550 Partially Asynchronous lterative Methods Chap. 7

7.7 A MODEL IN WHICH SEVERAL PROCESSORS UPDATE THE SAME
VARIABLES

We now present a model of distributed iterative computation in which several processors
are allowed to update the same component of the vector being iterated. As the updates
of different processors will be generally different, the agreement algorithm of Section
7.3 will be used to reconcile the individual updates. This model will be used in the next
section in the context of a stochastic gradient—like algorithm.

We motivate the model of this section by means of a simple example. Let y be a
random variable with unknown finite mean m and variance 0. Suppose that there are
p processors and that the ith processor observes, at times ¢ = 1,2,..., an independent
realization (sample value) of y, to be denoted by y;(¢). [For instance, the processors
might be generating y;(t) by Monte Carlo simulation; alternatively, the observations y;(t)
could be sensor data obtained at geographically distributed sensor sites.] The objective
of the processors is to estimate the mean of y. At any time ¢ > 1, each processor can
compute the estimate m;(t) = (E:=1 yi(T)) /t based on its own data. Furthermore, the
computation of m;(t) can be carried out recursively by means of the formula

1
m;i(t + 1) = my(t) + 1 (wt + 1) — mi(t)),

initialized with m;(0) = 0. This equation resembles the equation z(t + 1) = z(t) + vs(t)
of Section 7.5 [cf. Eq. (5.3)]; here 1/(t + 1) plays the role of a (time—varying and
decreasing) stepsize v and y;(t + 1) — m;(t) plays the role of s(t).

The variance E [(m;(t) — m)?] of m;(t) is equal to o?/t. A better estimate, with
variance o2 /(tp), is obtained if the processors were to exchange their individual estimates
at time ¢ and compute their average. This averaging could be performed once and for
all at the end of the algorithm. However, it may be desirable that the processors obtain
good estimates of m while the generation of new observations y;(t) is in progress. This
necessitates that the averaging of their individual estimates be performed more frequently.
One possibility is that at each time ¢, once the processors obtain the new realizations y;(t)
and compute their new individual estimates, they exchange and average their estimates.
In this case, the computation consists of interleaved phases involving computation of
y;(t) and averaging. This is a synchronous algorithm, which may be undesirable if, say,
some processors are faster than others or if communication delays are too long.

An alternative approach is to overlap the individual computations and the averaging
process. This can be done by letting the processors execute the agreement algorithm of
Section 7.3, trying to agree on a common estimate, while they keep obtaining new
samples y;(t), which they immediately incorporate into their estimates. We are faced
here with two opposing effects: the agreement algorithm tends to bring the estimates of
the processors closer together, whereas the generation of new samples has the potential
of increasing the difference of their estimates. The interaction of these two effects
substantially complicates the question of asynchronous convergence.

We now proceed to the formal description of the model to be employed. The reader
is advised at this point that the notation to be introduced is somewhat different from
earlier sections. This is because components will no more be associated with a unique



Sec. 7.7 A Model! in Which Several Processors Update the Same Variables 551

processor; an additional superscript will be used to specify the processor transmitting a
message with the value of some component. The general notational convention to be
followed here and in the next section is that superscripts denote processors and subscripts
denote components.

We consider an algorithm that iterates on a vector z belonging to the vector space
R". Furthermore, we assume that R" is expressed as a Cartesian product of m subspaces
of lower dimensions, that is, R* = R™ x ... x "=, where n; + --- + Ny, = 7.
Accordingly, any vector z € R is decomposed as z = (z, ..., Z,,), with z, belonging
to R™¢. We refer to z, as the ¢th component of z.

Let there be p processors. Each processor i has available at each time ¢ a vector
zH(t) € R™, with components x}?(t) € R™, L =1,...,m. For every component index ¢,
we let Cp C {1,...,p} be the set of processors who are in charge of updating the ¢th
component zy, based on their own measurements or computations. We call C, the set
of computing processors for component ¢ and we assume that it is nonempty for each ¢.
If i € Cy, we let T} be the set of times at which processor i updates .

