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(c) Show that the sequence {z(t)} generated by the asynchronous iteration
zit+ 1) =1 -z (r®) +vhi (2'®), teT,

is guaranteed to be bounded, but does not necessarily converge to a fixed point of A.
Hints: For part (a), only a minor modification of the proof of Prop. 2.3 is needed. For
part (b), use the function h(z) = —z as an example. For part (c), use the example
h(z) = Az, where

and apply Prop. 3.1 of Section 6.3.

2.2. Let A be a nonnegative and irreducible matrix of dimensions n x n, with the property
Z;;l as; < 1. Suppose that all of the diagonal entries of A are positive. Show that under
Assumption 1.1, the asynchronous iteration z := Az converges to a vector z* satisfying
Az™ = z". Hint: Let & be the smallest diagonal entry of A. The iteration z := Az can be

written as [cf. Eq. (2.6)]

I-A

x::x—(l—6)1_6

Z.

Show that the matrix (I — A)/(1 — §) satisfies Assumption 2.3.

7.3 ALGORITHMS FOR AGREEMENT AND FOR MARKOV CHAIN
PROBLEMS

We now consider a set of processors that try to reach agreement on a common scalar value
by exchanging tentative values and combining them by forming convex combinations.
Although this algorithm is of limited use on its own, it has interesting applications in
certain contexts, such as the computation of invariant distributions of Markov chains
(Subsection 7.3.2) and an extended model of asynchronous computation (Section 7.7).

7.3.1 The Agreement Algorithm

Consider a set N = {1,...,n} of processors, and suppose that the ith processor has a
scalar z;(0) stored in its memory. We would like these processors to exchange messages
and eventually agree on an intermediate value y, that is, the agreed upon value should sat-
isfy ‘

i . <y< ;(0).
min z;00) <y < max z;(0)

A trivial solution to this problem is to have a particular processor (say processor 1)
communicate (directly or indirectly) its own value to all other processors and then all
processors can agree on the value z;(0). We shall impose an additional requirement that
excludes such a solution. In particular, we postulate the existence of a set D C N of
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distinguished processors and we are interested in guaranteeing that the values initially
possessed by distinguished processors influence the agreed upon value y. For example,
if k € D, zx(0) > 0, and z;(0) = O for all ¢ # k, then we would like y to be influenced
by zr(0) and be positive. Such a requirement can be met if the processors simply
cooperate to compute the average of their initial values. This, however, may require
a certain amount of coordination between the processors. We shall instead postulate
an asynchronous iterative process whereby each processor receives tentative values from
other processors and combines them with its own value by forming a convex combination.
We let z;(t) be the value in the memory of the ith processor at time ¢, and we consider
the asynchronous execution of the iteration

n
Z; :=Za,~j:cj, i=1,...,n,
=1
where the coefficients a;; are nonnegative scalars such that
n
day=1, Vi (3.1)
j=1

A precise description of the algorithm, referred to as the agreement algorithm, is

Tt +1) =z;), ift¢ T, (3.2)
Tt + D)= ajz;(ri), ifteT (3.3)
j=1

Here T* and T}(t) are as in Section 7.1 and will be assumed to satisfy the partial asyn-
chronism Assumption 1.1. In the present context, it would be natural to assume that
0< T}(t). It is convenient, however, to consider a more general case, allowing T}(t) to
be negative (as long as Assumption 1.1 is satisfied), and allowing z;(t), for ¢t < O, to be
different from x;(0).

Let A be the matrix whose ijth entry is equal to a;;. We are then dealing with the
special case of the model of Section 7.1, where the mapping f is of the form

flx) = Azx.

Notice that any vector x € R™ whose components are all equal is a fixed point of f,
because of the condition E?=1 a;; = 1 for all <. In the sequel, we derive conditions
under which the sequence {z(t)} of the vectors generated by the partially asynchronous
agreement algorithm of Egs. (3.2) and (3.3) converges to such a fixed point. A result
of this type is readily obtained if the matrix A is irreducible, a relaxation parameter
~ € (0,1) is employed, and the iteration z := Az is modified to z := (1 — y)z + yAx =
x — (I — A)z. This is because the matrix I — A satisfies Assumption 2.3 of Section
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7.2 and Prop. 2.4 in that section applies. Even if no relaxation parameter is used, Prop.
2.4 can be again invoked as long as all of the diagonal entries of A are positive (see
Exercise 2.2 in the preceding section). The result derived in this section is more general
in that it allows most of the diagonal entries of A to be zero. Let us also mention that
the agreement problem can be related to a network flow problem with quadratic costs
(see Exercise 5.4 in Section 5.5.) We now consider some examples to motivate our
assumptions.

