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Delay Stability of Back-Pressure Policies in the
presence of Heavy-Tailed Traffic

Mihalis G. Markakis, Eytan Modiano, and John N. Tsitsiklis

Abstract—We study multi-hop networks with flow-scheduling
constraints, no constraints on simultaneous activation of differ-
ent links, potentially multiple source-destination routes, and a
mix of heavy-tailed and light-tailed traffic. In this setting, we
analyze the delay performance of the widely studied class of
Back-Pressure scheduling policies, known for their throughput
optimality property, using as a performance criterion the notion
of delay stability, i.e., whether the expected end-to-end delay in
steady state is finite. Our analysis highlights the significance of
“bottleneck links,” i.e., links that are allowed to serve the source
queues of heavy-tailed flows. The main insight is that traffic that
has to pass through bottleneck links experiences large delays
under Back-Pressure. By means of simple examples we provide
insights into how the network topology, the routing constraints,
and the link capacities may facilitate or hinder the ability of light-
tailed flows to avoid bottlenecks. Our delay-stability analysis is
greatly simplified by the use of fluid approximations, allowing us
to derive analytical results that would have been hard to obtain
through purely stochastic arguments. Finally, we show how to
achieve the best performance with respect to the delay stability
criterion, by using a parameterized version of the Back-Pressure
policy.

I. INTRODUCTION

We study scheduling problems arising in multi-hop wireline
networks with a mix of heavy-tailed (i.e., arrival processes
with infinite variance) and light-tailed traffic and, potentially,
multiple source-destination routes for each traffic flow. We
analyze the delay performance of the widely studied class of
Back-Pressure policies, known for their throughput optimality
property. (More concretely, we focus on a particular variant
of Back-Pressure policies, known as “Max-Pressure.”) Classi-
cal results, e.g., the Pollaczek-Khinchin formula, imply that
heavy-tailed flows experience large delays, infinite in steady-
state expectation. Thus, we focus on the (policy-dependent)
impact of heavy-tailed traffic on light-tailed flows, using as a
performance criterion the notion of delay stability, i.e., whether
the expected end-to-end delay of a traffic flow in steady state
is finite.

The class of Back-Pressure policies was introduced in the
seminal work of Tassiulas and Ephremides [21], and since then
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numerous studies have analyzed these policies in a variety of
settings; see [6] for an overview. A remarkable property of
Back-Pressure policies is their throughput optimality, i.e., their
ability to stabilize a queueing network whenever this is pos-
sible. Moreover, Back-Pressure policies have been combined
with congestion control in “cross-layer control” schemes that
are provably stabilizing and utility-optimizing, e.g., see [5],
[18].

We are motivated to study networks with a mix of heavy-
tailed and light-tailed traffic by empirical evidence of strong
correlations and statistical similarity over different time scales
in real-world networks. This observation was first made by Le-
land et al. [13] through analysis of Ethernet traffic traces. Sub-
sequent empirical studies have documented this phenomenon
in other networks, while accompanying theoretical studies
have associated it with bursty/heavy-tailed arrivals.

The impact of heavy tails has been analyzed extensively
in relatively simple queueing systems, e.g., single or multi-
server queues; for an overview of existing results see [1]
and the references therein. Moreover, as alluded to above,
there is vast literature on the performance of Back-Pressure
policies under light-tailed traffic. However, the delay analysis
of Back-Pressure policies in networks with a mix of heavy-
tailed and light-tailed traffic has only recently attracted at-
tention. Jagannathan et al. [9] consider a system with two
parallel queues, receiving heavy-tailed and light-tailed traffic
while sharing a single server, and determine the queue-length
asymptotics under the Generalized Max-Weight policy. In
follow-up work, Jagannathan et al. [10] study the case of a
server with intermittent connectivity to the queues, and explore
the impact of connectivity on queue length asymptotics. In
a similar setting, Nair et al. [17] analyze the role of intra-
queue scheduling, i.e., the way that jobs are served within
each queue, on the response time asymptotics.