For every processor ¢, any component z,, and any time ¢, let fye(t)sz(t) be the
update in z, due to a computation by processor . Here 'yl(t) is a positive stepsize and
sz(t) € R™ is an update direction. We could, without loss of generality, absorb 'ye(t)
into s¥(¢); our choice of notation is dictated by the application to be considered in the
next section. Naturally, we assume that if ¢ ¢ Cy or if ¢ ¢ T, then no computation is
performed and sl(t) =

For every component index ¢, there is a directed graph G, = (IV, A,) used to model
the exchange of messages carrying a value of z,. The node set N is the set {1,...,p}
of processors and the arc set Ay is the set of all pairs (j,4) such that processor J keeps
sending messages x, to processor i. For (j,1) € A, we let T” be the set of times that
such a message is received by processor ; and we assume that thls set is infinite. For any
teTd , We use 7-/ (%) to denote the time at which the message xl (received by i at time
t) was transmitted by processor j. Thus, the message received by processor ¢ at time ¢
is equal to =’ A& 2 (t)). We assume that 1 < 7,7(t) < t. We also use the convention that

* is the set of all nonnegative integers and that 75(t) = ¢, for all ¢.
The algorithm is initialized at time 1 with each processor i having a vector
z¥(1) € R™ in its memory. Processor ¢ can, at any time ¢, receive messages z (7'/ (t))
from other processors, incorporate these messages into its memory by forming a convex
combination with its own value xl(t) and finally incorporate the result 7£(t)se(t) of its
own computations. We thus postulate that for every 7 and ¢, the variable z4(t) is updated
according to the formula

t+D= Y a0z (rP®) +7i®si), 7.1

{ilteT;’}
where the coefficients a@j (t) are nonnegative scalars satisfying

> =1, Vit

{ilteT;?}



552 Partially Asynchronous lterative Methods Chap. 7

Equation (7.1) is the general description of the algorithm but it takes somewhat simpler
forms in special cases. For example, if processor i receives no messages 7 at time t,

then {j | ¢t € T;’} = {i} and Eq. (7.1) simplifies to
it + 1) = it) + 7 sy(d).

Similarly, if i ¢ C; or if t ¢ T}, then si(t) = 0 and Eq. (7.1) becomes

git+ D= Y af (7S ®). (1.2)

{ilteT;?}

Equation (7.2) resembles the equations defining the agreement algorithm of Section 7 3,
although it is somewhat more general, due to the dependence of the coefficients a] @)
on time. In any case, the iteration (7.2) will be referred to as the underlying agreement
algorithm. Notice that we essentially have a decoupled set of agreement algorithms, one
for each component x,. Coupling between components can arise, however, in Eq. (7.1)
because s’é(t) can depend on the entire vector Zi(2).

Given our motivation of the model (7.1), we want to ensure that the underlying
agreement algorithm (7.2) works properly. That is, we would like the values of the
variables w; possessed by different processors, to converge to a common value in the
absence of further computations. This turns out to be the case under some reasonable
assumptions.

Example 7.1.

We show that the agreement algorithm of Section 7.3 is a special case of Eq. (7.2). Suppose
that for each processor ¢ and for every j who communicates z¢ to ¢ [1 e., if (4,7) € A¢l,
the set T, does not depend on j. We are thus assuming that TZ’ = R} for all j such that
U,1) € Ae, where R} is some set. Accordingly, at any time ¢, either ¢ ¢ R: and processor
i receives no message x;, or ¢t € R and processor i receives simultaneously messages x’
from all processors j that are supposed to send such messages. This is not as unreahstlc
as it sounds. For example, processor ¢ might physically receive these messages at different
times, store them in a buffer, and then read them all at the same time t. As far as the
mathematical description of the algorithm is concerned, this situation is identical to the case
of simultaneous receptions.

