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ABSTRACT

Some vibrating string equations are derived for estimating a

stationary stochastic process given some observations of this process

over a finite interval. These equations are the time-domain counterpart

of equations introduced by Krein, and Dym and McKean in the frequency

domain. They are obtained by decomposing the observation and signal

processes into even and odd processes, and by solving some associated

filtering problems. The resulting linear estimation procedure is very

efficient and is well adapted to the estimation of random fields, We

also show that it is identical to the Gelfand-Levitan inverse scattering

method of quantum mechanics.
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I. Introduction

The problem of finding the linear least-squares estimate of a stationary

stochastic process given some observations of this process over a finite

interval has received a large amount of attention over the years [1]. The

best known solution of this problem was proposed by Levinson [2] in 1947

for discrete-time scalar processes. In this approach, a set of recursions

is used to compute the one-step ahead predictor of the observed process

as the order N of this predictor increases. This algorithm is very efficient,

since it requires only O(N2 ) operations to compute the predictor of order

N. -Another feature of these recursions is that they compute implicitly

the inverse covariance matrix of the observed process, and therefore they

can be used to solve general estimation and detection problems [3]. The

Levinson recursions were subsequently extended to the multivariable case

by Whittle [4] and Wiggins and Robinson [5], and to the continuous case

by Krein [6]. Because of its efficiency and of its conceptual simplicity,

this estimation techniaue is now widely used in areas such as speech

processing, geophysical signal processing, and spectral estimation.

Another method of solving the linear estimation problem over a finite

interval was proposed by Krein [7] and Dym and McKean [8], [9]. This method

identifies the spectral density function of the observed process with that

of a vibrating string. Then, by using inverse spectral techniques [10], [11],

the vibrating string is reconstructed from its spectral function and is used

to solve our original estimation problem. However, since the relation

existing between stochastic processes and vibrating strings is not obvious,

this estimation technique has received only a limited amount of attention

thus far.
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In this paper, for the simple case when the observed process contains

a white noise component, it will be shown that some vibrating string equations

similar to those of Krein and Dym and McKean can be derived entirely in the

time-domain by using elementary principles only. These string equations are

closely related to the Levinson recursions, and they have the same -numerical

efficiency. After transformation to the spectral domain, these equations take

the form of Schrodinger equations, and we use this observation to show that the

estimation method proposed here is identical to the Gelfand-Levitan procedure

for solving the inverse scattering problem of quantum mechanics.

Since the Levinson recursions provide already an efficient solution of

the estimation problem over a finite interval, the results described in this

paper may appear unncessary. However, the Levinson recursions suffer from an

important limitation, which is that they cannot be extended to several dimensions

for the estimation of random fields. By comparison the Gelfand-Levitan approach

that we have used here can be extended easily, as will be shown in [12].

Furthermore, even in the one-dimensional case, the string equations that we

have obtained may be useful if we consider random fields (noncausal pro-

cesses) instead of causal processes. This is demonstrated below on a simple

example.

The connection appearing between inverse scattering techniques and

linear estimation problems should not also come as a complete surprise, since

such a relation was already observed in [13] - 1151].

This paper is organized as follows, In Section II the observation process

is decomposed into some even and odd processes obtained by symmetrizing the

observations with respect to the time origin, These processes are not

stationary and have covariances which are sums of Toeplitz and Hankel kernels.
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By exploiting the structure of these kernels, we obtain some vibrating

string equations which solve the even and odd filtering problems associated

to our decomposition. These string equations are used in Section III to

estimate arbitrary random variables, and the resulting estimation procedure

is illustrated by a random field example. In Section IV, we compare the

vibrating string equations to the Levinson recursions and discuss their

numerical implementation. A spectral domain interpretation of our results

is given in Section V for the case when the observed process has an absolutely

continuous spectral function. In this context, the string equations are

transformed into Schrodinger equations whose spectral function is identical

to the spectral function of the observed process. This observation is then

used in Section VI to show that our estimation method is identical to the

Gelfand-Levitan procedure for reconstructing a Schrodinger operator from its

spectral function. Section VII describes some resolvent identities which can

be used to compute efficiently the linear least-squares smoothed estimates.

Section VIII contains some conclusions, and the Appendix discusses the case

when the spectral function of the observed process contains a singular part.

II. Vibrating String Equations

Let

y(t) = z(t) + v(t), -T < t < T (2.1)

be some observations of a stationary, zero-mean Gaussian signal z(-) with

covariance

E(z(t)z(s)] = k(t-s), (2.2)

where v(') is a white Gaussian noise process with unit intensity i.e.
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Elv(t)v(s)] = 6(t-s) . (2.3)

For convenience, assume that z(-) and v(-) are uncorrelated, so that

E[z(t)v(s)] - 0. (2.4)

Then, given an arbitrary random variable a belonging to the Hilbert space

Z spanned by the signal z(t) for - o < t < I, the linear estimation problem

that will be considered in this paper is the one of computing the conditional

mean of a given YT' where YT denotes the Hilbert space spanned by the

observations y(t) for -T < t < T. The space Z is obtained by taking the

mean-square limit of linear combinations of z(t) for -I < t < I, and elements

of YT are of the form

b =I b(t) y(t) dt
-T

where b(-) belongs to L2 [-T, T].

A. Even and odd processes

Our approach to solve this problem is to decompose the processes

y(-), z(-), and v(-) into even and odd processes. The even observation,

signal and noise processes are defined as

y+(t) = 2 (y(t) + y(-t))

z+(t) = 2 (z(t) + z(-t)) (2.6)

v+(t) = - (v(t) + v(-t))
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so that we have

y+(t) = z+(t) + v+(t), 0 < t < T. (2.7)

The equation (2.7) defines an even estimation problem where we want to

estimate z+(-) given the observations y+(t), 0 < t < T. Similarly, the

odd processes are given by

1
y (t) = 2 (y(t) - y(-t))

z (t) = (z(t) - z(-t))
2 (2.8)

v (t) = (v(t) - v(-t))

and

y (t) = z (t) + v (t), 0 < t < T (2.9)

defines an odd estimation problem.