Closer to the present paper comes our earlier work [15],
which studies the delay stability of Max-Weight policies (the
single-hop equivalent of Back-Pressure) in networks with
a mix of heavy-tailed and light-tailed traffic. In single-hop
networks, the decision problem reduces to link-scheduling,
i.e., which subset of communication links to activate at any
given time slot. This determines directly which traffic flows
are to be served, because in single-hop networks there is a
one-to-one correspondence between links and flows. However,
in multi-hop networks, multiple flows may traverse the same
communication link. Thus, apart from link-scheduling, the
decision problem in multi-hop networks has an additional
dimension, that of flow-scheduling: given the links to be
activated, which flow to send through each of them. This can
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be interpreted as a joint scheduling and routing decision. This
added dimension makes it very difficult to follow the stochastic
dynamics of the systems, thus requiring new methodology
for delay analysis. In particular, in this paper we utilize fluid
approximation techniques that facilitate delay analysis without
resorting to tracking the stochastic dynamics. Moreover, since
the link-scheduling part of the problem has been analyzed
extensively in [15], [16], here we consider a wireline multi-
hop network model, where only the flow-scheduling part
remains relevant. Thus, in the present paper we focus only
on phenomena and insights that originate from the multi-hop
nature of the network.

The main contributions of the paper can be summarized as
follows.

(i) Through simple examples, we provide insights into how
the network topology, the routing constraints, the arrival rates,
and the link capacities may affect the delay performance of the
Back-Pressure policy in the presence of heavy-tailed traffic.

(ii) We illustrate the value of the fluid approximation
methodology, developed in the companion paper [16], for the
delay analysis of multi-hop networks with heavy-tailed traffic.
More specifically, fluid approximations simplify significantly
the analysis, and allow us to obtain results that would have
been hard to prove solely through stochastic arguments.

(iii) We show how one can achieve optimal performance
with respect to the delay stability criterion by using a pa-
rameterized version of the Back-Pressure policy, provided the
parameters are chosen suitably.

The remainder of the paper is organized as follows. Section
II includes a detailed description of a multi-hop wireline
network, together with some useful definitions and lemmas. In
Section III we present briefly the fluid model of this multi-hop
network, and state two essential results, from the companion
paper [16], that associate fluid approximations to delay stabil-
ity. In Section IV we show through simple examples, which
“system parameters” may affect the delay performance of the
Back-Pressure policy and in what way. Section V contains
a delay-stability analysis of the parameterized Back-Pressure-
α policy. We conclude with a discussion of our findings in
Sections VI and VII.

II. A MULTI-HOP WIRELINE NETWORK UNDER THE
BACK-PRESSURE POLICY

We start with a detailed description of the multi-hop
switched queueing network studied in this paper. Subsequently,
we present the Back-Pressure policy and we provide some
useful definitions and lemmas.

We denote by R+, Z+, and N the sets of nonnegative reals,
nonnegative integers, and positive integers, respectively. Also,
[x]+ represents max{x, 0}, the nonnegative part of scalar x.
Finally, 1E stands for the indicator variable of event E.

The network operates in discrete time slots, which we index
by t ∈ Z+. The topology of the network is captured by a
directed graph G =

(
N ,L

)
, where N is the set of nodes and

L is the set of directed links. Nodes represent the physical or
virtual locations where traffic is buffered before transmission,
and edges represent communication links, i.e., the means of

transmission. With few exceptions, we use variables i and j
to represent nodes, and (i, j) to denote a directed link from
node i to node j.

Central to our model is the notion of a traffic flow f ∈
F ,where F = {1, . . . , F}, F ∈ N, which is a long-lived
stream of packets that arrives to the network according to
a discrete time stochastic arrival process {Af (t); t ∈ Z+}.
Each traffic flow f ∈ F has a unique source node sf ∈ N
where it enters the network, and a unique destination node
df ∈ N where it exits the network. The quantity Af (t) can
be interpreted as the random number of packets that flow f
brings (exogenously) to sf at the end of time slot t. We use
A(t) to represent the vector

(
Af (t); f = 1, . . . , F

)
. In the

remainder of the paper we use the terms “flow” and “traffic
flow” interchangeably, while we often use “traffic” to refer to
a specific collection of traffic flows. (To what collection we
refer will be clear from the context.)

We assume that all arrival processes take values in Z+, and
are independent and identically distributed (IID) over time.
Furthermore, different arrival processes are independent. We
denote by λf = E[Af (0)] > 0 the rate of traffic flow f and by
λ = (λf ; f = 1, . . . , F ) the vector of the rates of all traffic
flows.

Definition 1: (Heavy Tails) A nonnegative random variable
X is heavy-tailed if E

[
X2
]

is infinite, and is light-tailed
otherwise. Moreover, X is exponential-type (light-tailed) if
there exists θ > 0 such that E

[
exp

(
θX
)]
<∞.

An IID traffic flow is heavy-tailed/light-tailed/exponential-
type if the distribution that underlies the corresponding arrival
process is heavy-tailed/light-tailed/exponential-type, respec-
tively. We note that there are several definitions of heavy/light
tails in the literature. In fact, a random variable is often
defined as light-tailed if it is exponential-type, and heavy-
tailed otherwise. Definition 1 has been used in the literature on
data communication networks, e.g., see [19], due to its close
connection to long-range dependence.