We now assume for each (j,3) € A¢ and t € R}, that the value of the coefficient a (1)
1s posmve and independent of ¢, and will be denoted by a” Let us define for convenience

=0if j #4 and (4,7) ¢ Ac. Then Eq. (7.2) can be rewritten as

P
dt+D =) afzi(r’®), ifteRy,

Jj=1
it + 1) =zb(t), ift¢ R}
These two equations are identical to those describing the agreement algorithm of Section 7.3

[cf. Egs. (3.2) and (3.3)], except for somewhat different notation. If we now introduce the
partial asynchronism assumption and assume that there exists some ¢ such that a* > 0 and



Sec. 7.7 A Model in Which Several Processors Update the Same Variables 553

such that there exists a positive path (in the graph G¢) from i to all other processors, then
the sequence generated by Eq. (7.2) is guaranteed to converge to agreement, geometrically.

Example 7.2.

We now consider an alternative to Example 7.1, in which received messages are immediately
incorporated in the memory of the receiving processor For any 7 and ¢ and any j # i such
that (j,7) € A, we are given a constant a € (0,1). Furthermore, we assume that each
processor ¢ receives at most one message ze at each time unit; equivalently, the sets T”
with j # 4, are disjoint for any fixed <. In practice, physical message receptions could be
simultaneous, but a processor can always place incoming messages in a buffer and read
them one at a time. Thus, our assumption is not entirely unrealistic. Suppose that for every
te Te”, the incoming message ) ( ’(t)) is taken into account by processor i by letting

Tit+1) = af 2 (17 ) + (1 — al)zh(t) + vit)si(t),  te TP,

We also let zj(t + 1) = z(t) + v;(£)s§(t) if ¢ does not belong to any T}”. It is easily seen
that we are dealing with a special case of Eq. (7.1). The underlying agreement algorithm
is identical to the one considered in Exercise 3.2 of Section 7.3. According to the result of
that exercise, such an agreement algorithm is guaranteed to converge geometrically if the
partial asynchronism assumption holds and provided that for some i, there exists a positive
path (in the graph G,) from ¢ to every other processor j.

Examples 7.1 and 7.2 demonstrate that we can realistically assume that the under-
lying agreement algorithm (7.2) converges geometrically and such an assumption will be
introduced shortly. Before doing so, we shall develop an alternative representation that
is equivalent to Eq. (7.1) but easier to work with.

Suppose that we have fixed the sets T” and the values of the coefficients a} (t) and

(t) forall 4,4, j,t € T“ (We refer to any fixed choice of these sets and variables as a
realzzatzon of the underlymg agreement algorithm.) Let us now fix some component index
£. It is seen from Eq. (7.1) that for any fixed ¢ and i, the value of :c;?(t) is a linear function
of the variables {z/(1) | j =1,...,p} and {v}(")s)() | j = 1,...,p, T=1,...,t—1}.
(This is easily proved by induction, using the fact that the composition of two linear
functions is linear.) It follows that there exist scalar coefficients @/ (¢, 1), t > 1 >0,
such that

t—1

Ti(t) = Z o, 0zi()+ > Z &7 (t, 7)) (r)sh (7). (1.3)

j=l1 7=1j=1

Equation (7.3) is more explicit than the original Eq. (7.1). On the other hand, the
coefficients <I>” (t,7) depend on the particular realization of the underlying agreement
algorithm and are therefore usually unknown.

Example 7.3.