The main feature of this decomposition is that even and odd processes

are uncorrelated, i.e.

E[z+(t)z (s)] = E[v+(t)v (s)] - b . (2.10)

Consequently, if we denote by Z = H(z+(t), -o< t < C) and YT = H(y+(t),

-T < t < T) the Hilbert spaces spanned by the even and odd signals and

observations, we have the orthogonal decomposition

Z = Z+ O z- (2.11a)

T YT YT (2.11b)

where Z + YT and Z YT . This shows that the signal estimate can be

expressed as

E[z(t) |YT] = E[z+(t) YT] + E[z(t) IYT' (2.12)
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and our original estimation problem over the interval [-T,T] is now decomposed

into even and odd estimation problems over [0,T].

An apparent disadvantage of this approach is that the signal processes

z (-) are not stationary. However, these processes have some structure

since their covariance

k+(t,s) = E[z+ (t)z+ (s)] = (k(t-s) + k(t+s))

is the sum or difference of Toeplitz and Hankel kernels. A way to characterize

this structure is to note that the kernels k (-,-) have the properties

2 2

(i) ( 2 2 )k+(t,s) - 0 (2.13)
9t 9s 

- (2.14)
(ii) gas k+(t,0) = 0 and k (t,0) = O

The property (2.13) is called the displacement property of k+(.,.), and the

wave operator

a2 a2

- at2 as2

appearing in this identity can be viewed as obtained by composing the opera-

tors

D 9 9 9
at + s and t as

that were used in [16], [17] to characterize respectively the displacement

properties of Toeplitz and Hankel kernels.

To specify completely the even and odd estimation problems we note

finally that the processes v+( ) are white Gaussian noise processes with

intensity 1/2, i.e.
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E [v+ (t) v+ (s)] =6(t-s),

and v+(-) are uncorrelated with z+(-).

B. Vibrating String Equations

To solve the even and odd estimation problems, the first step is to

construct the filtering estimates

T

z+(TIT) = E[z+(T)Y] = I g+(T,t)y+(t)dt .(2.15)

By denoting the filtering errors as

z+(TJT) = z+(T) - z+(TIT)

and by using the orthogonality property z+(TIT) YT of linear least-squares

estimates, we find that g+(T,-) satisfies the integral equation

T 1
k+(t,T) = f k+(t,s) g+(T,s)ds + 2 g+(T,t) (2.16)

with O<t<T.

To guarantee the existence and unicity of a solution to (2.16), we

assume that k (.,.) is square-integrable over [O,T] , or equivalently that

k(-) is square-integrable over [O,T]. Then, the .operator

T
_+: a((t) b+t) = f k+(t,s)a(s)ds

- --+ -

is defined over L2[0,T]. Since k+(.,.) is a covariance kernel, the operator

K is self-adjoint and nonnegative definite, so that K + I/2 is invertible.

This guarantees the existence and unicity of a solution in L2[0,T] to the

integral equation (2.16).

To compute g+(T,-) one method would be to discretize the interval

[0,T] into N subintervals of length A = T/N, and to solve the resulting
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system of equations. However, this method requires O(N 3 ) operations. A

more efficient procedure is to exploit the displacement property of k+(.,.)

as is shown now.

Theorem 1: If k(-) is twice differentiable, the functions g+(-,.) satisfy

the differential equations

- 2) g+ (T,t) = V+ (T)g+ (T,t) (2.17)

with the boundary conditions

V+(T) = - 2 g(T,T) (2.18)

-t g+(T,O) = 0 and g (T,0O) = O . (2.19)

Proof: By operating with

a2 D2

- aT2 at 2

on both sides of (2.16) and integrating by parts, we obtain

T

V+ (T) k+(t,T) = k+(t,s) 6g (T,s)ds + 1 6 g (T,t)

where V+(-) satisfies (2.18). Then, by using the unicity of the solution

to (2.16), we get (2.17).

Remark: These differential equations are those satisfied by elastically

braced vibrating strings. In this context, T and t denote respectively

the space and time variables, and V+(T) are the elasticity constants of

the strings per unit length at point T. The mass density of these strings

is uniform, and since 0 < T < a, their length is infinite. The vibrating

string equations (2.17) show that the filters g+(.,.) which are functions

of two variables are parametrized entirely by V (.), which depend only~~~~~~~~~+
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on one variable. From this point of view, the functions V +(-) play exactly

the same role for the string equations (2.17) as the reflection coefficient

function for the Levinson recursions. The relation between V +(-) and the

reflection coefficient function will be examined in Section IV.

Now, let

e+(T) = E[z+(TjT)]

be the even and odd mean-square filtering errors. By using the orthogonality

property of linear least-squares estimates, we find that

2 1
e+ (T) = E (T T)z+(T)] = g+(T,T) , (2.20)

so that the functions V +(-) given by (2.18) can be interpreted as

d 2
V (T) = -4 d (e 2(T))

C. Even and odd innovations

An important feature of the vibrating string equations (2.17) is that

in the process of finding g+(T,-), they compute all the filters g+(t,-)

for 0 < t < T. Thus, by using these equations, we can construct the

filtering estimates +(tjt) for 0 < t < T. These estimates generate some

even and odd innovations processes

v+( A (tit)
v Ct)= y+( t) z- +t)

which, by construction, are white Gaussian noise processes of intensity

1/2, i.e.

E[v+(t)V +(s)] = 6 (t-s) . (2.22)

Furthermore, if V- = H(V+(t), 0 < t < T) denote the Hilbert spaces spanned

by v+(-), we have (cf. [18])
+



-12-

T T

III. General Estimation Procedure

Let a be an arbitrary zero-mean random variable, whose joint statistics

with y(-) are Gaussian, and such that

E[y+(t)a] = a+(t).