For technical reasons we assume the existence of some γ ∈
(0, 1) such that E

[
A1+γ
f (0)

]
<∞, for all f ∈ F .

Each traffic flow f has a predetermined set of links Lf ⊂ L
that it is allowed to access. We assume that sf 6= df and that
there exists at least one directed path from sf to df within
the links in Lf . If the set Lf includes exactly one path from
source to destination, we say that flow f has fixed routing.

Node i belongs to set Nf if there exists a directed path from
sf to i that includes only links in Lf . Thus, Nf ⊂ N is the
set of nodes that traffic flow f can access. Note that the source
node sf is trivially included in Nf , while the destination node
df is included in Nf , due to our assumptions on Lf .

An additional assumption is that there are no “dead-ends,”
i.e., from every node in i ∈ Nf there exists a directed path
within the links in Lf that leads to df .

Traffic flow f maintains a queue at every node i ∈ Nf .
We refer to this queue as queue (f, i) and denote its length at
the beginning of time slot t ∈ Z+ by Qf,i(t). We emphasize
that queue (f, i) buffers only packets of flow f . The service
discipline within each queue is “First Come, First Served.” We
use the shorthand notation Q(t) for the set of queue lengths
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{
Qf,i(t); i ∈ Nf , f ∈ F

}
. We also denote by Ft the σ-

algebra generated by Q(0), A(0), . . . , Q(t−1), A(t−1), Q(t),
which should be distinguished from the set of traffic flows F .

Traffic may arrive to queue (f, i) either exogenously, if i
is the source node sf , or endogenously, through a link in Lf
whose destination node is i. We refer to queue (f, sf ) as the
source queue of traffic flow f . We denote by Sf,i,j(t) the
number of packets that are scheduled for transmission from
queue (f, i) through link (i, j) ∈ Lf . These packets serve as
(potential) departures from queue (f, i) and arrivals to queue
(f, j), at time slot t. We use the shorthand notation S(t) for
the set of scheduling decisions

{
Sf,i,j(t); (i, j) ∈ Lf , f ∈

F
}
, t ∈ Z+. For simplicity, we assume that the capacity of

all links is equal to one packet per time slot.
We assume that all links can transmit packets simultane-

ously, and that all attempted transmissions are successful.
Thus, our queueing model is suitable for several wireline
applications (although not in the presence of “interference
constraints” between links, as for example in switches).

Each link can only serve one traffic flow at any given
time slot, giving rise to flow-scheduling constraints. The set
of decisions regarding which flow is scheduled through each
link can be interpreted as joint scheduling and routing. A
scheduling vector S(t) is feasible if:

(i) Sf,i,j(t) ∈ {0, 1}, for all (i, j) ∈ Lf , f ∈ F ;
(ii)
∑
f∈F Sf,i,j(t) ≤ 1, for all (i, j) ∈ L;

(iii)
∑
j:(i,j)∈Lf

Sf,i,j(t) ≤ Qf,i(t), for all i ∈ Nf , f ∈ F .
A queue length-based policy is a sequence of mappings

from the history of queue lengths
{
Q(τ); τ = 0, . . . , t

}
to

scheduling decisions S(t), t ∈ Z+. For much of the paper we
focus on a particular stationary and Markovian queue length-
based policy, the Back-Pressure policy: at each time slot t, S(t)
is a feasible scheduling vector that maximizes the aggregate
Back-Pressure in the network, i.e.,

S(t) ∈ arg max
∑
f∈F

∑
(i,j)∈Lf

(
Qf,i(t)−Qf,j(t)

)
Sf,i,j(t).

If the solution is not unique, then each of the maximizing
scheduling vectors is chosen with equal probability.

We note that the above description, which is referred to as
Max-Pressure in [4], is slightly different from the original,
and most studied, version of Back-Pressure [21]. The original
policy is a greedy one, in the sense that it maximizes the
“back-pressure” on individual links, one at a time. It is not hard
to see that on certain occasions, namely when queues have few
packets to transmit but many outgoing links, the original Back-
Pressure policy may result in different scheduling decisions
compared to our version. However, in the regime of large
queue lengths/delays that we are interested in this paper, the
two policies are indistinguishable.

