explanation for time 

course and conditions allowing the formation of place fields described in previous studies.   Many 

previous studies have manipulated place cell activity directly (Lee et al., 2012). However, very few 

studies have looked into how interneurons, which provide all inhibitory input into place cells, can 

influence place field formation. One study that optogenetically inhibited interneuron firing in CA1 

demonstrated that decreased inhibition is not sufficient to induce formation of new place fields and 

suggested that it is instead an increased inhibition of place cells that leads to place fields developing 

(Schoenenberger et al., 2016). To test this hypothesis, we used a combination of optogenetics and 

calcium imaging in a mouse model to simultaneously excite interneurons and record place cell 

activity.  

Observations on implementing calcium imaging 

The first aim of this project was to successfully implement calcium imaging with a green 

fluorescent calcium indicator (GCaMP6f) in an animal exploring an open field maze to verify our 

experimental technique. Calcium imaging enables long-term observation of the same cells and 

yields a larger cell population in comparison to electrophysiological recordings (Ghosh et al., 2011). 

Since calcium imaging had not been attempted in the Wilson lab prior to these experiments, we 

wanted to begin with a simplified experimental paradigm to have more confidence in 

troubleshooting our experimental technique.  Although our formal experimental design used a red 

fluorescent calcium indicator (jRCaMP1b), we started with GCaMP6f because it has ~10x greater 

maximal fluorescence signal in comparison to jRCaMP6f and also a faster signal decay time (Chen et 

al., 2013; Dana et al., 2016). This meant that the fluorescent signals collected would be easier to see 

in real-time during experimentation and to extract neural spiking activity from using the 
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deconvolutional methods.   Similar to previous studies monitoring neural activity through calcium 

imaging (Ghosh et al., 2011; Chen et al., 2013), the videos collected from the miniscope showed 

active GCaMP6f-expressing neurons whose fluorescent signal correlated with animal behavior 

(figure 12). Inspecting the changes in fluorescent intensity throughout the field of view revealed 

regions that had greater changes in intensity (figure 12), which we assumed to be active neurons.  

A major weakness of using calcium indicators to measure neural activity is how slow the 

calcium and calcium indicator dynamics are in comparison to an action potential. Once an action 

potential reaches the axon terminal, voltage-gated calcium channels open and there is an influx of 

calcium ions that diffuses up to the soma. This influx takes around 10 milliseconds and levels within 

the cell drop back to baseline 60 milliseconds after the channels are opened (Lin and Schnitzer, 

2016). In addition to the slow dynamics of somatic calcium concentration, dendritic fluorescence 

could overlap with fluorescing cells to introduce noise to the data and the fluorescent indicator 

itself is slow. When there is sufficient calcium within the cell, it takes less than a second for the 

calcium to bind to the calcium indicator to induce increased fluorescence (Lin and Schnitzer, 2016). 

In comparison, somatic action potentials are on the order of one millisecond long and place cells 

can fire action potentials at 10Hz or more (Lever et al., 2002). The slow dynamics of the calcium 

indicators therefore mask quick firing rates and make it essentially impossible to precisely measure 

the millisecond-to-millisecond changes in activity. The techniques we employed to extract 

approximate spiking activity from calcium indicators attempt to deconvolve the action potential 

rate from slow calcium dynamics (Pnevmatikakis and Paninski, 2013; Pnevmatikakis et al., 2016) 

using heuristic constraints on firing sparsity, signal noise, and calcium indicators dynamics. 

However, these algorithms are highly reliant on correct parameter choices (see methods for 
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details), and we did not have the resources to pursue a truly exhaustive and principled parameter 

sweep.  

The slow fluorescence was partly why we chose not to continue with RCaMP analysis, but it 

also has implications for our GCaMP analysis. As place field detection relies heavily on aligning 

neural activity with animal position, there is a greater risk of a small offset in alignment resulting in 

incorrect place fields. Therefore, place fields generated from any type of calcium indicator activity 

will have a lower spatial resolution than ones generated from electrophysiological recordings and 

rely heavily on correct alignment of activity with location.  

Optogenetics implementation needs to be confirmed with electrophysiology 

Aside from the poor fluorescent signal of jRCaMP1b mentioned in the previous paragraph 

and in figure 12, another aspect of the RCaMP experimental technique should also be addressed. 