Example 3.1.
Suppose that

0 1
A=) o)
Here the set of fixed points of f is X* = {(z1,2) | z1 = z}, but the iteration z := f(x)
is not guaranteed to converge to X*, even if it is executed synchronously. To see this,
notice that if the synchronous execution is initialized with z(0) = (1,0), then z(¢) alternates
between (0, 1) and (1,0) (Fig. 7.3.1). The possibility of such nonconvergent oscillations
will be eliminated by assuming that some diagonal entry of the matrix A is nonzero. Such
an entry has the effect of a relaxation parameter and serves as a damping factor.

X2

X1 =Xz

Figure 7.3.1 Nonconvergence in
Example 3.1. Here when z(¢) is updated
synchronously, it alternates between (1,0)
and (0, 1). The oscillation can be eliminated
by introducing a relaxation parameter
v € (0, 1) thereby replacing the iteration
z1(t + 1) = z2(t) and z5(t + 1) = ()
with z1(t + 1) = (1 — v)z1(t) + yz2(t)
Xy and 2t + 1) = (1 — y)z2t) + vz ().
This amounts to introducing positive
diagonal elements in the iteration matrix A.

To justify the partial asynchronism assumption, consider the matrix

11

2 2
)

2 2

The agreement algorithm for this choice of A is the same as the iteration considered in
Example 1.2 of Section 7.1, where it was established that failure to converge is possible
if part (b) of the partial asynchronism Assumption 1.1 is violated. There also exist
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examples that demonstrate that parts (a) and (c) of Assumption 1.1 are also necessary
for convergence (Exercise 3.1).

We define a directed graph G = (NN, A), where N = {1,...,n}, and A = {(%,) |
i # j and a;; # 0}. Notice that (z,5) € A if and only if the value possessed by
processor ¢ directly influences the value of processor j. Convergence will be proved
under the following assumption on the matrix A.

Assumption 3.1. There exists a nonempty set D C N of “distinguished” pro-
cessors such that:

(a) For every i € D, we have a;; > 0.

(b) For every i € D and every j € N, there exists a positive path from 7 to j in the
previously defined graph G.

This assumption is quite natural. Since we wish the initial values of any distin-
guished processor to affect the value that is eventually agreed upon, we have imposed
the condition that every distinguished processor can indirectly affect the value of every
other processor [part (b)]. Part (a) of the assumption ensures that a distinguished pro-
cessor does not forget its initial value when it executes its first iteration; it also serves
to eliminate nonconvergent oscillations (cf. Example 3.1).

Proposition 3.1. Consider the agreement algorithm of Egs. (3.2) and (3.3) and
let Assumptions 1.1 (partial asynchronism) and 3.1 hold. Let o > 0 be the smallest
of the nonzero entries of A. Then there exist constants > 0, C > 0, p € (0,1),
depending only on the number n of processors, on «, and on the asynchronism measure
B of Assumption 1.1, such that for any initial values z;(t), t <0, and for any scenario
allowed by Assumption 1.1, the following are true:

(a) The sequence {z;(t)} converges and its limit is the same for each processor i.
(b) There holds

max z;(t) — minz;(t) < C t(max max z;(r)—min min z; T).
i i(@® i i) < Cp i —B+1<7<0 i) i —B+1<7r<0 «(7)

(¢) If 0 < z;(7) for every ¢ and every 7 < 0, and if £ € D, then y > nz(0), where y
is the common limit whose existence is asserted in part (a).

