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Abstract

We carry out a delay stability analysis (i.e., determine conditions under which expected

steady-state delays at a queue are finite) for a simple 3-queue system operated under the Max-

Weight scheduling policy, for the case where one of the queues is fed by heavy-tailed traffic (i.e,

when the number of arrivals at each time slot has infinite second moment). This particular

system exemplifies an intricate phenomenon whereby heavy-tailed traffic at one queue may or

may not result in the delay instability of another queue, depending on the arrival rates.

While the ordinary stability region (in the sense of convergence to a steady-state distribution)

is straightforward to determine, the determination of the delay stability region is more involved:

(i) we use “fluid-type” sample path arguments, combined with renewal theory, to prove delay

instability outside a certain region; (ii) we use a piecewise linear Lyapunov function to prove

delay stability in the interior of that same region; (iii) as an intermediate step in establishing

delay stability, we show that the expected workload of a stable M/GI/1 queue scales with time

as O(t1/(1+γ)), assuming that service times have a finite 1 + γ moment, where γ ∈ (0, 1).
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1 Introduction

We consider a simple 3-queue system operated under the Max-Weight scheduling policy, for the

case where one of the queues is fed by heavy-tailed traffic (i.e, when the number of arrivals at each

time slot has infinite second moment). The performance metric that we are interested in is delay

stability: a queue is delay stable if the expected steady-state delay in that queue is finite, and

delay unstable otherwise.

Under the Max-Weight scheduling policy, the notions of stability and delay stability coincide

when all primitive stochastic processes are light-tailed; that is, all queues are delay stable for all

arrival rate vectors within the stability region of the system (see, e.g., [21]). On the other hand, for

a system of parallel queues served by a single server, it is known that if one of the arrival streams

is heavy-tailed, then all queues are delay unstable, for all positive arrival rates [14]. The system

that we study in this paper exhibits an intermediate behavior: we show that in the presence of

heavy-tailed traffic, there may be nontrivial parts of the stability region where a queue is delay

stable, and nontrivial parts of the stability region where the same queue is delay unstable. This

exemplifies an intricate “delay instability propagation” whereby heavy-tailed traffic at one queue

may or may not result in the delay instability of another queue, depending on the numerical values

of the arrival rates.

The study of queueing systems with heavy-tailed traffic is motivated by significant evidence

that traffic in real-world networks exhibits strong correlations and statistical self-similarity over

different time scales. This observation was first made by Leland et al. [13] through an analysis

of Ethernet traffic traces. Subsequent empirical studies have documented this phenomenon in

other networks, while accompanying theoretical studies have associated it with heavy-tailed arrival

processes; see [16] for an overview. At the same time, the performance analysis of Max-Weight

scheduling is of independent interest, with a long history and rich literature, see, e.g., [1, 6, 20, 21].

The feature that makes the Max-Weight policy appealing is its throughput optimality, i.e., its

ability to stabilize a queueing system whenever this is possible. In other words, dynamic instability

phenomena, such as the ones reported in [12, 17], are guaranteed not to occur under Max-Weight

scheduling.
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The impact of heavy-tailed traffic has been analyzed extensively in the context of single and

multi-server queues; see the survey papers [3,5] and the references therein. However, there is little

work on more complex queueing systems and scheduling policies. A notable exception is the work

by Borst et al. [4], which studies the Generalized Processor Sharing policy in the presence of heavy-

tailed traffic. Related results, which come closer to the subject of this paper, are also given in [14],

which reports a nontrivial delay stability region for a system of parallel queues served by a single

server under the Round-Robin policy. In contrast to the aforementioned scheduling policies, Max-

Weight is a queue length-based policy, whose dynamics are more complex and harder to analyze.

Finally, the work by Jagannathan et al. [11] presents a queueing system with heavy-tailed traffic,

and under the Max-Weight policy, with a nontrivial delay stability region. However, what affects

delay stability in that study is the intermittent access of servers to queues, arising, e.g., in wireless

networks. Consequently, the underlying mechanism that determines the delay stability region there

is very different than the one analyzed here.

The main contributions of this paper are as follows:

(i) we show that under the Max-Weight policy, heavy-tailed arrivals at one queue may or may not

cause delay instability at other queues, as determined by an intricate instability propagation

phenomenon;

(ii) we use “fluid-type” sample path arguments, combined with renewal theory, to prove delay

instability if the arrival rate to a specific queue is greater than a certain threshold (Proposition

2);

(iii) we use drift analysis (over a sufficiently long time interval) of a suitably constructed piecewise

linear Lyapunov function to prove delay stability if the arrival rate to a specific queue is less

than that same threshold (Proposition 3);

(iv) as an intermediate step in establishing delay stability, we show that the expected workload of

a stable M/GI/1 queue with heavy-tailed service times scales sublinearly in time, assuming

just the existence of the 1 + γ moment of service times (see the proof of Proposition 3).

The rest of the paper is organized as follows. In Section 2 we give a detailed description of
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the queueing system under consideration and the probabilistic assumptions that we make, together

with some necessary definitions and notation. In Sections 3 and 4 we prove our delay instability

and stability results, respectively. We conclude in Section 5 with a brief discussion and future

directions of research.

2 Model and Definitions

Throughout the paper we denote by Z+ and N the sets of nonnegative and positive integers,

respectively. Similarly, the Cartesian product of M copies of Z+ is denoted by ZM+ . We use 1E

for the indicator variable of event E. Finally, [x]+ stands for max{x, 0}, the nonnegative part of a

scalar x. With few exceptions, we follow the usual convention of using lower case letters to denote

real numbers or vectors and upper case letters to denote random variables or events.

2.1 The basic model and dynamics

We consider the queueing system depicted in Figure 1, consisting of three single-class, single-server

queues, with infinite capacity. Time is slotted and traffic consists of constant size packets. We

define Ai(t) as the (nonnegative) number of packets (a random variable) that queue i ∈ {1, 2, 3}

receives at slot t ∈ Z+, and let A(t) = (A1(t), A2(t), A3(t)). We assume that arrivals occur at the

end of the time slots. We define Qi(t) as the number of packets in queue i at the beginning of time

slot t, and let Q(t) = (Q1(t), Q2(t), Q3(t)).

We define Si(t) as the number of packets that the servers attempt to remove from queue i

during time slot t, and let S(t) = (S1(t), S2(t), S3(t)). We assume that Si(t) can only take values

in {0, 1}. An attempt will be successful if and only if queue i has a packet, so that the number

of packets actually removed from queue i during time slot t is Si(t) · 1{Qi(t)>0}. Accordingly, the

queue length dynamics take the form

Qi(t+ 1) = Qi(t) +Ai(t)− Si(t) · 1{Qi(t)>0}, t ∈ Z+, i ∈ {1, 2, 3},

initialized with an arbitrary vector of initial queue lengths Q(0) in Z3
+.
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Figure 1: A simple system of three single-class, single-server queues. A scheduler decides, at each
time slot, whether queues 1 and 2 will be served simultaneously, or whether queue 3 will be served
alone. Queue 1 receives heavy-tailed traffic, whereas queues 2 and 3 receive light-tailed traffic.