With slight abuse of notation, i.e., if we now let S(t)
represent the final scheduling decisions made by the Back-
Pressure policy at time slot t, the dynamics of the multi-hop
switched queueing network can be written in the following
form:

Qf,sf (t+ 1) = Qf,sf (t)−
∑

j:(sf ,j)∈Lf

Sf,sf ,j(t) +Af (t), (1)

and

Qf,i(t+1) = Qf,i(t)−
∑

j:(i,j)∈Lf

Sf,i,j(t)+
∑

j:(j,i)∈Lf

Sf,j,i(t),

(2)
for all i ∈ Nf \ {sf , df}. Finally, by convention,

Qf,df (t) = 0, ∀f ∈ F . (3)

The initial queue lengths are arbitrary nonnegative integers.

Coming to the issue of delays, a batch of packets arriving to
the network at any given time slot can be viewed as a single
entity, e.g., as a file that needs to be transmitted. We define
the end-to-end delay of a file of flow f to be the number of
time slots that the file spends in the network, starting from the
time slot right after it arrives at sf , until the time slot that its
last packet reaches df . For k ∈ N, we denote by Df (k) the
end-to-end delay of the kth file of flow f , and use the vector
notation D(k) =

(
Df (k); f = 1, . . . , F

)
.

Finally, the amount of traffic that can be stably supported
by the network is captured by the notion of stability region.

Definition 2: (Stability Region) An arrival rate vector
λ =

(
λ1, . . . , λF

)
is in the stability region Λ of the multi-

hop switched queueing network described above if there exist
ζf,i,j ≥ 0, f ∈ F , i, j ∈ N , such that the following set of
constraints is satisfied:

(i) Flow Efficiency Constraints:

ζf,i,i = ζf,i,sf = ζf,df ,i = 0, ∀i ∈ N , ∀f ∈ F ;

(ii) Routing Constraints:

ζf,i,j = 0, ∀(i, j) /∈ Lf , ∀f ∈ F ;

(iii) Flow Conservation Constraints:∑
j∈N

ζf,j,i + λf · 1{i=sf} =
∑
j∈N

ζf,i,j , ∀i 6= df , ∀f ∈ F ;

(iv) Link Capacity Constraints:∑
f∈F

ζf,i,j < 1, ∀(i, j) ∈ L.

The auxiliary ζ variables via which we define the stability
region are often interpreted as “multicommodity flows,” e.g.,
see [6].

If an arrival rate vector λ belongs to the stability region Λ,
then there exists a policy that stabilizes the network, in the
sense that the sequences {Q(t); t ∈ Z+} and {D(k); k ∈ N}
converge in distribution. 1 This can be shown by arguing simi-
larly to Corollary 3.9 of [6], and by utilizing the independence
assumptions that we made regarding the arrival processes,
which imply that the underlying Markov chain is aperiodic.

Lemma 1: (Throughput Optimality of Back-Pressure)
The multi-hop switched queueing network described above is
stable under the Back-Pressure policy, for all λ ∈ Λ.

1Our definition of stability as positive recurrence of the underlying Markov
chain of the network (cf. the weaker notion of “rate stability”) is precisely
the reason that we assume strict inequalities for the link capacity constraints
in the definition of the stability region.
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Proof: In the case of light-tailed traffic the result is well-
known [21]; in the presence of heavy-tailed traffic, the result
follows from the findings of [4]. For a formal proof the reader
is referred to [16].

All the networks that we analyze in this paper are under
the assumption of an arrival rate vector in the respective
stability region. We denote by Qf,i the steady-state length
of queue (f, i), while we reserve Df for the steady-state
end-to-end delay of traffic flow f . The dependence of these
random variables on the scheduling policy that is applied has
been suppressed from the notation, but will be clear from the
context.

Definition 3: (Delay Stability) Traffic flow f is delay stable
under a specific policy if the network is stable under that policy
and E[Df ] is finite; otherwise, f is delay unstable.

Similarly, queue (f, i) is delay stable if E
[
Qf,i

]
is finite,

and delay unstable otherwise. We note that the latter notion of
delay stability is related to the delay of packets, whereas the
former to the delay of files.

Theorem 1: (Delay Instability of Heavy Tails) Consider
the multi-hop switched queueing network described above
under any scheduling policy. The source queue of every heavy-
tailed flow is delay unstable. Consequently, every heavy-tailed
flow is delay unstable.

Proof: Consider the best case for the source queue of a
heavy-tailed flow, which is that it is served at each time slot.
Then, this queue is a discrete time M/G/1 queue with infinite
variance of service time (here, a customer is equivalent to a
file). The Pollaczek-Khinchin formula [20] implies that this
queue is delay unstable. Then, the BASTA property (e.g., see
Theorem 5 in [15]) implies that the heavy-tailed flow is delay
unstable as well. This argument can be formalized in exactly
the same way as in the proof of Theorem 1 in [15].