The transgenic mice expressing ChR2 in a subset of neurons were bred from well-established 

strains of mice from Jackson Laboratories (Vong et al., 2011; Madisen et al., 2012) and there was 

ChR2 expression within the expected brain regions (figure 13), but we were not able to confirm the 

functionality of the ChR2 being expressed. To verify ChR2 function, one can use electrophysiology 

to record cellular activity in the hippocampus and compare population activity levels when 

optogenetic stimulation is being delivered versus when it isn’t. The challenge in performing 

electrophysiology and calcium imaging simultaneously in our model was that the design of the 

miniscope made it difficult to include an electrode interface. The miniscope was attached and 

detached from the baseplate daily, so as to reduce the burden on the animal, so any electrodes 

implanted would need to be wireless or have some auxiliary connector. Since a GRIN lens is placed 

directly above the tissue being stimulated, it would be hard to monitor population activity via 

surface electrodes or wireless electrode arrays, as other studies have done (Greenberg et al., 2008; 
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Bonfanti et al., 2012). Therefore, future studies looking to verify the ChR2 functionality could 

consider using electrodes implanted alongside the GRIN lens that have a sturdy connector which 

can be plugged in for each recording session.   

Aberrant activity seen in GCaMP data 

We also ran into a seemingly fundamental issue with endoscopic calcium imaging. Large, 

synchronized fluorescence were observed spreading like a spatial wave through the field of view 

sporadically through all recording sessions (Figure 20). These waves of fluorescence were most 

likely due to neural activity but were not consistent with previous reports of place cell activity. 

Bursts happened periodically throughout the entire behavioural session. Inspecting animal position 

Figure 20. Progression of large, synchronized fluorescence through the imaging 
camera’s field of view. Top of each vertical pair shows frames of raw video at 4 second 
intervals. Bottom each vertical pair shows the denoised video that was used to extract 
deconvolved spikes using CaImAn. 
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2 seconds before and after the onset of each burst did not reveal any position or activity-dependent 

correlates (figure 21). The frequency of bursting also varied between recording sessions (figure 

22), with each burst lasting around 10 seconds. 

Figure 21. Bursts of synchronized 
activity identified in a full recording 
session. (A) Denoised calcium 
concentration, for the first 400 spatial 
components extracted from CaImAn (B) 
The sum of denoised calcium concentration 
of all spatial components extracted from 
CaImAn, measured in relative units, red 
points indicate where Z-score>2 (C) Z-score 
of the sum displayed in B, red points 
indicate the start of every burst period 
identified, set as whenever the Z-value 
became greater than 2 (D) Animal speed, 
smoothed over a Hann window 50 frames 
long, measured in pixels per frame (E) 
Animal position during the entire recording 
session (grey) and 2 seconds before and 
after the onset of each burst (coloured). 
Scale bar represents 20cm. Data shown is 
from the same recording session as figure 
20. Burst displayed in figure 20 is outlined 
in panels A-D by a green box. 
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These bursts may be due to aberrant large-scale synchronized activity. While there are not 

many reports of circuit instability due to the expression of GCaMP, a study looking into the long-

term effects of transgenic expression of the family of GCaMP6 calcium indicators, which includes 

Figure 22. Bursts of synchronized activity identified in multiple recording sessions. 
The sum of the denoised calcium concentrations of all spatial components extracted from 
CaImAn for multiple days of recording in the same environment. Red points indicate where 
Z>2, in relative units. 
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GCaMP6f, also reported aberrant epileptic events confirmed via electrophysiology (figure 23, 

Steinmetz et al., 2017).  

Various strains of transgenic mice were bred to express GCaMP in a subtype of cells. 

Researchers observed epileptic events in multiple brain regions of some animals and these events 

were also, in rare instances, correlated with behavioral tonic-clonic seizures in one transgenic 

mouse strain. Since the study used transgenic mice expressing GCaMP6, the researchers controlled 

for the effects of GCaMP expression during development in a subset of animals. These transgenic 

animals were given doxycycline to inhibit GCaMP expression until adulthood and did not exhibit 

seizure-like neural activity for 30 weeks following doxycycline removal. This contradicts our 

observations, as the lack of GCaMP expression during the mouse’s adolescence did not prevent 

aberrant bursting activity. Additionally, the mouse we used was wildtype, so effects of other genetic 

manipulation are not relevant here.  