A special case is of course a = z(s). In this case a+(t) = k+(t,s). Then,

by using the orthogonal decomposition (2.11b), the conditional mean of a

given YT can be expressed as

TT T

E[alYT] = [ c+(T,t)y+(t)dt + I c (T,t)y (t)dt . (3.1)

If a = a - E[aJY T] denotes the estimation error, by noting that ' I Y,' we

find that the filters c+(T,.) satisfy the integral equations

a+(t) k(t) = k+(t,s)c+(T,s)ds + c+(T,t) (3.2)

for 0 < t < T. These equations can also be written in operator notation as

a+ = (K + I/2)c+ (3.3)

A method of solving (3.2) would be to discretize the interval [O,T]

into N subintervals and to solve the resulting system of linear equations.

However, this procedure requires 0(N 3 ) operations. A simpler method is to

note that

Theorem 2: If a+(-) and k(-) G L2[0,T], the filters c+( -,-) satisfy the

recursions

T c.+(T,t) = -c (T,T)g+(T,t) (3.4)
'_T + + +
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where O<t<T.

Proof: Take the partial derivative of (3.2) with respect to T. This gives

-c (T,T)k+(t,T) = k+(t,s) +(T,s)ds + 2 c+(T,t) . (3.5)
+ +0 - T 

Then, by comparing (3.5) with (2.16) and using the unicity of the solution

to (2.16) we obtain (3.4).

The recursions (3.4) for c+(.,.) can be propagated simultaneously

with the string equations (2.17) for increasing values of T, starting

from T=O. By discretizing these equations with a step size A = T/N, we

obtain a numerical scheme which requires only O(N 2 ) operations to compute

c+(T,.), as is shown in Section IV. This procedure is therefore very

efficient if we compare it to direct discretization methods for solving the

integral equation (3.2). Note however that an exact comparison would need

to take into account differences in step sizes for approximating (3.2)

and (3.4).

The recursions (3.4) can be interpreted as follows. Let H+(.,.;T)

be the Fredholm resolvent associated to the kernel k+(.,.), i.e.

T

k+(t,s) k+(t,u)H+(u,s;T)du + H+(tsT) (3.6)

for O<t, s<T, or equivalently in operator notation

(I/2 + K )(I - H ) = I/2 . (3.7)

Then, the solution c+(T,.) of (3.2) is given by

T

c+(T,t) = 2(a+(t) - H _+(t,s;T)a+(s)ds) (3.8)

and if we take the partial derivative of (3.8) with respect to T, and use

the Bellman-Krein resolvent identity [19]
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aT + (t,s;T) = -g+(T,t) g+(T,s) (3.9)

we obtain the recursions (3.4). This shows that the recursions (3.4) are

a direct consequence of the resolvent identity (3.9). Conversely, since

(3.6) is obtained by setting a+(t) = k+(t,s) and c+(T,t) = H+(t,s;T) in

(3.2) (s is viewed here as a parameter) the resolvent identity (3.9) can

be viewed as a special case of (3.4).

Random Field Example: Consider the case where we want to estimate a = z(O)

given observations over [-T,T]. The motivation for considering this

symmetric estimation configuration is that random fields are not causally

generated. It is therefore natural to base our estimate of the field at

a given point on a symmetric set of observations around this point. In

this case, we have a = z(O) = z (0) and z (0) = 0, so that

a+(t) = k+(t,0), c+(T,t) = H+(t,O;T)

and

a (t) = c (T,t) - 0.

This shows that the estimate (3.1) depends on one filter only; and the

recursions (3.4) can be used to compute c+ (T,.) for increasing values of

T.

IV. Numerical Considerations

A. Relation with the Levinson Recursions

The vibrating string equations (2.17) can be related to the Levinson

recursions for the estimation problem over a finite interval. To see this,

denote by HT = H(y(t), O<t<T) the Hilbert space spanned by the observations



over [O,T], and let

T

Z(TIT) = E[z(T)IHT] = I A(T,s)y(s)ds (4.1)
0

by the linear least-squares estimate of z(T) given HT. Then, the Levinson

recursions [3], [16] for the filter A(.,.) are given by

( + + A(T,t) = -p(T)A(T,T-t), (4.2)

where the reflection coefficient function p(.) can be computed by using the

relation

T

p(T) = A(T,0) = k(T) - fA(T,s)k(s)ds (4.3)

The function p(.) depends on one variable only, and therefore it plays the

same role for the Levinson recursions as V+( ) for the vibrating string

equations (2.17).

By comparing the definitions (4.1) and (2.15) for A(.,.) and g+(.,.),

we find that

g+(T,t) = A(2T,T+t) + A(2T,T-t), 0<t<T (4.4)

so that it is equivalent to compute A(2T,.) and the functions g+(T,.).

This indicates a strong connection between the Levinson recursions

and the string equations (2.17). We can go one step further and show that

the string equations (2.17) can be derived from the Levinson recursions.

To do so, we rewrite (4.2) as

( + at A(2T,T+t) = -2p(2T)A(2T,T-t)

and take (4.4) into account, so that we get the system of first-order

partial differential equations
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-T g+ (T,t) + t g (T,t) = -2p(2T) g (T,t) (4.5a)

DT g (T,t) + t g+ (T,t) = 2p(2T)g (T,t) (4.5b)

where

2p(2T) = g+(T,T) - g_(T,T) (4.6)

Then, by taking respectively the partial derivatives of (4.5a) and (4.5b)

with respect to T and t and subtracting the resulting equations, we obtain

(2.17) with

V+ (T) = 4(p2 (2T)+ p(2T)) . (4.7)

The relation (4.7) shows that V +(-) can be expressed in terms of p(-).

Conversely, if either V +(-) or V_(-) is given, to compute p(-) we need only

to solve the Riccati equation (4.7) with the initial condition p(O) = k(O).

Thus, p(-) and V+(-) provide two equivalent parametrizations of the process

y(.).

B. Discretization Scheme

To compute g+(.,.) and g (.,.) we can use either the vibrating

strings (2.17) or the equivalent system of first-order equations (4.5).