Proof. We define

M@) = m2ax t—BT?éTSt$i(T)’ (B4
m(t) = mim t—BT}rslrstxi(T)' 3.5
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Notice that because of Assumption 1.1, we have m(t) < z; (7i(t)) < M(t) for every i, j,
t € T, a fact that will be often used. The proof consists of showing that the difference
M(t) — m(t) is reduced to zero in the course of the algorithm (see Fig. 7.3.2 for an
illustration of the main idea of the proof).

(a)
x
0) =x,(0 B)
M(0) .f“_(_)_.i("’_(l _..f‘_( _____________________
.Xz(B) .X4(2B)=M(2B)
® x,(28)
® x,(28)
® x,(B) o x;(28) = m(28)
m(0) ¢ — — — —— — — *— —
x3(0) = x,(0) x3(B)
B 28 t
(b)

Figure 7.3.2 (a) A possible graph G associated to a matrix A in the agreement algo-
rithm. (b) Illustration of the convergence of the agreement algorithm for the graph of
part (a). For simplicity, we assume that a;; > 0, agq > 0, and that information is never
outdated. Let the initial conditions be as indicated and let I be the interval [m(0), M (0)].
Since a;; > 0 and agq > 0, we have z(t) < M(0) and x4(t) > m(0) for all times
t. Within the first B time units, processor 2 performs an iteration and x, is pulled by
) to a value smaller than M(0). Similarly, x; is pulled by x4 to a value larger than
m(0). After an additional B time units, the variables x3 and z are pulled by z; and
T2, respectively, into the interior of I. At that point, all the components of (2B) lie in
the interior of I and the maximum disagreement M(2B) — m(2B) is smaller than the
initial maximum disagreement M (0) — m(0).

Lemma 3.1.

(@) For every t > 0, we have m(t + 1) > m(t) and M (¢t + 1) < M(¢).
(b) Forevery t and t' >t — B + 1, we have m(t) < z;(t') < M(?).
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Proof. Fix some i and t. If ¢ ¢ T%, then z;(t + 1) = z;(t) > m(¢t). If t € T%, then

Tt + 1) = aiz; (1)) > > aijmit) = m(2).

j=1 7j=1

Thus, in either case, z;(t + 1) > m(¢) for all 4, and, using the definition of m(t + 1), it
is seen that m(t + 1) > m(t). The proof of the inequality M(t + 1) < M(¢) is similar.
Finally, for t' > ¢ — B + 1, we use the definition of m(t' + B — 1) and part (a) of the
lemma to obtain z;(t') > m(t' + B — 1) > m(2). The inequality z;(t') < M(¢) is proved
similarly. Q.E.D.

For the remainder of the proof of the proposition, we fix some k € D. We let
Dy = {k} and we let D, be the set of all ¢ € N such that £ is the minimum number of
arcs in a positive path, in the graph G, from node k to node ;. By Assumption 3.1(b),
there exists a path from & to every other processor. It follows that every i € N belongs
to one of the sets Dy, Dy, ..., D,_,. Furthermore, for every i € D, there exists some
J € Dg_y, such that (j,7) € A. Let L <n — 1 be such that DyU---U Dy = N.

Lemma 3.2. For every ¢ € {0,1,..., L}, there exists some 7, > 0 (depending
only on n, o, B) such that for every positive integer s, for every t € [s+2/B +1,s +
2LB + B], and for every i € Dy, we have

z;(t) > m(s) + ne(zi(s) — m(s)) (3.6)
and

zi(t) < M(s) — ne(M(s) — zk(s)). - (3.7

Proof. Throughout the proof of this lemma, k& € D is fixed. Without loss of
generality, we only consider the case where s = 0. Suppose that t € T*. Then

zut+ 1) =m0 = Y ag; (25 (1) ~m(0) 2 apk (4B ~m(®) > a(ax(t)~m(©),

j=1

where we made use of the property T,f(t) =t [cf. Assumption 1.1(c)]. If ¢ ¢ T*, then
zk(t+1)—m(0) = zx(t)—m(0) > a(:ck(t)—m(O)). It follows that for ¢t € [0,2L B+ B],
we have

zx(t) — m(0) > o' (zx(0) — m(0)) > no(z4(0) — m(0)),

where 79 = o*£B+5_ This proves inequality (3.6) for i = k. Since Dy = {k}, inequality
(3.6) has been proved for all i € Dj.