Since there is little that can be done regarding the delay
stability of heavy-tailed flows, we turn our attention to light-
tailed traffic. It is well-known that in a multi-hop network with
just light-tailed traffic and under the Back-Pressure policy, all
traffic flows are delay stable [21]. However, the existence of
flow-scheduling constraints couples the evolution of different
queues and flows. Below we show that this coupling may cause
light-tailed flows to become delay unstable, giving rise to a
form of propagation of delay instability.

III. DELAY STABILITY ANALYSIS VIA FLUID MODELS

Before we proceed to the findings of this study, we briefly
present the Fluid Model (FM) of the multi-hop network de-
scribed above. Fluid models of multi-hop networks with fixed
routing under the Back-Pressure policy have been employed
in previous works in order to show stability, e.g., see [3], [11],
[12], [14]. The FM presented below is derived from that in [4],
which studies a Stochastic Processing Network (SPN) under
the Max-Pressure policy. We note that the SPN in [4] is a
quite general model that includes our multi-hop network as a
special case, and which allows for multiple source-destination

paths, as well as a variety of other capabilities beyond the
scope of switched networks. We also state two results, from the
companion paper [16], that relate fluid approximations to delay
stability. We will make frequent use of these results throughout
this paper, since they simplify significantly our delay stability
analysis. An in-depth discussion about the derivation of the
FM equations and the justification of the fluid approximation
(existence of fluid limit, existence and uniqueness of fluid
model solution) can be found in [16].

The FM of the multi-hop network of Section II under the
Back-Pressure policy is a deterministic dynamical system that
aims to capture the evolution of its stochastic counterpart on
longer time scales. Fix T ∈ R+. The FM is defined by the
following relations and differential equations, for every time
t ∈ [0, T ] that the derivatives exist (such t is often called a
regular time):

q̇f,i(t) = −
∑

j:(i,j)∈Lf

ṡf,i,j(t)+
∑

j:(j,i)∈Lf

ṡf,j,i(t)+λf ·1{i=sf},

(4)
qf,i(t) ≥ 0, (5)

sf,i,j(0) = 0 and ṡf,i,j(t) ≥ 0, (6)∑
f :(i,j)∈Lf

ṡf,i,j(t) ≤ 1, (7)

[
∃f ′ : qf ′,i(t)− qf ′,j(t) > 0

]
=⇒

∑
f :(i,j)∈Lf

ṡf,i,j(t) = 1,

(8)[
qf ′,i(t)− qf ′,j(t) < max

f :(i,j)∈Lf

{[
qf,i(t)−qf,j(t)

]+}]
=⇒ ṡf ′,i,j(t) = 0.

(9)

In the equations above i 6= df , qf,i(t) represents the length
of queue (f, i) at time t and sf,i,j(t) represents the amount
of time that link (i, j) ∈ Lf has been serving queue (f, i) up
to time t. Eqs. (8)-(9) are the fluid model equations for the
variant of Back-Pressure (Max-Pressure) that we use in this
paper.

Our convention regarding zero queue lengths in destination
nodes provides a final equation for the description of the FM:

qf,df (t) = 0. (10)

Henceforth, we use the shorthand notation q(t) for the set
of queue lengths

{
qf,i(t); i ∈ Nf , f ∈ F

}
, and s(t) for the

set of scheduling decisions
{
sf,i,j(t); (i, j) ∈ Lf , f ∈ F

}
.

A Lipschitz continuous function
(
q(·), s(·)

)
satisfying Eqs.

(4)-(10), for all t ∈ [0, T ], is called a Fluid Model Solution
(FMS).

The following result illustrates how fluid models can be
used for proving delay instability in the presence of heavy-
tailed traffic.

Theorem 2 (Delay Instability via Fluid Models [16]):
Consider the multi-hop network of Section II under the Back-
Pressure policy, and its FM described above. Let h ∈ F be a
heavy-tailed traffic flow, and q∗(·) be the (necessarily unique)
queue-length part of a FMS from initial condition q∗h,sh(0) = 1
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and zero for every other queue. If there exists τ ∈ [0, T ] such
that q∗f,i(τ) > 0, then queue (f, i) 6= (h, sh) is delay unstable.

Proof: (Outline) Suppose that there exists τ ∈ [0, T ] such
that q∗f,i(τ) > 0. The results of [4] establish the existence of
a fluid limit and, consequently, of a FMS. This, together with
the uniqueness of the queue-length part of a FMS (which is
established in [16]) imply that after a big arrival to queue
(h, sh), queue (f, i) builds to the order of magnitude of the
heavy-tailed queue with high probability. In turn, renewal
theory and Little’s Law provide the desired delay instability
result. For a formal proof the reader is referred to [16].