It turns out it is preferable to discretize (4.5). Also, since the functions

c+(.,.) appear in our estimation procedure for the random variable a, we

will include them in our analysis.

If A > 0 is the discretization step, denote G+(m,n) = g+(mA, nA) and

C.+(m,n) = c+(mA, nA). Suppose now that at stage N, G+(N,n) and C (N,n)

have been computed for 0<n<N. By discretizing (4.5) and (3.4), we get

G+ (N+l,n) = G +(N,n) + G_ (N,n-1) - G_(N,n)

(4.8a)
- R(N)G+(N,n)A
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G_ (N+l,n) = G_ (N,n) + G+(N,n-1) - G+(N,n)

(4.8b)

+ R(N)G (N,n)

where R(N) = G +(N,N) - G (N,N) and l<n<N, and

C+(N+l,n) = C+(N,n) - C+(N,N)G+(N,n)A (4.9)

with 0<n<N. The boundary conditions (2.19) give

G+(N+l,0) = G+(N+l,1) and G (N+l,0) = 0, (4.10)

and to compute G+(N+1, N+1) and C+(N+1, N+1), we can discretize (2.16)

and (3.2), so that

- G+(N+1, N+1) = k+((N+l)A, (N+l)A)

N (4.11a)

(-Z k+((N+l)A, iA)G+(N+l,i))A

i=O -

C+ (N+l, N+l) = a ((N+1)A) (4.11b)
~2 + +

N

- (E k+((N+1)A, iA)C +(N+l,i))A

i=O -

This shows that the function G+(N,.) and C+(N,.) can be computed recursively,

starting from N=0. The number of operations required for each step of the

recursions (4.8) - (4.11) is 8N so that the overall number of operations

required to compute G (N,.) and C (N,.) is 4N . The amount of storage

required is 4N.

It turns out that this is exactly the number of operations and the

storage that would be required by the Levinson recursions, a fact which

is not surprising in light of the close relation existing between these

recursions and the string equations.



V. Spectral Domain Viewpoint

To express the previous results in the spectral domain, we will use

the Kolmogorov isometry [9] between Y and L2 ((X)dX), where r(X) is the

spectral density function of y(-), i.e.

() = 27 r(t)exp-jXt dt
-p-o

2 l (1+ I k(t)exp-jXt dt) (5.1)
..0co

with

r(t) = E[y(t)y(O)] = 6(t) + k(t) . (5.2)

We assume that k(') is summable, so that its Fourier transform

co

k(X) = - k(t) exp-jXt dt

-00

exists. Then, the isometry between Y and L2 (2(X)dX) is defined by the

correspondence

y(t) ++ exp jXt (5.3)

where we have

00

E[y(t)y(s)] = f exp jjt exp-j Xs r(X)dX
-00

= 6(t-s) + k(t-s) . (5.4)

Since neither y(t) nor exp jXt belong respectively to Y and L2 ((X)dX)

((5.4)contains a delta function), the isometry (5.3) should be interpreted

as

00 00

f a(t(t)t)dt ++ f a(t) exp j Xt dt (5.5)
_00 -00
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where a(.) is an arbitrary square-integrable function. However, for

convenience we will continue to use y(t) and exp jXt as the defining

elements of the isometry between Y and L2(Cr(X)dX).

In this framework, the mapping

y+(t) +<- cos Xt, y_ (t) + - j sin Xt (5.6)

defines an isometry between Y+- and the spaces of even and odd functions

of L2((X)dX). Consequently, the even and odd filtering problems of

Section II are equivalent to the problems of orthogonalizing the functions

{cos Xt, 0 < t < o} and {sin Xt, 0 < t < a} with respect to the spectral

density ^(X). The solution of these problems is obtained by noting that we

have the correspondence

t

+ (t) + +(t,X) = cos Xt - 9 g+(t s) cos Xs ds (5.7a)

V (t) +- y (t,X) = j(sin At - f g(t,s) sin ks ds) (5.7b)

where Y (t,.) and Y (t,.) can be viewed as the cosine and sine transforms

of g+(t,.) and g_(t,.).

Then, since the innovations v+ (-) are orthogonal, the functions

C+(.,.) are also orthogonal, so that

E[V+(t)V+(s)] = 2 6(t-s) = y+(t,X)y+(s,X)r(X)dX . (5.8)

To characterize y+(.,.), we note that

Theorem 3: The functions y+(.,.) satisfy the Schrodinger equations

-d2 y+(t,X) + (X - V (t))y(t,X) = 0 (5.9)
dthe boundary conditions

with the boundary conditions
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Y+(0, ) = 1 dt r+ (0,) = -2k(0) (5.10)

(0,) = 0 d '(0', ) = j . (5.11)

Proof: Differentiate (5.7) twice with respect to t, and integrate by

parts. This gives (5.9).

Thus, V+ (.) and V (') can be viewed as potential functions. Another

property of + (.,.) and y_(.,.) which is not apparent from (5.9) is that they

can be expressed in function of each other. To prove this, transform the

system of equations (4.5) into

jY (t,X) = d- y+(t,X) + 2p(2t)Y+(t,k) (5.12a)

jy¥+(t,A) = d- y-(tX) - 2p(2t)y_(t,X). (5.12b)

Now, substitute

2p(2t) = - Q(t)/w(t) (5.13)

with w(0) = 1 inside the Riccati equation (4.7). This gives

2 w(t) - V+(t)w(t) = 0

so that we can identify w(t) = Y+(t,0). Then, by combining (5.13) and

(5.12a) we get

jAy (t,X) = w[ ) +((tX), Y(t,) ]/y+(t,0)]/ (5.14)

where

W[u(t), v(t)] = u(t) v(t) - u(t) v(t)

denotes the Wronskian of u(-) and v(-). This expression was first obtained

by Krein [7], and it shows that only one of the Schrodinger equations

(5.9) or of the string equations (2.17) needs to be solved.
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Now, if the random variable a e Y that we want to estimate is mapped

into a(X) e L2 r(X)d) , the problem of finding the conditional mean of a

given YT is equivalent to the one of projecting a(X) on the subspace ST of

L2 (r(X)dA) which is spanned by {exp jXt, -T<t<T}. We have therefore the

correspondence

E[alYT] ++ PTa(X) (5.15)

where PT denotes the projection operator on ST , and the expression (3.1)

for the conditional mean of a can be written in the spectral domain as

PTa(X) = c+(T,k) + c_ (T,V) (5.16)

where

T

c+(T,) = f c+(T,t)cos At dt (5.17a)

T
c (T,k) j j c (T,t) sin At dt . (5.17b)

To compute c+(.,.), we can transform the differential equations (3.4), so

that

dT +(TX) = c (T,T)Y+(T,X), O<T<o (5.18)
dT + + +

with

c+(0,X) = .