We now proceed by induction on £. Suppose that inequality (3.6) is true for
some £ < L. Let i be an element of Dy;;. We shall prove inequality (3.6) for i.
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Let j € D, be such that (j,i) € A. Suppose now that t belongs to T* and satisfies
(2¢+1)B <t <2LB+ B. We then have 2(B+1 < T}(t) <t <2LB+ B and, by the
induction hypothesis,

2; (1}()) = m(0) 2 ne(24(0) — m(0)).

Consequently,

zilt+ 1) —m©) = Y a (:cq (i) — m(O)) > a; (xj (ri) - m(O)) .
9=1 :

> ame(xx(0) — m(0)) = ne41 (x£(0) — m(0)),

where 7y = an,. Let t; be an element of T* such that 24 + 1)B < t; < 2(¢ + 1)B.
Such a t; exists because of Assumption 1.1(a). Inequality (3.8) has been proved for
t = t;, as well for any subsequent ¢ € T* such that ¢ < 2LB + B. Furthermore, since
z;(t) =zt + 1), if t ¢ T*, we conclude that inequality (3.8) holds for all ¢ such that
t; <t < 2L+ 1)B. Since t; < 2(¢ + 1)B, we conclude that (3.8) holds for every ¢
such that 2(£ + 1)B < t < 2LB + B. This establishes inequality (3.6) for i € Dyy
and for s = 0. This completes the induction and the proof of (3.6) for the case s = 0.
The proof for the case of a general s is identical. Finally, inequality (3.7) is proved by
a symmetrical argument. Q.E.D.

Proof of Proposition 3.1. (cont.) We now complete the proof of the proposition.
We have m(t) < M(t) < M(0). Furthermore, the sequence {m(t)} is nondecreasing.
Since it is bounded above, it converges to a limit denoted by 7. Let M be the limit of
M(2), which exists by a similar argument. Let » = min{ny,...,n.}. Using Lemma 3.2
we obtain, for every t > 0,

m(t +2LB + B) = min min min
¢ €Dy t+2LB+1<7<t+2LB+B

= m(t) + n(zk(t) - m(t)).

zi(r) 2 m(t) + minng (zx(t) - m(t))

Similarly,
M(t +2LB + B) < M(t) + n(zi(t) — M(t)).
Subtracting these two inequalities, we obtain
M(t +2LB + B) —m(t+2LB + B) < (1 — n)(M(t) — m(?)). (3.9)

Thus, M(t) — m(t) decreases_at the rate of a geometric progression and M = 7. Let
y be the common value of M and 7n. Since m(t) < z;(t) < M(t) for every i and
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t, it follows that the sequence {z;(t)} also converges to y at the rate of a geometric
progression. This establishes parts (a) and (b) of the proposition.

We now prove part (c). We have m(0) > 0, and using Lemma 3.2, we obtain
y > m(2LB + B) > nzi(0). Q.E.D.

It should be emphasized that the value y on which agreement is reached usually
depends on the particular scenario.

7.3.2 An Asynchronous Algorithm for the Invariant Distribution
of a Markov Chain

Notice that the iteration matrix A in the agreement algorithm was a stochastic matrix.
This suggests some similarities between the agreement algorithm and the iterative algo-
rithms of Section 2.8 for computing the invariant distribution of a Markov chain. In this
subsection, we let P be an irreducible stochastic matrix and we establish partially asyn-
chronous convergence of the iteration 7 := 7P by suitably exploiting the convergence
result for the agreement algorithm. It should be recalled that the totally asynchronous
version of this iteration converges if one of the components of 7 is not iterated (Sub-
section 6.3.1). If all of the components of 7 are iterated, then totally asynchronous
convergence is not guaranteed (this can be seen from either Example 3.1 of this section
or Example 1.2 of Section 7.1) and, therefore, the partial asynchronism assumption is
essential. ,

Let P be an irreducible and aperiodic stochastic matrix of dimensions n x n and
let p;; denote its ¢jth entry. Let 7* be the row vector of invariant probabilities of the
corresponding Markov chain. Proposition 8.3 of Section 2.8 states that each component
w7 of 7* is positive and lim;_ o, 7(0)P* = 7* for any row vector 7(0) whose entries add
to 1. This leads to the iterative algorithm 7 := 7P of Section 2.8 and the corresponding
synchronous parallel implementation. We now consider its asynchronous version.