Finally, the result that follows is helpful in proving de-
lay stability in networks with a mix of heavy-tailed and
exponential-type light-tailed traffic.

Theorem 3 (Delay Stability via Fluid Models [16]):
Consider the multi-hop switched queueing network of Section
II under the Back-Pressure policy, and its FM described above.
Consider also a piecewise linear function V : RF+ → R+ of
the form

V (x) = max
j∈J

{∑
f∈F

cjfxf

}
,

where J = {1, . . . , J} is the set of indices of the dif-
ferent pieces of the function, and where cjf ∈ R, for all
j ∈ J , f ∈ F . Suppose that there exists l > 0 such that,
for every initial condition q(0) and regular time t ≥ 0, the
FMS satisfies V̇ (q(t)) ≤ −l, whenever V (q(t)) > 0. Then,
there exist α, ζ > 0 and b0 ∈ N such that

E
[
V
(
Q(t+ b)

)
− V

(
Q(t)

)
+ bζ; V

(
Q(t)

)
> αb

∣∣ Ft] ≤ 0,

for all b ≥ b0. This implies that the sequence
{
V
(
Q(t)

)
; t ∈

Z+

}
converges in distribution to the random variable V (Q),

where Q is the limiting distribution of Q(t).
Moreover, if cjf > 0, for some j ∈ J , only when f ∈ F is

an exponential-type traffic flow, then there exists θ > 0 such
that E

[
exp

(
θV (Q)

)]
<∞.

Proof: (Outline) The first part of the result is established
by showing that if a continuous and piecewise linear Lyapunov
function can be found for the FM, then the same function is
a Lyapunov function for the stochastic system, if the latter is
sampled once every T time steps, and T is large enough. The
second part is established using results from [7], by showing
that if this Lyapunov function has exponential-type “upward-
jumps,” then its stationary version is also exponential-type,
which, in turn, leads to delay stability. For a formal proof the
reader is referred to [16].

IV. DELAY STABILITY ANALYSIS OF BACK-PRESSURE

We start by analyzing the performance of the Back-Pressure
policy with respect to the delay stability criterion. By means
of simple examples, we investigate the role of the network
topology, the routing constraints, and the arrival rates relative
to link capacities on the delay stability of queues and flows.
Our analysis highlights the importance of links that are al-
lowed to serve the source queues of heavy-tailed flows, which

we call bottleneck links. If h ∈ F is a heavy-tailed traffic
flow, the set of bottleneck links associated with h is defined
as follows:

Bh =
{

(sh, i) : (sh, i) ∈ Lh
}
.

To illustrate the importance of bottleneck links let us
consider the simple system of Figure 1, which includes two
traffic flows, the heavy-tailed flow 1 and the light-tailed flow
2. Both flows arrive exogenously at node 1, their packets get
buffered in the respective queues, eventually get transmitted
through link (1, 0), and exit the network as soon as they reach
node 0. Link (1, 0) is a bottleneck link, since it is allowed
to serve the source queue of flow 1. It is not hard to see
that this model is equivalent to a single-server system of two
parallel queues, where the Back-Pressure policy reduces to
Max-Weight scheduling. Theorem 2 of [15] implies that the
light-tailed flow 2 is delay unstable. The main idea behind
this result is that queue (1, 1) is occasionally very long due to
the heavy-tailed arrivals that it receives exogenously. During
those time periods, flow 1 has very large differential backlog
over link (1, 0), which implies that under the Back-Pressure
policy, queue (2, 1) is deprived of service until it builds up a
comparable backlog.

Fig. 1. A single-server system with two parallel queues, cast as a multi-
hop network. Traffic flow 1 is heavy-tailed and traffic flow 2 is light-tailed.
Since the network has single-hop traffic, the Back-Pressure policy reduces to
Max-Weight scheduling. The findings of [15] imply that the light-tailed flow
is delay unstable.

In general, light-tailed flows experience large delays when-
ever they have to traverse bottleneck links. Consequently, the
delay performance of Back-Pressure depends crucially on the
ability of light-tailed flows to avoid bottlenecks, in static or
dynamic ways. This ability is dictated by a number of “system
parameters,” as we show below.

A. The Role of Network Topology

We start by illustrating the role of network topology in
the delay stability of light-tailed flows. Consider the “line”
network depicted in Figure 2. The heavy-tailed flow 1 arrives
exogenously at node 1, eventually gets transmitted through link
(1, 0), and exits the network as soon as it reaches node 0. The
light-tailed flow 2 arrives exogenously at node 2, eventually
gets transmitted through link (2, 1) first, and through link
(1, 0) next, and exits the network when it reaches node 0.
We are interested in the delay stability of flow 2 under the
Back-Pressure policy.