Thus, the functions y+(.,.) play the same role for the solution of the

linear estimation problem in the spectral domain as g+(.,.) in the time-

domain.

At this point, it is worth pointing out that several of the expressions

described in this section (e.g., the Schridinger equations (5.9) or the

system of equations (5.12)) are not new and can be found in Krein [7] or
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Dym [11]. The novelty of our approach, however, is that instead of using

these expressions as our starting point, we have obtained them only as

a byproduct of our time-domain solution of the estimation problem over

a finite interval.

By denoting

5(tX) = y (t,) = y+(t,0) (5.19)

and

x(t)= f ds (5.20)
0 y+(s,0)

we can also transform the Schrodinger equations (5.9) into the string

equations used by Dym and McKean [8], [9] to solve the estimation

problem over a finite interval. Indeed, if E(t,X)= y(x(t),X), the

function y (x, X) satisfies the string equation

d2 _ k2
2- y(x,) = - (x)y(x,)y(X), 0<x< (5,21)

dx

d
y(0,X) = 1, y(0,X) = 0 (5.22)

where 9 = x(c) and where the mass density p(x) of the string is given by

P(x(t)) = y4(t,0) . (5.23)
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This transformation is due to Liouville 120], and its main feature is that

it is isospectral, i.e. if S(k) and S'(X) are respectively the spectral functions

of the Schr;odinger operator

A+ = d2 + V+(t)
dt

and of the string operator

1 d

M=- ~O(x) dx 2

we have

dS(X)___) dS () = 5.24)

The spectral functions of A+ and M are defined as follows. Let a(') and

a' () be some functions of L2[o,-) and of L2(pdx, [o,Z)), and let y+(',X) and

y(-,X) be the solutions of (5.9)-(5.11) and (5.21)-(5.22). Then, consider the

mappings

T+ : a(x) + A+(X) = a(x) y+(x,))dx (5.25)

and

T+ a'(x) + A'(k) = a' (x)y(x,) (x)dx. (5.26)~~~+ 0
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The functions S(X) and S' (X) are the spectral functions of A+ and M if we have

I a(x) b(x)dx =f A +()B* () dSU) (5.27)
0 +

and

a' (x)b'(x)p(x)dx =f A'+() B'+(%)dS'(X) (5.28)

where b(-) and b'(-) are some arbitrary functions of L2[0,0) and L2(pdx, [0,,))

which are mapped respectively into B+ (X) and B' +(). Thus, T and T' are some

isometries between L210,o) and L2(pdx, 10,,)) respectively and the subspaces

of even functions of L2(dS(\)) and L2(dS'(X)). Similarly, T_ is an isometry

between L2[0,0) and the subspace of odd functions of L2(dS(X)). The mapping

T ' : a' (x) () ) = - a'(x)dy(x,)

where a'(-) is an arbitrary function of L2 10,] defines also an isometry

between L210,,] and the subspace of odd functions of L2(dS'(')), i.e.

a' (x)b' (x)dx = 00 A' (X) B' ( )ds'(X)
0

(see [8], [9]).

By using the orthogonality relation (5.8) for the eigenfunctions y+(t,X),

we find that

dS(X)
dX = 2r(X) (5.29)

and by substituting the transformation (5.19)-(5.20) inside (5.28), it is

easy to check that
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dS(X) = dS' () . (5.30)

This shows that the spectral functions S(.) and S'(-) are absolutely continuous

and are specified by the spectral density function r(X) of the observations process

y('). Consequently, if we are given r(X), it does not matter whether we use V+(-)

or i(-) to parametrize r(-), since one can go from one description to the other

by using the transformation (5.19)-(5.20).

It is important to note that our results depend on the fact that

1 
r(X) = (1 + k(X)), (5.31)

27r

i.e. on the assumption that

(i) y(.) contains a white noise component

(ii) z(-) has an absolutely continuous spectral function. It will be shown

in the Appendix that the second assumption can be removed by adding a singular

part to the spectral function of the operators A+ and\ M. However, the first

assumption is essential, and if it does not hold our estimation technique

cannot be used. By comparison, the method of Dym and McKean t8], [91 is more

general, since it starts from the string equation

d2 2
dmdx y(x,X) = - y(x,X), o < x < Q (5.32)

with initial conditions (5.22), and where the mass distribution m(-) is arbitrary.

The string (5.32) can then be used to construct an isometry between L2(dm, [o,k))

and the space of even functions of L2(dR(X)), where dR(X)/d\ cannot necessarily

be represented as in (5.31). However, from a physical point of view, it is

reasonable to assume that y(') contains white noise. An additional advantage of
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making this assumption is that the algorithms that we obtain are simpler to

implement than the procedure described in [9], 110].

VI. The Gelfand-Levitan Inverse Scattering Method

Our estimation procedure can now be related to the Gelfand-Levitan

method [21]-[23] for solving the inverse scattering problem of quantum mechanics.