Figure 23. Traces of 
epileptiform activity from 
Steinmetz et al (2017). 
Epileptiform events 
observed in LFP, two photon 
calcium imaging, and 
widefield calcium imaging in 
one individual mouse, but 
not simultaneously. The 
genotype of the mouse was 
Emx1-Cre;Camk2a-tTA;Ai94 
(expressing GCaMP6s). Two-
photon trace was generated 
as the mean intensity of 
each frame across the entire 
field of view; widefield trace 
was generated as the mean 
within an ROI 
approximating the two-
photon field of view.  
Each row contains an 
example trace from the 
same mouse. Figure and 
caption adapted from 
Steinmetz et al, 2017. 
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An important difference to note between our observed aberrant activity and the activity 

seen by Steinmetz and colleagues is that the time scale of our abnormal activity is much longer than 

that of Steinmetz et al (2017). While they observed 7 distinct peaks in activity within 10 seconds 

(figure 23), our abnormal activity occurred on the timescale of seconds rather than milliseconds 

(figure 21). Therefore, there needs to be further investigations into whether the abnormal activity 

seen in our data is the same activity reported by Steinmetz and colleagues. 

This aberrant activity being seen in our GCaMP mouse could be explained by the effects of 

increased calcium levels within the cell, due to it binding to GCaMP. Calcium is an important 

secondary messenger within the cell and takes part in affecting gene expression for synaptic 

plasticity (West et al., 2001). Data from Steinmetz et al. (2017) support this theory, as greater and 

more diffuse expression of GCaMP was correlated with more aberrant activity.  

The implications of aberrant activity on our collected is two-fold. First, these synchronized 

waves of activity were not excluded in our analysis and could have affected the place fields 

generated from the analysis. This could have influenced our interpretations of changes in place 

fields and resulted in false conclusions. Secondly, the aberrant activity could have had a behavioral 

effect on the mouse. While the mice in the Steinmetz study did not seem to have cognitive deficits 

related to the aberrant activity, they only studied activity on the surface of the brain. Our own 

observations of the mouse have yielded no signs of aberrant activity resulting in abnormal 

behaviour, but our observations are qualitative and may have a sampling bias. Therefore, follow-up 

projects could investigate how early these aberrant activities start, as our behavioral experiments 

started 2-3 months after GCaMP6f was injected, and whether there are behavioral or cognitive 

deficits related to these aberrant activities that could affect our study of spatial memory.  
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Comparing methods of extracting spiking activity 

One last point of interest was revealed when comparing the CaImAn-generated place fields 

with place fields generated by the method by Ziv et al. (2013). Whereas CaImAn aimed to extract 

individual spikes from the calcium fluorescence recorded, Ziv et al (2013) worked with the 

assumption that place cells spike in bursts and therefore identifying these bursts of activity would 

be equivalent to finding the cell’s periods of high activity. The CaImAn method detected a smoother 

gradient of activity from the raw data than the analysis by Ziv et al (2013), which made it both 

easier and harder to identify cells that had a place preference. While the colour contrast was 

decreased due to the smoother gradient of activity detected, the overall place preference of the cell 

is more apparent. When the same cells’ activity was analyzed by the alternate method, activity was 

much sparser and therefore created more contrast within the heat map. Some cells retained their 

place preference, but other cells lost their place preference (Figure 18, cells 4-6). This sparser 

detection is likely because the alternate analysis did not infer spiking activity. Instead, action 

potentials were defined as instances where the fluorescence was two standard-deviations brighter 

than average. Although neither analysis can be deemed more “correct” than the other, it is 

important to acknowledge that the analyses used to analyze neural activity in calcium imaging 

could influence its interpretation. 

Concluding remarks 

This project successfully implemented calcium signaling in a mouse model using GCaMP6f. 

While the jRCaMP1b data was not processed due to timing constraints, continuations of this project 

should include performing a parameter sweep for RCaMP data, followed by analysis of multi-day 

neural activity, similar to what was outlined in this thesis. Other avenues of exploration include 

verifying the use of optogenetics in transgenic animals and investigating the aberrant activity seen 

in our GCaMP data.  
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