Proposition 1: Consider the network of Figure 2 under the
Back-Pressure policy. Traffic flow 2 is delay unstable.

Proof: This result is a special case of Theorem 4, which
follows shortly. Here, we sketch the proof for the network



6

Fig. 2. The heavy-tailed flow 1 enters the network at node 1 and exits at
node 0. The light-tailed flow 2 enters the network at node 2, and passing
through node 1, it also exits the network at node 0. Traffic flow 2 is delay
unstable under the Back-Pressure policy because it has to pass through the
bottleneck link (1, 0).

topology of Figure 2. The main idea behind it is that queue
(2, 1) becomes very long, occasionally, because it competes
with the heavy-tailed queue (1, 1) for link (1, 0). During those
occasions, there are no transmission from queue (2, 2) to
queue (2, 1) under the Back-Pressure policy, unless queue
(2, 2) builds up to the order of magnitude of the heavy-tailed
queue. This leads to the delay instability of both queues (2, 1)
and (2, 2), and as a result of flow 2 as well.

The reason that traffic flow 2 is delay unstable is the
topology of the network, and more specifically the fact that the
only source-destination path of flow 2 includes a bottleneck
link. We will see shortly that this condition leads to delay
instability more generally.

B. The Role of Routing Constraints

We continue with the role of routing constraints. Consider
the network of Figure 3: the heavy-tailed flow 1 arrives exoge-
nously at node 1, and may reach its destination node 0 through
the path

(
(1, 2), (2, 0)

)
or through the path

(
(1, 3), (3, 0)

)
. The

same applies to the light-tailed flow 2. In other words, both
flows have dynamic routing. We are interested in the delay
stability of flow 2 under the Back-Pressure policy.

Fig. 3. Both the heavy-tailed flow 1 and the light-tailed flow 2 enter the
network at node 1 and exit at node 0. They are both allowed to access all
links of the network. Traffic flow 2 is delay unstable under the Back-Pressure
policy because it has to pass through, either link (1, 2) or link (1, 3), which
are both bottleneck links.

Proposition 2: Consider the network of Figure 3 under the
Back-Pressure policy. Traffic flow 2 is delay unstable.

Proof: This result is another special case of Theorem 4,
so here we only sketch the proof for the network topology of
Figure 3. The main idea behind it is that whenever the heavy-
tailed queue (1, 1) receives exogenously a very large batch
of packets, it creates simultaneously a very large differential
backlog over links (1, 2) and (1, 3). Thus, under the Back-
Pressure policy queue (2, 1) will be denied access to both of
those links, unless it builds up to a similar length.

The reason that traffic flow 2 is delay unstable in Figure 3
lies in the routing constraints of the heavy-tailed flow 1, or,
more accurately, the lack of constraints. By not restricting the
links that flow 1 is allowed to access, both links (1, 2) and
(1, 3) become bottleneck links. In turn, all feasible source-
destination paths of flow 2 pass through bottleneck links.

Similar conclusions can be reached if we force both flows 1
and 2 to follow the same fixed route to their destination node.

The insights derived from the simple examples of Figures
1-3 can be unified in a general result. We say that traffic flow
f ∈ F has to pass through a set of links L′ ⊂ L, if every
packet arriving at queue (f, sf ) must traverse one of the links
in L′ in order to reach df .

Clearly, whether a traffic flow has to pass through a given set
of links or not depends on the network topology, the routing
constraints, and the routing policy applied.

Theorem 4: Consider the multi-hop switched queueing
network of Section II under the Back-Pressure policy. Let
f ∈ F be a light-tailed traffic flow. If there exists a heavy-
tailed flow h ∈ F such that f has to pass through the set of
bottleneck links Bh, then f is delay unstable.

Proof: The proof of this result is based on Theorem 2, i.e.,
we study the evolution of the fluid model of the network from
initial condition qh,sh(0) = 1 and zero for all other queues.

At time zero, the differential backlog of flow h over every
link in Bh is 1, while the differential backlog of flow f over
any of those links is zero. Moreover, the differential backlog
of flow h can decrease at rate no more than 2

∣∣Bh∣∣ (since the
capacity of all links is equal to one), while the differential
backlog of flow f can increase at rate no more than λf . So,
there exists τ > 0 such that

qh,i(t)− qh,j(t) > qf,i(t)− qf,j(t),

for all t ∈ [0, τ ], for all (i, j) ∈ Bh. Eq. (7) implies that flow
f receives none of the available capacity of links in Bh during
[0, τ ] under the Back-Pressure policy. Therefore, the traffic of
flow f that arrives exogenously at queue (f, sf ) cannot move
past queue (f, sh) during the interval [0, τ ].