Let T+(-,-) be the solutions of

+ 2 V+(r +(r,X) = 0, O<r<- (6.1)

with initial conditions

.P+(0,X) = 1 d - +(O') =h (6.2)

d_ (0,°) = 0 d- _ (0,X) = 1 (6.3)

where h is a constant to be determined from the spectral data. Then, if

V+(r) and V_ (r) decay sufficiently rapidly as r becomes large, when r -t 

we have

i+(r,X) F(X) I cos(kr-n(X)) (6.4)

- (r,X) F( I sin(Xr-Tl(X)) (6.5)

where T(X) = Arg F(X), and where F(X) is the Jost function associated to

the Schrodinger equation (6.1). If f+ (r,X) are the solutions of (6.1)
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such that

lim exp -jXr f+(r,X) = 1, (6.6)
r+ao

F(X) is given by the Wronskians

F(X) = jX W[f+(r,) (r, )1 (6.7)

= -W[f (r,) a , i (r,X)] . (6.8)

The function F(X) is analytic in the upper half-plane [22], [23]. Furthermore,

since the spectral function of

A+ = ~ 2 + V+(r)
dr

is absolutely continuous with density 2r(X), the operators A + and A have no

--
bound states, so that F (X) is analytic in the upper half-plane 122].

The inverse scattering problem that we study is specified by the knowledge

of the magnitude of T+(r,X) for large values of r and for X real. This means

that we are given IF(X) I for X real, The objective is to reconstruct the

potentials V+(-). The Gelfand-Levitan procedure for solving this problem is

as follows.

Step 1: Let

1 IF. ) 1-2 (6.9)



-28-

and compute

k(t) = exp jXt(r(k) - )dX. (6.10)

Then, in (6.2) we have

h = -2k(0) . (6.11)

Step 2: Define

k+(t,s) = ~(k(t-s) + k(t+s))

and solve the Gelfand-Levitan equations (2.16) for g+(.,.).

Step 3: The potentials V+(') are given by

V+(t) = -2 d g+(t,t). (6.12)

It is obvious that the estimation method of Section II is identical

to the Gelfand-Levitan procedure. Note that we have used here a single

function IF(X) I to reconstruct two potentials V+(-) and V (-). Usually

in quantum mechanics, we are faced with the reverse situation: there is

only one potential V(-), and two Jost functions F+ () and F (-) which are

associated to the partial waves +(-,.) add ~_(.,.). Then, to reconstruct

V(V) one can use either IF+( )I or IF_ ()I [221.

Note that there is no difference between the inverse scattering problem

that we have considered above and the inverse spectral problem where r(X) is

given and where the objective is to reconstruct V+('). One benefit of using

the scattering point of view is that the Jost function F(-) can be interpreted
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as follows: let

A(s) = 1 -J a(u) exp-sudu (6.13)

be the whitening filter generating the innovations

V(t) = y(t) - E [y(t) ly(T) , - < T < t]

= y(t) --r0 a(u) y(t-u)du

from the observations y('). Then, A(s) is an outer function [1] in the

Hardy space H2 (dA/l+ 2 ) of functions f(-) which are analytic in the right

half-plane and such that

supf If(ca+ij) 12 < .

Furthermore

r() i iA(j) (614)
2 7T , (6.14)

and by noting that F(-) is outer in the upper half-plane [22] and satisfies

the identity (6.9), we find that

A(s) = F(js). (6.15)

VII. Resolvent Identities

The results of Section III show that for It! < T the smoothed
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estimate of z(t) given YT is

E[z(t) IYT] = z+(tIT) + ^_(tlT) (7.1)

where
T

Z+(tlT) = f H+(t,s;T)y+(s)ds . (7.2)

To compute this estimate, it is therefore important to find efficient

methods of implementing the even and odd resolvents H+(.,.;T).

A. Even/Odd Resolvent Factorization

By integrating the Bellman-Krein identity (3.9), we obtain the

operator factorization

I - H g*) (I - g)I - g+) (7.3)

where the operator g +associated to the kernel g+(.,.) is causal, i.e.

g+(t,s) = 0 for s>t

and where g+ denotes the adjoint operator of g+, so that

g*(t,s) = g+(s,t). (7.4)

This factorization provides an implementation of the smoothed estimates

(7;.2) in terms of causal operations. If we substitute (7.3) inside (7.2),

and note that the even and odd innovations are given by
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V+(t) = y(t) -t g+(t,s)y+(s)ds,

we obtain

z+(tIT) = z+(tIt) + g+(t,s)V+(s)ds . (7.5)

This expression shows that for 0Ot<T, z+(tiT) can be computed by performing

first a forwards pass on y+(-) to generate the filtered estimates ^z+(tlt)

and innovations V+(t), and then by performing a backwards pass to generate

Z+(tlT) for all t (see [19] for more details).

Since the factorization (7.3) requires only the knowledge of the

kernels g+(', ), the Gelfand-Levitan procedure can be viewed as a factorization

technique [101, 111].

B. Sobolev Identities

The factorization (7.3) has the disadvantage of not exploiting the

structure of H+(-,.;T). The kernels k+(-,-) have a Toeplitz plus Hankel

structure. Consequently, we would expect the resolvents H+(-,-;T) to have

a similar structure, in the same way as resolvents of Toeplitz kernels are

close to Toeplitz [161, [171. However, this property is not displayed by (7.3).

To display the Toeplitz plus Hankel structure of H+(',;T), we observe that

at k+(t,s) + k (t,s) - 7.6a)

and

k (t,s) + k (t,s) - . (:7.6b)
-t s 
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This structure is partially inherited by H+(',-;T), since

Lemma 1: If k(-) is differentiable, the resolvents H (-,-;T) satisfy

at H+(t,s;T) + H (t,s;T) = g_ (T,t)g+ (T,s) (7.7a)

a a
t H (t,s;T) + ts;T) = g(T,t) g_ (T,s) (7.7b)

for O<t, s<T.

Proof: Take the partial derivatives of the equations satisfied by H+ and H

with respect to t and s respectively, and add the resulting equations.