We employ again the model of Section 7.1, except that the vector being iterated is
denoted by 7w and is a row vector. The iteration function f is defined by f(n) = 7P.
The iteration is described by the equations

it + 1) = m;(t), tg T, (3.10)

n
mt+ 1) =Y m(ri®)psi,  teT (3.11)

7=1
Proposition 3.2. Suppose that the matrix P is stochastic, irreducible, and that
there exists some ¢* such that p;~;» > 0. Furthermore, suppose that the iteration (3.10)-
(3.11) is initialized with positive values [7;(7) > 0 for 7 < 0]. Then for every scenario
allowed by Assumption 1.1, there exists a positive number ¢ such that lim;_ . 7(t) =

cm*. Also, convergence takes place at the rate of a geometric progression.

Proof. We prove this result by showing that it is a special case of the convergence
result for the agreement algorithm (Prop. 3.1). We introduce a new set of variables z;(t)
defined by
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zi(t) = T,
U

These new variables are well defined because =7 > O for all 7 as a consequence of
irreducibility. In terms of the new variables, Egs. (3.10) and (3.11) become

zi(t + 1) = z;(t), t¢ T, (3.12)
n p..ﬂ*
— I (o %
zi(t+1) = 2; — (tiw), teT (3.13)
]=
By letting
Tk
ai = 20 (3.14)
T,

Eq. (3.13) becomes

z(t+1) = Zaijxj (T;(t)), teT,

i=1

which is identical to Eq. (3.3) in the agreement algorithm. Furthermore, notice that
aij > 0 and that

n

n n

Yo=Y B Ly Ty
A;; = = — M, = — =

il w} s Pty = 7 ’

j=1 =1

*
j=1 "t i o=

ik 3 i

where we have used the property 7* = 7*P. Thus, Eq. (3.1) holds as well.

We now verify that the remaining assumptions in Prop. 3.1 are satisfied. Let i* be
such that p;-;« > 0, and let D = {i*}. Then a;-;» > 0 and Assumption 3.1(a) holds.
Also, since P is irreducible, the coefficients a;; satisfy Assumption 3.1(b).

Therefore, Prop. 3.1 applies and shows that there exists a constant ¢ such that

lim z;(t) = ¢, Vi.
t—o0

Equivalently,
lim 7;(t) = cenf, Vi.
t—o0

Geometric convergence follows from part (b) of Prop. 3.1.

Let m(0) = min; min_p<-<o Z;(7). Since the algorithm is initialized with pos-
itive values, m(0) is positive. As shown in the convergence proof for the agreement
algorithm, the limit ¢ of z;(¢) is no smaller than m(0). Thus, c is positive.  Q.E.D.
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As in the agreement algorithm, the constant ¢ whose existence is asserted by Prop.
3.2 depends on the particular scenario. This does not cause any difficulties because 7*
can be recovered from the limiting value of 7(t) by normalizing it so that its entries add
to 1.

If P is stochastic and irreducible, but all of its diagonal entries are zero, the iteration
of Egs. (3.10) and (3.11) does not converge, in general (see Example 3.1). However, we
can let

Q=vP+0 -1,

and apply the algorithm with P replaced by Q. Here v is a constant belonging to (0, 1),
and [ is the identity matrix. Then @ satisfies the assumptions of Prop. 3.2, and we obtain
convergence to a multiple of the invariant distribution vector of Q. This is all we need
because it is easily seen that P and @ have the same invariant distribution.

As a final extension, suppose that P is nonnegative, irreducible, with p(P) = 1,
but not necessarily stochastic. Then the Perron-Frobenius theorem (Prop. 6.6 in Section
2.6), applied to the transpose of P, guarantees the existence of a positive row vector 7*
such that 7* = 7* P, and the proof of Prop. 3.2 remains valid without any modifications
whatsoever.