2.2 Scheduling constraints and the Max-Weight policy

We assume that the servers of queues 1 and 2 can be active simultaneously, whereas the server of

queue 3 can only be active alone. “Scheduling constraints” of this type are common in communica-

tion networks, such as wireless networks or data switches. Formally, the sets of queues {1, 2} and

{3}, as well as the empty set, are called the feasible schedules. Furthermore, S(t) is constrained

to take values in the set S =
{

(0, 0, 0), (1, 1, 0), (0, 0, 1)
}

, for all t ∈ Z+. The service discipline of

packets within each queue is assumed to be “First Come, First Served.”

The choice of a service vector S(t) ∈ S is made at each time slot according to a scheduling

policy. In this paper, we focus exclusively on the Max-Weight policy, which chooses a schedule

with the maximum total workload, at each time slot. Formally,

S(t) ∈ arg max
S∈S

{ 3∑
i=1

Qi(t) · Si
}
, t ∈ Z+.

In case of a tie, each one of the feasible schedules is chosen with equal probability.
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2.3 Assumptions on the arrival processes

We assume that the discrete time stochastic arrival processes {Ai(t); t ∈ Z+}, i ∈ {1, 2, 3} are

independent and identically distributed (IID) over time, and mutually independent. We denote

by λi = E[Ai(0)] the arrival rate of the ith process, and let λ = (λ1, λ2, λ3) For the model to be

interesting, all rates are assumed to be strictly positive.

We say that a random variable X is heavy-tailed (respectively, light-tailed) if E[X2] is infinite

(respectively, finite). Similarly, we say that the ith arrival process is heavy or light-tailed depending

on whether E[A2
i (t)] is infinite or finite, respectively. Throughout the paper we assume that the

first arrival process is heavy-tailed, and the other two arrival processes are light-tailed.

2.4 The stability region

A batch of packets arriving to a queue at any given time slot can be viewed as a single entity,

and will be referred to as a file. We define the end-to-end delay of a file to be the number

of time slots that the file spends in the system, starting from the time slot right after it arrives,

until the time slot that its last packet exits the system. (For example, a two-packet file that arrives

during time slot t and is served during the next two time slots has an end-to-end delay of 2.)

For k ∈ N, we denote by Di(k) the end-to-end delay of the kth file arriving at queue i, and let

D(k) = (D1(k), D2(k), D3(k)).

The following definition gives the precise notion of stability that we use in this paper.

Definition 2: (Stability) The earlier defined queueing system is stable under a particular

scheduling policy if the vector-valued sequences {Q(t); t ∈ Z+} and {D(k); k ∈ N} converge in

distribution, and their limiting distributions do not depend on Q(0).

Notice that our definition of stability is slightly different than the commonly used one (posi-

tive recurrence of the Markov chain of queue lengths), because it includes the convergence of the

sequence of file delays {D(k); k ∈ N}. The reason is that we are interested in properties of the lim-

iting distribution of {D(k); k ∈ N} and, naturally, we need to ensure that this limiting distribution

exists.
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An arrival rate vector λ is said to belong to the stability region of the system, if there exist

nonnegative real numbers µ12 and µ3, such that

max{λ1, λ2} ≤ µ12,

λ3 ≤ µ3,

µ12 + µ3 < 1.

Intuitively, one can think of µ12 and µ3 as the fractions of time that the schedules (1, 1, 0) and

(0, 0, 1), respectively, are applied. If a positive arrival vector λ is outside (and at a positive distance)

from the stability region, it is easily shown that there is no scheduling policy that makes the system

stable. In contrast, when λ belongs to the stability region, the system can be made stable, e.g., by

using the Max-Weight policy; see Lemma 1 below. Because of these considerations, we will assume

throughout the rest of the paper that λ belongs to the stability region.

Lemma 1: (Stability under Max-Weight) The queueing system under consideration is

stable under the Max-Weight scheduling policy, for all positive arrival rate vectors in the stability

region.

Proof. It can be verified that the sequence {Q(t); t ∈ Z+} is a time-homogeneous, irreducible,

and aperiodic Markov chain on the countable state-space Z3
+. Proposition 2 of [20] implies that

this Markov chain is also positive recurrent. Hence, {Q(t); t ∈ Z+} converges in distribution,

and its limiting distribution does not depend on Q(0). Based on this, it can be verified that

the sequence {D(k); k ∈ N} is a (possibly delayed) aperiodic and positive recurrent regenerative

process. Therefore, it also converges in distribution, and its limiting distribution does not depend

on Q(0); see [19].

We let Q = (Q1, Q2, Q3) and D = (D1, D2, D3) be random vectors distributed according to the

limiting distributions of {Q(t); t ∈ Z+} and {D(k); k ∈ N}, respectively, under the Max-Weight

scheduling policy, and refer to them as the steady-state queue lengths and delays.
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2.5 Delay stability

We now define formally, and then discuss, the property that we will be focusing on.

Definition 3: (Delay Stability) Queue i ∈ {1, 2, 3} is delay stable under a particular schedul-

ing policy if the system is stable under that policy, and E[Di] is finite; otherwise, queue i is delay

unstable.

The following lemma relates the steady-state quantities E[Qi] and E[Di], and will help us prove

delay stability results.

Lemma 2 [15]: For the system under consideration, and under Max-Weight scheduling,

E[Qi] <∞ ⇐⇒ E[Di] <∞, i ∈ {1, 2, 3}.

In the remainder of the paper we will focus on the delay stability of queue 2. This is because

under the Max-Weight scheduling policy, queues 1 and 3 are always delay unstable, as established

formally in Theorems 1 and 2 of the companion paper [15].

Proposition 1 [15]: For the system under consideration, and under Max-Weight scheduling,

queues 1 and 3 are delay unstable, for all positive arrival rate vectors in the stability region.

We provide some intuition as to why Proposition 1 is true. For queue 1, the result follows easily

from the Pollaczek-Khinchine formula for the expected delay in a stable M/GI/1 queue, and a

stochastic comparison argument. Regarding queue 3, we argue as follows. Queue 1 is occasionally

very long (infinite, in steady-state expectation), due to the heavy-tailed nature of the traffic that

it receives. Whenever queue 1 becomes very long, queue 3 is starved and builds up, at a more or

less constant rate, to a size comparable to that of queue 1. Thus, large values of Q1(t) result in

large values of Q3(t) at subsequent times. As E[Q1] is infinite, we can argue that E[Q3] is infinite

as well, and Lemma 2 implies that queue 3 is delay unstable.