Then, use (.7.6a) and integrate by parts. This gives

k ('t,T)g+(T,s) = Jk (t,u)c(u,s)du + 2 c(t,s)

where

a a
c(t,s) =sT + H H+(t,s;T)

Then, by linearity, and using the unicity of the solution to (2.16), we ob-

tain (70.7a) The identity (7.7b) can be derived similarly. O

Now, we note that a kernel k(-,,) has a Toeplitz plus Hankel structure

if and only if

fK(t,s) - 0 (7.8)

where

2 2

-- 9t2 2at as
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Consequently, to check whether a kernel L(t,s) has a structure which is

close to Toeplitz plus Hankel, we can apply the displacement operator

6 to L(t,s), and if the resulting displacement kernel 6L(t,s) has finite

rank, i.e. if

N

6L(t,s) = i c. (t)d. (s) , (7.9)
i- 1 1

L(-,') can be considered as close to Toeplitz plus Hankel. In the case of

H (-,.;T), this gives

Theorem 4: If k(-) is twice differentiable, the resolvents H+(',-;T) are

such that

8H (t,s;T) = g+(T,t) aT g+(T,s) - -T g+(T,t)g+(T,s) (7.10)

with the boundary conditions

H+(t,s;T) = g+(T,s) (7.11)

and

aH (0,s;T = H (0,s;T) = 0. (7.12)
t +

Proof: Differentiate (7.7a) and (7.7b) with respect to t and s respectively,

and subtract the resulting equations. This gives

8H+(t,s;T) = a g_(T,t)g+(T,s) = g+(T,t) - g (T,s)

and by using (4.5a) to replace the derivatives of g with respect to t

and s, we get the identity (7.10) for 6H+. By symmetry, we get a similar
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identity for dH . The boundary condition (7.11) is obtained by comparing

the integral equations satisifed by H+(-,.;T) and g (T,-), and (7.12) is a

consequence of the property (2.14) for the kernels k+(-,.),

Remark: Thus, the displacement kernels 6H+ (t,s;T) have rank two, and the

resolvents H+(-, ;T) have a structure close to Toeplitz plus Hankel. The

identity (7.10) is an exact generalization of the so-called Sobolev identity

[16], 117] for resolvents of Toeplitz kernels.

Another way of expressing (7.10) is to consider the transformed

resolvents

T T
H+ (X,1;T) = I of ( (t-s) - H+(t,s;T)) cos Xt cos Us dt ds

and
T T

H (X,lj;T) = f f (6(t-s) - H_ (t,s;T)) sin Xt sin Us dt ds
0 0

The kernels 2H1 (C,U;T) can be interpreted as reproducing kernels for the subspaces

ST of L 2(r()dX) which are spanned respectively by the functions {cos Xt,

o < t < TI} and {sin Xt, 0 < t < TI . To see this, observe that by transforming

the factorization (7.3) one gets

A+(X,~;T) =f T +(t,X) +(,)dt (7.13)

t <0Y sn , ( c be e d

Then, let f+(X) be an arbitrary function of S . Since the functions

{y+(t,X), 0 < t < T} span ST, f+(X) can be expressed as
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f+(x) T=f f+(s)Y+(s,X)ds. (7.14)

By using (7.13) and (7.14), and the orthogonality relation (5.8) for the

eigenfunctions y+( ,k), we obtain

f 2H+(X,1;T)f+ (kX)r(X)dX

=fT f+(s) y+(s,p)ds = f+(I) (7.15)

so that 2H+ (G,p;T) is a reproducing kernel for ST . The Sobolev identity

(7.10) can then be transformed into

1
H (X,; T) = 2 2 [y+(T,X), Y+(T,p)], (7.16)

X - V

and (7.16) can be viewed as generalization of the Christoffel-Darboux formula

for reproducing kernels associated to orthogonal polynomials on the unit circle

or on the real line [3].

C. Even/Odd Resolvent Representation

The Sobolev identity (7.10) shows that the resolvents H (-,.;T) have a

structure which is close to Toeplitz plus Hankel. A consequence of this

structure is that I-H+ and I- H can be represented as sums of products of

triangular Toeplitz and Hankel operators (see [16], [17] for a discussion of

representations of this type in the Toeplitz case). The first step is to add
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and substract (7.7a) and (7.7b), so that

T(H+ + H ) = g (T,t)g (T,s) + g +(T,t)g (T,s) (7.17)

O(H+ - H_) = g (T,t)g+(T,s) - g+(T,t)g (T,s) (7.18)

where

T= -+ - and e
- at Ds - t Us

are the displacement operators associated respectively to Toeplitz and

Hankel kernels. By integrating (7.16) with the boundary condition (7.11),

we find that

(I-H ) + (I - H )= (I - a)(II a ) + (I - a*) (I - a )

-(a + a) (a + a) (7.19)

where a+ is the causal Toeplitz operator associated to the kernel

g+ (T,T-t-s)) t>s
a+(t,s) = (7.2Q)

0 t<s

and where a is the corresponding adjoint operator. Similarly, by

integrating (7.18), one gets
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where b +and d+ are the triangular Hankel operators given by

g+(T,t+s-T) t+s>T
b+(t,s) (7.22)

0 t+s<T

and

0 t+s>T

d+(t,s) =(.23)
-,s iH (O,T-(t+s);T) t+s<T .

Note that from (7.12), we can conclude that d (T,s) - O for all t and

s.

The expressions (7.19) and (7.21) can now be combined to express

I - H + and I - H as sums of products of triangular Toeplitz and Hankel

operators. Since triangular Toeplitz and Hankel operators can be implemented

by causal and time-invariant operations, this implies that the even and odd

smoothed estimates (7,2) can be computed with causal and time-invariant

filters. Furthermore, by using the same procedure as in t261, we can also

use the identities (7.19) and (7.21) to obtain time-invariant causal

implementations of Gaussian signal detectors.
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VIII. Conclusions

In this paper a set of string equations has been obtained for estimating

a stationary stochastic process over a finite interval. These string

equations can be related to the Levinson recursions, and from a numerical

point of view, they have the same efficiency. In the spectral domain, these

equations take the form of Schrodinger equations which have the same

spectral function as the observed process. By using this observation, we

have shown that our estimation procedure is identical to the Gelfand-

Levitan inverse scattering method of quantum mechanics.