The best way of visualizing the coefficient <I>fzj (¢, 7) is by considering the following sequence
of events. Let us fix j, £, and 7. For simplicity, suppose that each component is one—
dimensional (ne = 1) and that z§(1) = O for all k. Suppose that processor J performs a



554 Partially Asynchronous lterative Methods Chap. 7

computation at time 7 and obtains <y, (T)sf(r) =1. Furthermore suppose that this is the
only computation ever to be performed by any processor, that is sy k(@) =0, unless k = j and
o = 7. For such a sequence of events, Eq. (7.3) shows that for ¢t > 7, <I>” (t,7) = zb(t). In
other words, <I>’J (t, 7) is the value (at time ¢ and at processor 7) generated by the underlying
agreement algonthm initialized at time 7 + 1 with 2/ (r+ 1) = 1, (7 + 1) = 0 for k # 7,
and with all messages in transit at time 7 + 1 equal to zero.

There are several conclusions that can be drawn from Example 7.3. First, we must
have

0<®¢t, <1, Vi,jlt>T.

Furthermore, if the underlying agreement algorithm is geometrically convergent (as is the
case in Examples 7.1 and 7.2), then the coefficients <I>“ (t, T) converge geometncally, as
t tends to infinity, to a limit independent of . We introduce the notation @’ (7) to denote
this common limit. The variable @i(r) is interpreted as the value of the component z;
on which all processors would agree under the sequence of events specified in Example
7.3.

Finally, let us notice that if 7 is a computing processor for component £ (that is, if
i € Cy), then it is desirable that each update v(t)s%(t) of processor i can influence the
value of a:; for all other processors j by a nonnegligible amount in the long run. This
can be expressed mathematically by requiring that there exists a positive constant 7 such
that ®? wWr)>nforalli€ Cpandall T >0.

Example 7.1. (cont.)

Suppose that for every computing processor ¢ for component £ (ie., i € C¢), we have
a¥® > 0 and that there exists a positive path in the graph G, from processor i to every other
processor j. Then processor ¢ is a “distinguished” processor in the terminology of Section
7.3 and part (c) of Prop. 3.1 applies. In particular, if zE(1) = 0 for every k and ¢, and if
'y};(r)si(r) = 1 is the only nonzero update in the course of the algorithm (as in Example
7.3), then the value on which the processors will eventually agree is no smaller than the
positive constant 7 of Prop. 3.1(c). We have already shown that the agreed upon value is
equal to oy (1) (Example 7.3). We conclude that the inequality ol 7(T) > n > 0 holds for all
7 > 0. A similar argument can be made for the agreement algorithm of Example 7.2.

We summarize the above discussion in Assumption 7.1 to follow. In particular, we
have shown that Assumption 7.1 is satisfied when the underlying agreement algorithm
is as in Example 7.1 or Example 7.2, provided that for each component ¢, there is a
communication path from every computing processor to every other processor. This as-
sumption can be also shown to hold for more general choices of the underlying agreement
algorithm [Tsi84].

Assumption 7.1. The sets T” and the variables a (t), TZJ (t), defining a realiza-
tion of the underlying agreement algonthm [cf. Egs. (7. 1) and (7.2)], are such that the
following hold:

(a) Forall i, j, and t > 7 > 0, we have 0 < &7 (¢, 7) < 1.



Sec. 7.7 A Model in Which Several Processors Update the Same Variables 555

(b) For any i, j, and 7 > 0, the limit of Q? (t,7), as t tends to infinity, exists, is the
same for all ¢, and is denoted by @‘Z(T).

(c) There exists some 1 > O (independent of the particular realization) such that
®)(r) > nforall j € Cp and 7 > 0.

(d) There exist constants A > 0 and p € (0, 1) (independent of the particular realiza-
tion) such that

|87 (t, ) — ®)(r)| < Ap'™",  Vt>T>0.