Our main results will concern queue 2. We will show in the next two sections that it is delay

unstable (respectively, delay stable) if λ2 is greater (respectively, less) than (1 + λ1 − λ3)/2.
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3 Delay Instability Region

Lemma 1 and Proposition 1 in the previous section establish that the queueing system under

consideration is stable, and that queues 1 and 3 are delay unstable for every positive arrival rate

vector in the stability region. Regarding queue 2, the situation is more complicated. One could

argue that queue 1, by virtue of its receiving heavy-tailed traffic, would tend to claim service more

often, and that queue 2 would benefit from the resulting additional servive opportunities. Somewhat

surprisingly though, there is a more intricate indirect mechanism at play that can render queue 2

delay unstable.

Proposition 2: For the system under consideration, with positive arrival rates within the

stability region, and under Max-Weight scheduling, if the arrival rates satisfy λ2 > (1 +λ1−λ3)/2,

then queue 2 is delay unstable.

Before proceeding with the formal proof of Proposition 2, we provide an intuitive outline of the

argument, also aimed at explaining the threshold value (1 + λ1 − λ3)/2. Our approach is based on

tracking the evolution of the system on a particular set of “fluid” sample paths:1 assume that at

time slot 0, queue 1 receives a very large file, consisting of b packets. For a long period of time

after that, queue 3 does not receive service under the Max-Weight policy, and builds up. If the

arrival processes of all traffic flows are close to their “average behavior” (in the Strong Law of Large

Numbers sense), then at the time slot when the service switches from schedule {1, 2} to schedule

{3}, the lengths of both queues 1 and 3 are proportional to b, whereas queue 2 is still small. From

that point on, the Max-Weight policy will drain the weights of the two schedules at roughly the

same rate, until one of the weights becomes zero.

Let µi be the average departure rate from queue i during the latter period. For the weights of

the two schedules to be drained at the same rate, the departure rates have to satisfy:

λ1 + λ2 − µ1 − µ2 = λ3 − µ3.
1In essence, our argument employs a “fluid approximation”; however, instead of establishing formal convergence

to a fluid model (which would be unduly complicated for our purposes), we proceed in an elementary manner, arguing
from first principles.
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Moreover, the fact that Max-Weight is a work-conserving policy implies that

µ1 + µ3 = 1.

Finally, since queues 1 and 2 are served simultaneously, and queue 2 may be empty through parts

of the draining period, we have that

µ1 ≥ µ2.

The above equations and some simple algebra imply that

µ2 ≤
1 + λ1 + λ2 − λ3

3
.

Suppose that the arrival rates satisfy

λ2 >
1 + λ1 − λ3

2
.

Then,

λ2 >
1 + λ1 + λ2 − λ3

3
≥ µ2.

This implies that queue 2 builds up at a roughly constant rate, to size O(b), during a period of time

whose duration is proportional to b, and the integral of Q2 over a busy period of the process becomes

of order O(b2). Because b is drawn from a heavy-tailed distribution (infinite second moment), it

follows that E[Q2] is infinite.

Proof. We start by defining a shorthand notation that we will be using in the course of the proof. We

say that a random variable X scales at least linearly with b on the event H, and write X = ΩH(b), if

there exist positive constants k and k′ (possibly depending on the event H), such that X ≥ k ·b−k′,

for all sample paths in H.

We break the proof into four steps, which follow the various stages in our earlier proof outline.

Step 1: buildup of queue 3 following a large arrival to queue 1.

Because the system is stable, it empties infinitely often, and the times at which Q(t) = 0 are renewal
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epochs. Let us consider the system at a typical renewal epoch which, for simplicity of notation, we

assume to happen at time 0. Consider the set of sample paths for which, at time slot 0, queue 1

receives a file that consists of b packets, and all other queues receive no traffic; we denote this set

of sample paths by H(b). Since λi < 1 (stability), and since 1 − P(Ai(0) = 0) = P(Ai(0) > 0) ≤

E[Ai(0)] = λi < 1, we have P(Ai(0) = 0) > 0, for all i. Let B be the support of the distribution of

A1(0). Using the independence of the arrival processes, we have, for every b ∈ B,

P(H(b)) = P(A1(0) = b) · P(A2(0) = 0) · P(A3(0) = 0) > 0.

For sample paths in H(b), we denote by T 1
b the first time slot, starting from 0, when the length

of queue 3 becomes greater than or equal to the sum of the lengths of queues 1 and 2:

T 1
b = min{t > 0 | Q3(t) ≥ Q1(t) +Q2(t)} · 1H(b).

The first part of the proof is to show that Q1(T
1
b ) and Q3(T

1
b ) scale at least linearly with b, provided

all arrival processes are close to their “average behavior.”

By the definition of the stopping time T 1
b , we have

Q1(T
1
b ) ≤ Q1(T

1
b ) +Q2(T

1
b ) ≤ Q3(T

1
b ).

A direct consequence of the Strong Law of Large Numbers is that for every ε > 0 there exists δ > 0,

such that the set of sample paths

∆ =
{

(λi − ε)t− δ ≤
t∑

τ=1

Ai(τ) ≤ (λi + ε)t+ δ, ∀t ∈ N, ∀i ∈ {1, 2, 3}
}
,

has positive probability. Consequently, the set of sample paths

∆(b) =
{

(λi − ε)t− δ ≤
t∑

τ=1

Ai(τ) ≤ (λi + ε)t+ δ, ∀t ∈ {1, . . . , T 1
b − 1}, ∀i ∈ {1, 2, 3}

}
,

has positive probability, uniformly over all b.
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From now on we fix a small ε > 0. (How small it will have to be will become apparent in the

course of the proof.) We then fix a corresponding δ such that infb P(∆(b)) ≥ P(∆) > 0. Let H̃(b)

be the set of sample paths H(b) ∩∆(b), and observe that H(b) ∩∆(b) ⊃ H(b) ∩∆. Then, the IID

nature of the arriving traffic implies that H(b) and ∆ are independent, so that

P(H̃(b)) = P(H(b) ∩∆(b)) ≥ P(H(b) ∩∆) = P(H(b)) · P (∆) > 0.

Recall that at most one packet can be removed from each queue at any given time slot. So, for

sample paths in H̃(b), we have that

Q1(T
1
b ) ≥ b− (T 1

b − 1) + (λ1 − ε) · (T 1
b − 1)− δ.

Moreover, queue 3 receives no service before time slot T 1
b under the Max-Weight scheduling policy,

which implies that

Q3(T
1
b ) =

T 1
b −1∑
t=1

A3(t) ≤ (λ3 + ε) · (T 1
b − 1) + δ.

Since Q1(T
1
b ) ≤ Q3(T

1
b ), the last two inequalities and some algebra yield

(1) T 1
b − 1 ≥ b− 2δ

1 + λ3 − λ1 + 2ε
.