EXERCISES

3.1.  (a) Suppose that Assumption 1.1(a) is replaced by the requirement that T* is infinite,
for all . Show that Props. 3.1 and 3.2 are no longer true.
(b) Suppose that Assumption 1.1(c) is replaced by the requirement t — B+1 < 7}(t) < ¢
for all 7 and't € T*. Show that Props. 3.1 and 3.2 are no longer true.
Hints: For part (a), let

(=}

O WI— NI—
Rl= Nl—
[« RNNTEN

NI—

and show that if each processor in turn executes a large number of iterations, the
algorithm behaves similarly with the iteration z; := x3, z3 := 23, and z, := x;
executed in Gauss—Seidel fashion. For part (b), let

a=| J

Arrange the initial conditions and a scenario so that for every ¢, we have z(t) =

z(t 4+ 2), but z(t + 1) # z(t).
3.2. We consider a variant of the agreement algorithm whereby processors receive messages from
other processors, and upon reception, these messages are immediately taken into account by

[NTERN T
NI= =
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3.3.

34.

Partially Asynchronous lterative Methods Chap. 7

forming convex combinations. Let G = (NN, A) be a directed graph, with N = {1,...,n}
and with (j,7) € A if and only if processor j communicates to processor i. For any
(j,49) € A, let T} be the set of times that processor i receives a message z; (-r}(t)) from
processor j. We assume that for any fixed i, the sets T;, j # 14, are disjoint. Let the
algorithm be described by the equations

zi(t+ 1) = as;x; (T;(t)) + (1 — aij)zi(t), te T;,

and z;(t + 1) = z;(¢) if t does not belong to any T; Assume that 0 < a;; < 1 for every ¢
and j such that (j,7) € A.

(a) Reformulate appropriately Assumptions 1.1 and 3.1, redefine the constant « of Prop.
3.1, and then show that the conclusions of Prop. 3.1 hold for the present algorithm
as well.

(b) What happens in this algorithm if one of the processors breaks down and stops
transmitting any messages?

(c) Answer the question of part (b) for the original algorithm of Egs. (3.2) and (3.3).
For each 7 we let {e;(t)} be a sequence of real numbers that converges geometrically to
zero. We consider a perturbed version of the agreement algorithm, whereby Eq. (3.3) is
replaced by

nt+ D= ayz;(j®) +e), ifteT’

i=1

Let Assumptions 1.1 and 3.1 hold, and show that for every scenario and each i, the sequence
{z:(t)} converges geometrically to a limit independent of 7. Hint: Fix some positive integer
s. For any scenario, define v(t) by letting v(t) = z(¢) if t < s,

n
vit +1) = Zaiju,» (i), ift>s, teT",

j=1

and v;(t+1) = v(t) if t > s and t ¢ T". Let q(t) = min; ming— p41<r<¢ v:(7) and Q(t) =
max; max¢— g+1<r<¢ vi(7). From Prop. 3.1 we have Q(s +2LB+ B)—g(s+2LB+B) <
n(Q(s) - q(s)). Furthermore, x:(s + 2LB + B) — vi(s + 2LB + B) can be bounded
by a constant which tends to zero geometrically as s goes to infinity. Combine these two
observations to show that M(s+2B+B)—m(s+2B+B) < (1-1n) (M (s)— m(s)) +6(s),
where {6(s)} is a sequence that converges to zero geometrically.

Let all of the assumptions in Prop. 3.2 hold except for the irreducibility of P. Assume instead
that the Markov chain corresponding to P has a single ergodic class and that the nonzero
diagonal entry p;~;~ corresponds to a recurrent state :*. Show that the sequence {=(t)}
generated by the partially asynchronous iteration (3.10)—(3.11), initialized with positive
values, converges geometrically to a positive multiple of the vector of invariant probabilities
of the Markov chain. Hint: We are dealing with the asynchronous iterations 7" := 7" Py,
and 7@ := VP, + 7@ Py, where 7 and 7? are appropriate subvectors of 7, and
Py, Pi2 and P, are appropriate submatrices of P. Show that p(P;;) < 1 and that =P(t)
converges to zero geometrically. For the second iteration, use a suitable change of variables
and the result of Exercise 3.3. '