Equation (7.3) has a simple structure, but is still difficult to manipulate when it
comes to the analysis of specific algorithms. The reason is that we have one such
equation for each £ and i, and all of these equations are, in general, coupled. Thus, we
need to keep track of all the vectors z!(¢),...,zP(t), simultaneously. Analysis would
be easier if we could associate with the algorithm a single vector y(t) that summarizes
the information contained in the vectors z*(¢). It turns out that this is possible and the
following choice of y(t) is particularly useful. We define the ¢th component of y(t) by

p t—1 p
ve® =Y B0z + Y BUrNi(msir),  L=1,....m. (14)
i=1 =1 i=1

The interpretation of y(t) is quite interesting. Let us fix some time Z and suppose that
v4(r)s}(r) = 0 for all 7 > £. Consider Eq. (7.3) and take the limit as ¢ — co. We only
need to keep the summands for 7 < ¢ and we are left with the defining expression for
y¢(?). In other words, if the processors stop performing any updates at time £, but keep
communicating and forming convex combinations of their states, as in the underlying
agreement algorithm, they will asymptotically agree and y({) is precisely the vector on
which they will agree.

The vector y(t) is a very convenient tool for analysis, primarily because it is
generated by the recursion

p
vet+1) =yu(t) + > yOvidsi(t),  L=1,...,m, (1.5)

=1

which is an immediate consequence of Eq. (7.4)

Example 7.4. Specialized Computation

We now show that our earlier model of asynchronous computation in which each processor
is associated with a different component (e.g., as in Section 7.5) is a special case of the
present model, and we evaluate the coefficients ¢§(t) for this particular context. Let the
number m of components be the same as the number p of processors, and let processor j
be the only computing processor for component j, that is, C; = {j}. Each processor j
broadcasts its value of x; from time to time to all other processors and these values are
received after some bounded delay. Processor 4, upon receiving at time ¢ a value of x; that



556 Partially Asynchronous Iterative Methods Chap. 7

has been sent at some time T;j (t) < t by some processor j # ¢ [thus, processor i receives
the message z; (T;j (t))], lets

zit+1) =23 (7 ). (7.6)
Also, processor 7 lets
Tt + 1) = 2i(@), (1.7

if no message is received from processor j # ¢ at time ¢t. Equations (7.6) and (7.7)
are a trivial special case of an agreement algorithm. Comparing with Eg. (7.1), we have
a J@) =1, if processor i receives a message z—’ from j at time ¢t. In this example, if
processor 7 stops performing any computations, the values z’ (t) possessed by different
processors all agree, within finite time. (Finite time convergence can be viewed as a special
case of geometric convergence.) Furthermore, the value on which they agree is the value
possessed by the computing processor j. Using the interpretation of the coefficients ':I>J )
provided by Example 7.3, we see that <I>’ (t) =1 for all j and t, and ®I(t) = 0if i # j.

The model we have developed will be used in the next section, in the context of a
stochastic gradient algorithm.

7.8 STOCHASTIC GRADIENT ALGORITHMS

Let F : R™ — R be a differentiable cost function to be minimized, subject to no
constraints. Suppose, however, that we only have access to noisy measurements of the
gradient. That is, for any z € R", we cannot compute V F(z), but we have access to
VF(z) + w, where w is a random variable representing measurement or observation
noise. Such a situation often arises in statistics or in system identification ([RoM51],
[Lju77], [LjS83], and [PoT73]).

One could still try to use the gradient algorithm, as if no noise was present, which
gives rise to the equation

2t + 1) = 2()) = 7(VF (2) + ), (8.1)

where w(t) is the noise in the measurement of VF(xz(t)). This algorithm does not
converge, in general, to the minimum of F'. For example, suppose that for each ¢, the
random variable w(t) is independent of z(t) and has variance o > 0. It follows from Eq.
(8.1) that the variance of z(t) is at least v20* and, therefore, z(t) fails to converge (in the
mean square sense). What may happen, at best, is that z(¢) reaches a neighborhood of
a (local) minimum z* of F and moves randomly around z*. The mean square distance
of z(t) from z* increases with the variance of z(f) and can be made small only if «
is chosen small. On the other hand, if + is excessively small, it can take a very large
number of steps to reach a neighborhood of a local minimum. We can strike a balance