(This argument requires the last denominator to be positive. This will be the case as long as ε has

been chosen small enough.) Therefore,

Q3(T
1
b ) =

T 1
b −1∑
t=1

A3(t) ≥ (λ3 − ε) · (T 1
b − 1)− δ ≥ (λ3 − ε) ·

b− 2δ

1 + λ3 − λ1 + 2ε
− δ,(2)

which implies that Q3(T
1
b ) = ΩH̃(b)(b), since we can chose ε to be less than λ3.

Coming to queue 2, it can be verified that for sample paths in ∆ (and hence in H̃(b)), and for
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any subinterval {τ0, . . . , τ1} of {1, . . . , T 1
b },

τ1−1∑
t=τ0

A2(t) ≤ (λ2 + ε) · (τ1 − τ0) + 2ετ0 + 2δ.

We assume that ε has been chosen so that λ2 + ε < 1. Recall also that queue 2 gets served

whenever it is nonempty throughout the period {1, . . . , T 1
b − 1}. We use Lindley’s formula, the

above upper bound on the arrivals to queue 2, and the fact that since queue 2 gets served whenever

it is nonempty throughout the period {1, . . . , T 1
b − 1}, to conclude that

(3) Q2(T
1
b ) ≤ A2(T

1
b − 1) + 2ε(T 1

b − 1) + 2δ ≤ λ2 + 4ε(T 1
b − 1) + 4δ.

This shows that, essentially, Q2(T
1
b ) does not scale with b.

We finally turn our attention to Q1(T
1
b ). By definition of the stopping time T 1

b ,

(4) Q3(T
1
b − 1) < Q1(T

1
b − 1) +Q2(T

1
b − 1).

By arguing similar to the derivation of Eqs. (2) and (3), it can be verified that

(5) Q2(T
1
b − 1) ≤ λ2 + 4ε(T 1

b − 2) + 4δ,

and that Q3(T
1
b − 1) = ΩH̃(b)(b). Then, Eqs. (4) and (5) readily imply that Q1(T

1
b ) = ΩH̃(b)(b),

when ε is chosen sufficiently small.

To summarize, at time slot T 1
b , and for sample paths in H̃(b), the lengths of queues 1 and 3 are

proportional to b, while queue 2 is still small.

Step 2: draining down until queue 1 or 3 empties.

Let T 2
b be the first time slot after T 1

b that either queue 1 or queue 3 becomes empty:

T 2
b = min{t > T 1

b | Q1(t) ·Q3(t) = 0} · 1H̃(b).

We will show that if the arrival processes stay close to their “average behavior” (i.e., the event
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H̃(b) occurs), then, at time slot T 2
b , the length of queue 3 cannot be much larger than the sum of

the lengths of queues 1 and 2. The reason is that Q1(t) +Q2(t) and Q3(t) are kept roughly equal

by the Max-Weight policy throughout the interval [T 1
b , T

2
b ].

For the same constants ε and δ as Step 1, the set of sample paths

∆′(b) =
{

(λi − ε)t− δ ≤
t∑

τ=T 1
b

Ai(τ) ≤ (λi + ε)t+ δ, ∀t ∈ {T 1
b , . . . , T

2
b − 1}, ∀i ∈ {1, 2, 3}

}

contains ∆. Let Ĥ(b) = H̃(b) ∩∆′(b). The events ∆(b) and ∆′(b) are determined by the arrivals

over disjoint time intervals. Hence, due to the IID nature of the arrival processes, ∆(b) and ∆′(b)

are independent. Since they both contain the positive probability event ∆, we have

P(Ĥ(b)) ≥ P(H(b)) ·
(
P(∆)

)2
> 0.

We will show that for sample paths in Ĥ(b),

(6) Q3(T
2
b ) ≤ Q1(T

2
b ) +Q2(T

2
b ) + 2ε(T 2

b − T 1
b ) + 2δ + 3.

We first notice that queues 1 and 3 cannot empty at the same time slot, since they cannot

be served simultaneously. Therefore, we have two possible cases: either Q3(T
2
b ) = 0, in which

case Eq. (6) is trivially satisfied, or Q1(T
2
b ) = 0, which we henceforth assume. In the latter case,

S1(T
2
b − 1) = S2(T

2
b − 1) = 1, and S3(T

2
b − 1) = 0. For sample paths in Ĥ(b), we have that

Q3(T
2
b ) = Q3(T

2
b − 1) +A3(T

2
b − 1) ≤ Q3(T

2
b − 1) + λ3 + 2ε · (T 2

b − T 1
b ) + 2δ.(7)

Moreover, under the Max-Weight scheduling policy, and in order for the for the set of queues {1, 2}

to be served at time slot T 2
b − 1,

(8) Q3(T
2
b − 1) ≤ Q1(T

2
b − 1) +Q2(T

2
b − 1).
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Finally,

(9) Q1(T
2
b − 1) +Q2(T

2
b − 1)− 2 ≤ Q1(T

2
b ) +Q2(T

2
b ).

Eq. (6) follows immediately, by combining Eqs. (7)-(9) and using also the fact λ3 < 1.

Step 3: growth of queue 2.

At time T 2
b , Q3(T

2
b ) cannot much larger than Q1(T

2
b ) + Q2(T

2
b ). Therefore, queue 3 must have

been receiving a certain fraction of the total service between times T 1
b and T 2

b . We will show that

this results in queue 2 not receiving enough service, and that Q2 starts growing. In particular, if

λ2 > (1 + λ1 − λ3)/2, then, for the sample paths of interest, Q2(T
2
b ) = ΩĤ(b)(b).

By definition,

Q3(T
1
b ) ≥ Q1(T

1
b ) +Q2(T

1
b ).

By subtracting the two sides of this inequality from Eq. (6), we get

(10) Q3(T
2
b )−Q3(T

1
b ) ≤ Q1(T

2
b )−Q1(T

1
b ) +Q2(T

2
b )−Q2(T

1
b ) + 2ε(T 2

b − T 1
b ) + 2δ + 3.

For sample paths in Ĥ(b), define the random variables

µi =
( 1

T 2
b − T 1

b

·
T 2
b −1∑
t=T 1

b

Si(t)
)
· 1Ĥ(b), i ∈ {1, 2, 3},

which are the average service rates to each queue during the interval {T 1
b , . . . , T

2
b − 1}. Notice that

µ1 = µ2 and µ1 + µ3 = 1.

Since both queues 1 and 3 are nonempty during the inerval {T 1
b , . . . , T

2
b − 1}, we have

Q1(T
2
b )−Q1(T

1
b ) ≤ (λ1 + ε− µ1) · (T 2

b − T 1
b ) + δ,(11)

Q3(T
2
b )−Q3(T

1
b ) ≥ (λ3 − ε− µ3) · (T 2

b − T 1
b )− δ.(12)
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Eqs. (10), (11), and (12) imply that

(λ3 − ε− µ3) · (T 2
b − T 1

b )− δ ≤(λ1 + ε− µ1) · (T 2
b − T 1

b ) + δ

+Q2(T
2
b )−Q2(T

1
b ) + 2ε(T 2

b − T 1
b ) + 2δ + 3.