The results discussed here can be extended in several directions.

First, it should be clear that although we have considered the case where

we are given some observations of a stationary signal over Iti < T, the case

where Itl > T can be treated similarly. In fact, the solution of this problem

is given in [9]. The case where we want to estimate a two-dimensional isotropic

random field is more difficult since there are no Levinson recursions in

this case. However, it will be shown in [12] that the approach developed

here can be generalized directly. This will give some vibrating membrane

equations which can be viewed as arising from the Gelfand-Levitan procedure

for reconstructing a circularly symmetric potential from its spectral

function.

Another important subject of future research is the relation existing

between linear estimation and inverse scattering theory. It turns out for

example that the Marchenko inverse scattering method of quantum mechanics

[22], [23] can also be interpreted from an estimation point of view [24].

In the case when the spectral function ri(X) is rational, an efficient

method of solving linear estimation problems is to use a Kalman filter

[1]. It would be interesting to see whether this can be used for inverse
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scattering problems.
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Appendix. Spectral Functions With a Singular Part.

In Section V and VI, it was assumed that the covariance k(-) is

summable, i.e. that the signal process z(-) has an absolutely continuous

spectral function. When k(') is only continuous, by Bochner's theorem

[9], there exists an odd non-decreasing function M(X) such that

k(t) =f exp jXt dM(X), (A.1)
-00co

and M(-) can be decomposed as

dM(X) = m(X) dX + dMl (X) (A.2)

where M (-) denotes the singular part of M(-). Consequently, we have

r(t) = k(t) + 6(t) = exp jXt dR(X), (A.3)

where

dR(X) = dM(X) + d (A.4)
2tr

is the spectral function of the observations process y(-), The function

R(-) can also be decomposed as

dR(X) = w(X)dX + dM (X) (A.5)

with

w(X) = m(X) + 1 (A.6)
2Tr
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By using the correspondence (5.3), we can construct an isometry between

Y and L2 (dR(X)), and the results of Section V remain valid provided that we

replace r(X)dX by dR(X). This implies in particular that the spectral function.

of the Schrodinger operators A+ and of the string operator M is R(-). Then,

the orthogonality relation (5.8) for the eigenfunctions Y+(t,X) of A+ becomes

100
( 6t-s) =f y+(t,) Y+(s,* ) dR() (A.7)

The results of Section VI are harder to extend since unlike in the absolutely

continuous case, the magnitude JF(X) | of the Jost function is not sufficient
to specify the spectral function R(-). More precisely, if F(-) is defined

as in (6.7) and (6.8), we have

w(k) = 1 IF() 1-2 (A.8)
27T

almost everywhere (see [27]). Consequently, to reconstruct V+(-), we need

to assume that we are given both IF(X) | and M (X), or equivalently that we

are given the spectral function R('). In this case, if we replace (6.10) by

k(t) = I exp jXt (dR(X) - -) (A.9)f- Oc 00 27T

we can use the Gelfand-Levitan procedure described in Section VI to recon-

struct V+(-) (see also [21]).

Special Case: Let

N N

z(t) = z (t) + a cos X.t + _ b sin X t (A.10)
1 i=l i i i=1 i i
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where zl(-) is a zero-mean Gaussian stationary process with summable

covariance k1 (), and where the amplitudes ai, bi are some zero-mean

Gaussian random variables uncorrelated with z l() and such that

E[a.a.] = E[b.b.] = A.6..ij (A.lla)

E[a.b.] 0
1 J

where 6. 1 if i = j and 6.. = 0 otherwise, The frequencies X.,

1 < i < N are fixed. Then, the covariance of z(-) is given by

k(t-s) = EIz(t)z(s)]

N

= kt-s) + il A cos . (t-s) (A.12)
1 1=1 1

so that in the decomposition (A.2) we have m(X) = kl(A), where kl (- ) denotes

the Fourier transform of k1 (), and

M A.

M ( (u(X -) =+ u(X + i) (A.13)
s i=l 2 1 1

where

1 for > 0

u(C) =

0 for A < 0

is the unit step function. Thus, the singular continuous part of M(') is

identically zero, so that the measure M (-) is purely discrete. In this

case, the completeness relation (A.7) becomes
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(t-s) = I y+(t,k)y+(s, )w(X)dk (A.14)
2 - -

N

+i Aiy+ (t,Ai)Y + (S'X i)

and the spectrum of A+ can be decomposed in two parts: a continuous spectrum

of energy levels E = X2 corresponding to the eigenfunctions y+(-,X) with

O < E < a, and a discrete spectrum embedded in the continuous spectrum which

is associated to the eigenvalues E. = Xi and eigenfunctions y+(,'X) with

1 < i < N. The eigenfunctions y+( , X.) can be viewed as positive energy

bound states. Indeed, it is shown in 1271 that y+(',X.) is square-integrable,

and that the Jost function F(-) is such that

F(±X.) = 0, 1 < i < N - (A.15)

These bound states differ from negative energy bound states by the fact that

the Jost functions has zeros on the real axis, whereas for a bound state at

the negative energy level E = -K where K is real and positive, one has

F(jK) = 0 , (A.16)

i.e. F(-) has a zero on the positive imaginary axis [22], [23].

Remark: Negative energy bound states do not appear in the estimation problem

that we have considered here. However, it will be shown in [241 that if the

signal z(t) contains a deterministic component of the type

N N
z (t) = ai cosh K.t + i b sinh K.t (A.17)
where the amplitudes ai, bi i(A.), the operators 

where the amplitudes a., b satisfy (A.11), the operators A have some bound
1 
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2 2
states with energy Ei = -K< < 0 and with normalizing constants A. = E[ai] =

1 1 -- 1 1

E[b2]. Signals such as (A.17) have been excluded from consideration in this

paper because they are not stationary.
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