We replace µ3 by 1− µ1 and collect terms, to obtain

−µ1 · (T 2
b − T 1

b ) ≥ −
(1 + λ1 − λ3 + 4ε

2

)
· (T 2

b − T 1
b ) +

Q2(T
1
b )−Q2(T

2
b )

2
− 4δ + 3

2

≥ −
(1 + λ1 − λ3 + 4ε

2

)
· (T 2

b − T 1
b )−

Q2(T
2
b )

2
− 4δ + 3

2
.

For sample paths in Ĥ(b), we use the definition of ∆′(b) to upper bound the number of arrivals to

queue 2. We also use the fact that queue 2 has µ2(T
2
b − T 1

b ) service opportunities, with µ2 = µ1,

and obtain

Q2(T
2
b ) ≥ (λ2 − ε− µ1) · (T 2

b − T 1
b )− δ

≥
(
λ2 −

1 + λ1 − λ3
2

− 3ε
)
· (T 2

b − T 1
b )−

Q2(T
2
b )

2
− 6δ + 3

2
.

Therefore,

Q2(T
2
b ) ≥ 2

3
·
(
λ2 −

1 + λ1 − λ3
2

− 3ε
)
· (T 2

b − T 1
b )− 2δ − 1.

If λ2 > (1 + λ1 − λ3)/2, the constant ε can be chosen sufficiently small so that

λ2 −
1 + λ1 − λ3

2
− 3ε > 0.

A final observation is that the duration of the interval {T 1
b , . . . , T

2
b −1} is bounded from below by

min{Q1(T
1
b ), Q3(T

1
b )}, because both queues are served at unit rate. Therefore, T 2

b − T 1
b = ΩH̃(b)(b)

and

(13) Q2(T
2
b ) = ΩĤ(b)(b).
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Step 4: the growth scenario for queue 2 implies large average queue size.

In Step 3 we showed that for sample paths in Ĥ(b), queue 2 builds up to the order of b. We use

this fact, and renewal theory, to show that the steady-state expected length of queue 2 is infinite.

The sequence of times at which Q(t) = 0 are renewal epochs. Denote by Xi the length of the

ith inter-renewal period. The random variables {Xi; i ∈ N} can be viewed as IID copies of some

nonnegative random variable X, with finite first moment; this is because the empty state is positive

recurrent under the Max-Weight policy (see Proposition 2 of [20]).

We define an instantaneous reward on this renewal process:

RM (t) = min{Q2(t),M}, t ∈ Z+,

where M is a positive integer.

Eq. (13) implies that there exist positive constants c and b0, such that

Q2(T
2
b ) ≥ cb, ∀ b ≥ b0,

for all sample paths in Ĥ(b).

Since at most one packet from queue 2 can be served at each time slot, the length of queue 2

is at least cb/2 packets over a time period of length at least cb/2 time slots. Hence, the aggregate

reward RMagg, i.e., the reward accumulated over a renewal period, satisfies the lower bound

RMagg · 1{b≥b0} · 1Ĥ(b) ≥ min
{(cb

2

)2
· 1{b≥b0},M

2
}
· 1Ĥ(b).

Then, the expected aggregate reward is bounded below by

E[RMagg] ≥
(
P(∆)

)2 · P(A2(0) = 0) · P(A3(0) = 0) ·
∞∑
b=1

min
{(cb

2

)2
· 1{b≥b0},M

2
}
· P(A1(0) = b).

So, there exists a positive constant c′ such that

(14) c′ · E
[

min
{(cA1(0)

2

)2
· 1{A1(0)≥b0},M

2
}]
≤ E[RMagg].
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We have argued that inter-renewal periods have finite expectation, and, clearly, the expected

aggregate reward is finite. Then, the Renewal Reward theorem (e.g., see Section 3.4 of [8]) implies

that

(15)
E[RMagg]

E[X]
= lim

T→∞

1

T

T−1∑
t=0

RM (t), w.p.1.

Also, the fact that the reward is a bounded function of an ergodic Markov chain implies that

(16) lim
T→∞

1

T

T−1∑
t=0

RM (t) = E[min{Q2,M}], w.p.1.

Eqs. (14)-(16) imply that

c′

E[X]
· E
[

min
{(cA1(0)

2

)2
· 1{A1(0)≥b0},M

2
}]
≤ E[min{Q2,M}].

Taking the limit as M goes to infinity on both sides, and using the Monotone Convergence theorem

(e.g., see Section 5.3 of [24]) gives

c′ · c2

4E[X]
· E[A2

1(0) · 1{A1(0)≥b0}] ≤ E[Q2].

Finally, the fact that the random variable A1(0) is heavy-tailed, implies that E[Q2] is infinite.

Combined with Lemma 2, this gives the desired result.

4 Delay Stability Region

In this section we establish that when λ2 < (1 + λ1 − λ3)/2, then queue 2 is delay stable. Notice

that this result involves the same threshold as in Proposition 2, and we therefore have an exact

characterization of the delay stability region.

The proof of this result relies on drift analysis of a suitable Lyapunov function. The usual

analysis of the Max-Weight policy involves a quadratic Lyapunov function [21]. Different types of
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Lyapunov functions have also been used for stability and performance analysis of other queueing

networks and policies, e.g., piecewise linear functions [2, 7], and norms [18, 23]. However, in the

presence of heavy-tailed traffic, the expected value of all these Lyapunov functions in steady-state

is infinite, which renders their drift analysis uninformative.

Here we consider a carefully constructed piecewise linear Lyapunov function that is not radially

unbounded (i.e., the value of the Lyapunov function need not be large when the queue lengths are

large), and which has a negative drift only when λ2 < (1 + λ1 − λ3)/2. A common technical

difficulty with piecewise linear Lyapunov functions is that the stochastic descent property is often

lost at locations where the Lyapunov function is nondifferentiable. This difficulty can be handled by

either smoothing the Lyapunov function (e.g., as in [7]), or by showing that the stochastic descent

property still holds if we look ahead a sufficiently large number of time slots (e.g., as in [22]). We

follow the second approach.

Furthermore, we also assume that light-tailed traffic has exponentially decaying tails, which

allows us to exploit the tools in [10]. Formally, a nonnegative random variable X is exponential-

type, if there exists some θ > 0 such that E[exp(θX)] is finite.2

Proposition 3: For the system under consideration, suppose that the arrival rate vector

is positive and within the stability region, and that the Max-Weight policy is used. Suppose

furthermore that (i) A2(0) and A3(0) are exponential-type, and (ii) there exists some γ > 0 such

that E[A1+γ
1 (0)] <∞. If the arrival rates satisfy λ2 < (1 +λ1−λ3)/2, then queue 2 is delay stable,

and the steady-state length of queue 2 is exponential-type.

Before we proceed with the formal proof of Proposition 3, we provide the underlying intuition

by arguing (loosely) in terms of a fluid approximation. Our analysis rests on drift analysis of the

following piecewise linear Lyapunov function

(17) V (t) = 3Q2(t) +
[
Q3(t)−Q1(t)−Q2(t)

]+
, t ∈ Z+.

Our goal is to establish a negative drift for V (t), which, combined with the special structure of the

2We conjecture that the statement of Proposition 3 is true for any type of light-tailed traffic. However, the results
in [10] cannot be invoked without the additional assumption of exponential-type traffic.
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problem (the arrivals to queues 2 and 3 being exponential-type), will imply that

E
[
3Q2 + [Q3 −Q1 −Q2]

+
]
<∞,

where the expectation is taken with respect to steady-state distributions. Together with Lemma 2,

this will imply the delay stability of queue 2.

The suitability of this Lyapunov function can be seen as follows. If Q1(t) + Q2(t) > Q3(t),

then the Lyapunov function reduces to 3Q2(t), which can be easily shown to have negative drift

(as long as Q2 > 0), because queue 2 is served under Max-Weight in that region. If, on the other

hand, Q1(t) + Q2(t) < Q3(t), then the Lyapunov function reduces to 2Q2(t) + Q3(t) − Q1(t). In

that region, queue 3 is served under Max-Weight, so the drift of V (t) is equal to 2λ2 + λ3− λ1− 1,

which is strictly negative by our assumption on λ2. See Figure 2 for a geometric interpretation.

Figure 2: A two-dimensional representation of the dynamics of the system when λ2 < (1+λ1−λ3)/2.
The dashed black arrows represent the gradient of the queue length vector under the Max-Weight
policy, and the dashed orange arrows represent the gradient of the Lyapunov function, in different
regions of the state space. The solid red arrows represent typical trajectories of the associated fluid
approximation. Our Lyapunov function has been chosen so that an obtuse angle is formed between
the two in all regions of the state space, establishing a uniform negative drift over the entire state
space.

The analysis becomes subtler at the boundary between the two regions of the state space,

namely when the weights, Q1(t) +Q2(t) and Q3(t), of the two candidate schedules are equal. Once
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at the boundary, the Max-Weight policy keeps the state (of the fluid model) there. Similar to our

discussion of Proposition 2, the resulting departure rate from queue 2 satisfies

λ1 + λ2 − µ1 − µ2 = λ3 − µ3.

Using also the properties µ2 = µ1 = 1− µ3, and our assumption on λ2, it follows that the drift at

the boundary is negative, driving the state to zero.

Proof. Consider the piecewise linear Lyapunov function defined by Eq. (17) and let Ft be the σ-field

that corresponds to the history of the process until just before the arrivals at slot t; formally, Ft is

the σ-algebra generated by Q(0), A(0), . . . , Q(t − 1), A(t − 1), Q(t). Throughout the proof we use

P(X;A | H) and E[X;A | H] to denote P(X · 1A | H) and E[X · 1A | H], respectively, where X is a

random variable, A is an event, and H is a σ-algebra on the sample space.

Our goal is to show that for sufficiently large (but fixed) T ∈ N, there exist positive constants

α and ε, such that

E
[
V (t+ T )− V (t) + ε ; V (t) > α

∣∣∣ Ft] ≤ 0,

and the desired result will follow from [10].

Suppose that V (t) > α. Then, we must have either Q2(t) > α/6 or Q3(t) > Q1(t)+Q2(t)+α/2.

We will derive the desired drift inequality by considering separately these two cases. We assume

that T has been fixed to a suitably large value, and we define α by α = 6T .

Case 1: Q2(t) > α/6 = T .

Since at most one packet is removed at each time slot from queue 2, it is immediate that

(18) Q2(τ) > 0, ∀τ ∈ {t, . . . , t+ T − 1}.

Moreover, under the Max-Weight scheduling policy,

(19) S3(τ) · 1{Q3(τ)>0} = S3(τ), ∀τ ∈ {t, . . . , t+ T − 1}.
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Eq. (19) implies that a service opportunity is never wasted in queue 3 throughout {t, . . . , t+T −1},

assuming Q2(t) > T . This is intuitively clear, because, under the Max-Weight policy, queue 3 will

not be served unless it becomes at least as large as queue 2, hence positive, and a service opportunity

will not be wasted).

Let

J(t) = Q1(t) +Q2(t)−Q3(t).

Using this notation, and the queue length dynamics from Section 2, it can be verified that

t+T−1∑
τ=t

(
A1(τ) +A2(τ)− S1(τ) · 1{Q1(τ)>0} − S2(τ) · 1{Q2(τ)>0}

)
=
t+T−1∑
τ=t

(
A3(τ)− S3(τ) · 1{Q3(τ)>0}

)
+ J(t+ T )− J(t).(20)

Moreover, the scheduling constraints imply that

(21) S1(τ) = S2(τ), ∀τ ∈ {t, . . . , t+ T − 1}.

Furthermore, under the Max-Weight policy (or, in general, under any non-idling policy),

(22)

t+T−1∑
τ=t

(S2(τ) + S3(τ)) = T.

Eqs. (19) and (20) imply that

(23)
t+T−1∑
τ=t

(A1(τ) +A2(τ)− S1(τ)− S2(τ)) ≤
t+T−1∑
τ=t

(A3(τ)− S3(τ)) + J(t+ T )− J(t).

Combining Eqs. (21) and (23), we have

(24)

t+T−1∑
τ=t

(A1(τ) +A2(τ)− 2 · S2(τ)) ≤
t+T−1∑
τ=t

(A3(τ)− S3(τ)) + J(t+ T )− J(t).
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Then, by taking into account Eq. (22), we get

(25) − 3 ·
t+T−1∑
τ=t

S2(τ) ≤ −
t+T−1∑
τ=t

(1 +A1(τ) +A2(τ)−A3(τ)) + J(t+ T )− J(t).

Let us now examine the implications of this inequality on the evolution of queue 2 throughout

{t, . . . , t+ T − 1}. We have

3(Q2(t+ T )−Q2(t)) = 3 ·
t+T−1∑
τ=t

(A2(τ)− S2(τ) · 1{Q2(τ)>0})

= 3 ·
t+T−1∑
τ=t

(A2(τ)− S2(τ))

≤ −
t+T−1∑
τ=t

(1 +A1(τ)−A3(τ)− 2A2(τ)) + J(t+ T )− J(t),

where the second equality follows from Eq. (18), and the inequality follows from Eq. (25). This

implies that

V (t+ T )− V (t) = 3(Q2(t+ T )−Q2(t)) + [−J(t+ T )]+ − [−J(t)]+

≤−
t+T−1∑
τ=t

(1 +A1(τ)−A3(τ)− 2A2(τ))

+ J(t+ T )− J(t) + [−J(t+ T )]+ − [−J(t)]+

=−
t+T−1∑
τ=t

(1 +A1(τ)−A3(τ)− 2A2(τ)) + [J(t+ T )]+ − [J(t)]+.

Therefore,

E
[
V (t+ T )− V (t) ;Q2(t) > T

∣∣∣ Ft] ≤− δ · T · P(Q2(t) > T
∣∣∣ Ft)

+ E
[
[J(t+ T )]+ − [J(t)]+;Q2(t) > T

∣∣∣ Ft].(26)

where δ = 1 + λ1 − λ3 − 2λ2 is positive by assumption.

We have also assumed that there exists γ > 0, such that E[A1+γ
1 (0)] is finite. Based on this, we

will prove that E
[

[J(t+ T )]+− [J(t)]+ | Ft]
]

scales sublinearly in T . This, in turn, will imply that
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the right-hand side of Eq. (26) is negative, provided T is sufficiently large.

By disregarding the contribution of queue 3, we can bound from above [J(τ)]+, τ ∈ {t, . . . , t+

T}, by the sum of the lengths of queues 1 and 2 during that interval. Moreover, whenever [J(τ)]+

is nonzero, both queues 1 and 2 are served at unit rate. Through Lindley’s recursion and simple

calculations, it can be verified that

(27) [J(t+ T )]+ − [J(t)]+ ≤ max
1≤s≤T

{ t+T−1∑
τ=t+T−s

(A1(τ)− 1)
}

+ max
1≤s≤T

{ t+T−1∑
τ=t+T−s

(A2(τ)− 1)
}
.

Also, the following inequality holds for all i ∈ {1, 2}, and for all s ∈ {1, . . . , T}:

(28)
t+T−1∑
τ=t+T−s

(Ai(τ)− 1) = (λi − 1)s+
t+T−1∑
τ=t+T−s

(Ai(τ)− λi) ≤
∣∣∣ t+T−1∑
τ=t+T−s

(Ai(τ)− λi)
∣∣∣.

Eqs. (27) and (28) imply that for any fixed γ′ ∈ (0, γ),

P
(

[J(t+ T )]+ − [J(t)]+ ≥ c ;Q2(t) > T
∣∣∣ Ft)

≤P
(

max
1≤s≤T

{ t+T−1∑
τ=t+T−s

(A1(τ)− 1)
}

+ max
1≤s≤T

{ t+T−1∑
τ=t+T−s

(A2(τ)− 1)
}
≥ c ;Q2(t) > T

∣∣∣ Ft)

≤P
(

max
1≤s≤T

{∣∣∣ t+T−1∑
τ=t+T−s

(A1(τ)− λ1)
∣∣∣} ≥ c

2
;Q2(t) > T

∣∣∣ Ft)

+ P
(

max
1≤s≤T

{∣∣∣ t+T−1∑
τ=t+T−s

(A2(τ)− λ2)
∣∣∣} ≥ c

2
;Q2(t) > T

∣∣∣ Ft)

=P
(

max
1≤s≤T

{∣∣∣ t+T−1∑
τ=t+T−s

(A1(τ)− λ1)
∣∣∣1+γ′} ≥ ( c

2

)1+γ′
;Q2(t) > T

∣∣∣ Ft)

+ P
(

max
1≤s≤T

{∣∣∣ t+T−1∑
τ=t+T−s

(A2(τ)− λ2)
∣∣∣1+γ′} ≥ ( c

2

)1+γ′
;Q2(t) > T

∣∣∣ Ft)(29)

Notice that the sequence

{ t+T−1∑
τ=t+T−s

(Ai(τ)− λi); s ∈ N
}
, i ∈ {1, 2, 3},
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is a martingale. Consequently, the sequence

{∣∣∣ t+T−1∑
τ=t+T−s

(Ai(τ)− λi)
∣∣∣1+γ′ ; s ∈ N

}

is a nonnegative submartingale. Doob’s submartingale inequality (see, e.g., Section 14.6 of [24])

and Eq. (29) imply that

P
(

[J(t+ T )]+ − [J(t)]+ ≥ c ;Q2(t) > T
∣∣∣ Ft)

≤
(2

c

)1+γ′
· E
[∣∣∣ t+T−1∑

τ=t

(A1(τ)− λ1)
∣∣∣1+γ′] · 1Q2(t)>T

+
(2

c

)1+γ′
· E
[∣∣∣ t+T−1∑

τ=t

(A2(τ)− λ2)
∣∣∣1+γ′] · 1Q2(t)>T .(30)

Moreover, the Marcinkiewicz-Zygmund Strong Law of Large Numbers states that

(31)

∣∣∣t+T−1∑
τ=t

(Ai(τ)− λi)
∣∣∣

T 1/(1+γ)

L1−→ 0, i ∈ {1, 2, 3}

(see, e.g., Chapter 6.10 of [9]). Eqs. (30) and (31) imply that if T is sufficiently large, then there

exists k > 0 (independent of T and c), such that

P
(

[J(t+ T )]+ − [J(t)]+ ≥ c ;Q2(t) > T
∣∣∣ Ft) ≤ k

c1+γ′
· T

1+γ′
1+γ · 1Q2(t)>T ,

for all c ≥ 0. This gives

E
[
[J(t+ T )]+ − [J(t)]+;Q2(t) > T

∣∣∣ Ft] ≤ k · T 1+γ′
1+γ ·

∞∑
c=1

1

c1+γ′
· 1Q2(t)>T .

Since γ′ > 0, the latter sum converges, so there exists k′ > 0 (independent of T ), such that

(32) E
[
[J(t+ T )]+ − [J(t)]+;Q2(t) > T

∣∣∣ Ft] ≤ k′ · T 1+γ′
1+γ · 1Q2(t)>T .
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Finally, Eqs. (26) and (32), and the fact that γ′ < γ, imply that for any fixed ε > 0, there exists a

sufficiently large T , such that

(33) E
[
V (t+ T )− V (t) + ε ;Q2(t) > T

∣∣∣ Ft] ≤ 0.

Remark: the upper bound on [J(τ)]+ that we analyzed above can be viewed as an upper bound

for a discrete-time stable M/GI/1 queue inwhere customers arrive in a Bernoulli fashion, and their

service times are mutually independent and distributed identically to A1(0) +A2(0). Since service

times are heavy-tailed distributed, the expected steady-state workload in this queue is infinite

(an immediate corollary of the Pollaczek-Khinchine formula). Combined with Fatou’s lemma, this

implies that the expected workload at time slot t goes to infinity as t increases. Eq. (32) shows that

the expected workload goes to infinity at a sublinear rate (essentially, as O(T 1/(1+γ))), assuming

just the existence of the (1+γ) moment of service times. We note that Central-Limit-Theorem-type

arguments cannot be used here, since the second moment of arrivals does not exist.

Case 2: Q3(t) > Q1(t) +Q2(t) + 3T .

Since at most one packet is removed at each time slot from queue 3, it is immediate that

Q3(τ) > 0, ∀τ ∈ {t, . . . , t+ T − 1}.

Based on this, it can be easily verified that Eq. (25) still holds. This implies that

3(Q2(t+ T )−Q2(t)) = 3 ·
t+T−1∑
τ=t

(A2(τ)− S2(τ) · 1{Q2(τ)>0})

= 3 ·
t+T−1∑
τ=t

(A2(τ)− S2(τ)) + 3 ·
t+T−1∑
τ=t

S2(τ) · 1{Q2(τ)=0}

≤−
t+T−1∑
τ=t

(1 +A1(τ)−A3(τ)− 2A2(τ)),

+ J(t+ T )− J(t) + 3 ·
t+T−1∑
τ=t

S2(τ) · 1{Q2(τ)=0}.
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Letting D be the event Q3(t) > Q1(t) +Q2(t) + 3T , this gives

E
[
V (t+ T )− V (t) ;D

∣∣∣ Ft] ≤− δ · T · 1D + E
[
[J(t+ T )]+ − [J(t)]+ ;D

∣∣∣ Ft]
+ 3 · E

[ t+T−1∑
τ=t

S2(τ) · 1{Q2(τ)=0} ;D
∣∣∣ Ft].(34)

Working similar to the previous case, it can be verified that for any fixed γ′ ∈ (0, γ), there exists

k′ > 0 (independent of T ) such that

(35) E
[
[J(t+ T )]+ − [J(t)]+ ;D

∣∣∣ Ft] ≤ k′ · T 1+γ′
1+γ · 1D.

In view of Eqs. (34) and (35) and in order to establish the negative drift property of the Lyapunov

function, it is sufficient to consider a large time horizon T , and to show that E[
∑t+T−1

τ=t S2(τ) ·

1{Q2(τ)=0} | Ft] scales sublinearly in T .

In order to have a wasted service opportunity at queue 2, the schedule {1, 2} must first claim

the server. This can only happen if
∑t+T−1

τ=t (A1(τ)+A2(τ)), the aggregate arrivals to queues 1 and

2 during the interval {t, . . . , t+ T − 1} exceed the initial difference between the weights of the two

schedules (which is at least 3T ), minus the departures from queue 3 during the same period (which

are at most T ). It follows that

{ t+T−1∑
τ=t

S2(τ) · 1{Q2(τ)=0} > 0
}
⊂
{ t+T−1∑

τ=t

(A1(τ) +A2(τ)) > 3T − T
}

=
{ t+T−1∑

τ=t

(A1(τ) +A2(τ)− λ1 − λ2) > (2− λ1 − λ2)T
}

⊂
{∣∣∣ t+T−1∑

τ=t

(A1(τ) +A2(τ)− λ1 − λ2)
∣∣∣ > (2− λ1 − λ2)T

}
.

Note that λ1 + λ2 < 2, since the arrival rate vector was assumed to be in the stability region

of the system. Then, using Markov’s inequality and Eq. (34), we obtain that there exists ξ > 0
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(independent of T ) such that

P
( t+T−1∑

τ=t

S2(τ) · 1{Q2(τ)=0} > 0 ;D
∣∣∣ Ft)

≤P
(∣∣∣ t+T−1∑

τ=t

(A1(τ) +A2(τ)− λ1 − λ2)
∣∣∣ > (2− λ1 − λ2)T ;D

∣∣∣ Ft)

≤
E
[∣∣∣∑t+T−1

τ=t (A1(τ) +A2(τ)− λ1 − λ2)
∣∣∣]

(2− λ1 − λ2)T
· 1D

≤ξ · T
1

1+γ
−1 · 1D.

provided T is sufficiently large. Since the number of wasted service opportunities at queue 2 during

an interval of length T is bounded by T , we conclude that

(36) E
[ t+T−1∑

τ=t

S2(τ) · 1{Q2(τ)=0} ;D
∣∣∣ Ft] ≤ T · ξ · T 1

1+γ
−1 · 1D = ξ · T

1
1+γ · 1D.

Eqs. (34)-(36) imply that for any given ε > 0, there exists a sufficiently large T , such that

(37) E
[
V (t+ T )− V (t) + ε ;D

∣∣∣ Ft] ≤ 0.

This completes the derivation of the drift inequality for the second case.

To summarize, we have shown, in Eqs. (33) and (37), that for any given ε > 0, we can choose

T sufficiently large and let α = 6T to guarantee that

E
[
V (t+ T )− V (t) + ε ;V (t) > α

∣∣∣ Ft] ≤ 0, t ∈ Z+.

Theorem 2.3 of [10], and the fact that the sequence {V (t); t ∈ Z+} converges in distribution,

imply that the steady-state length of queue 2, Q2, is exponential-type, and, in particular, has finite

expectation.

An immediate corollary of Proposition 3 and Lemma 2 is that queue 2 is delay stable, provided

its arrival rate is sufficiently small. To establish this, we assumed that the stochastic processes
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{A2(t); t ∈ Z+} and {A3(t); t ∈ Z+} are exponential-type. At the same time, this additional

assumption enabled us to prove a result that is much stronger than delay stability: combining

Proposition 3 with the distributional Little’s Law (e.g., see [25]), we have that the steady-state

delay in queue 2 is exponential-type.

5 Discussion

We considered a simple queueing system with heavy-tailed traffic, and showed a rate-dependent

delay stability phenomenon under the Max-Weight scheduling policy: there is a part of the stability

region where a certain queue is delay stable, and a part of the stability region where the same queue

is delay unstable. We note that this phenomenon would not arise if all stochastic primitives were

light-tailed.

Despite the simplicity of the underlying queueing system, the proofs of our main results (Propo-

sitions 2 and 3) are long, somewhat technical, and, in some sense, “tailored” to the specifics of the

system. Hence, generalizing these results using similar methods is not straightforward. What is

missing is a systematic and practical methodology for determining which queues are delay sta-

ble, which are delay unstable, and over which parts of the stability region, for any given switched

queueing system.

On a more technical side, the proof of the delay stability result (Proposition 3) requires the

additional assumption that all light-tailed arrival processes are exponential-type. Only then is

drift analysis of a piecewise linear Lyapunov functions meaningful (i.e., we can invoke the results

in [10]). One possible way to overcome this restriction would be through a suitably defined piecewise

quadratic Lyapunov function. However, drift analysis seems cumbersome in that case.
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