Now it is useful to view the total traffic of flow f between
the source node sf and the bottleneck node sh (the source
node of flow h) as one fictitious queue, whose length at time
t is denoted by q̃f (t). The argument above implies that this
queue has arrivals at rate λf > 0 and no departures during
the interval [0, τ ]. Hence, q̃f (τ) = λfτ > 0, so according
to Theorem 2 the fictitious queue is delay unstable. This
also implies the delay instability of flow f , since the delay
experienced in the fictitious queue bounds from below the end-
to-end delay, sample path-wise.



7

C. The Role of Link Capacities

In this section we illustrate the impact of link capacities,
relative to the arrival rates, on the delay stability of light-tailed
flows. Let us consider a variation of the network of Figure 3,
where the heavy-tailed flow 1 has to reach node 0 through the
path

(
(1, 2), (2, 0)

)
, whereas the light-tailed flow 2 can access

all links.
Let us first look at the case where λ1, λ2 < 1. The

importance of this assumption lies in the fact that, with high
probability, it allows flow 2 to route all its traffic through the
path

(
(1, 3), (3, 0)

)
whenever the path of the heavy-tailed flow

is congested.

Proposition 3: Consider the network of Figure 3 under the
Back-Pressure policy, where flow 1 has fixed routing, along
the path

(
(1, 2), (2, 0)

)
, and flow 2 has dynamic routing. If

the arrival rates satisfy λ1, λ2 < 1, then traffic flow 2 is delay
stable.

Proof: Without loss of generality, we assume that all
queues are empty at time slot zero. First, notice that no more
than one packet per time slot arrives at nodes 2 and 3 because
that is the capacity of links (1, 2) and (1, 3). Moreover, traffic
departs from each of these nodes at rate of one packet per time
slot, as long as there are packets waiting for transmission. This
is due to the fact that both flows exit the network at node 0,
so whenever packets are available, there is positive differential
backlog over links (2, 0) and (3, 0). Therefore, it can be easily
verified that

Q2,i(t) ≤ 1, ∀t ∈ Z+, ∀i ∈ {2, 3}.

Furthermore, Lemma 1 implies that the queue-length pro-
cesses

{
Q2,2(t); t ∈ Z+

}
and

{
Q2,3(t); t ∈ Z+

}
converge to

some limiting distributions Q2,2 and Q2,3, respectively. Hence,

E
[
Q2,i

]
≤ 1, ∀i ∈ {2, 3}.

Little’s Law implies that both queues (2, 2) and (2, 3) are
delay stable. In order to show that flow 2 is delay stable, it
suffices to show that queue (2, 1) is delay stable as well.

Link (1, 3) is allowed to transmit only packets of flow 2,
and, as we showed above, the length of queue (2, 3) is never
more than one packet. Hence, under the Back-Pressure policy,

Q2,1(t) > 1 =⇒ S2,1,3(t) = 1, ∀t ∈ Z+.

Consider the candidate Lyapunov function V (t) = Q2
2,1(t).

Through simple algebra, it can be verified that

E
[
V (t+ 1)− V (t); V (t) > 1

∣∣ Ft]
≤− 2E

[(
S2,1,2(t) + S2,1,3(t)−A2(t)

)
Q2,1(t);V (t) > 1 | Ft

]
+ E

[(
A2(t) + 2

)2
; V (t) > 1

∣∣∣ Ft]
≤− 2E

[(
S2,1,3(t)−A2(t)

)
Q2,1(t); V (t) > 1

∣∣ Ft]
+ E

[(
A2(t) + 2

)2
; V (t) > 1

∣∣∣ Ft]
=
(
− 2
(
1− λ2

)
Q2,1(t) + E

[(
A2(0) + 2

)2]) · 1{Q2,1(t)>1}.(
We recall that Ft is the σ-algebra generated by
Q(0), A(0), . . . , Q(t− 1), A(t− 1), Q(t).

)

Notice that λ2 < 1, E
[
A2

2(0)
]
<∞, and

{
Q2,1(t) ≤ 1

}
is

a finite set. Then, the Foster-Lyapunov stability criterion and
moment bound (e.g., see Corollary 2.1.5 of [8]) implies that
E[Q2,1] < ∞. Thus, all queues of flow 2 are delay stable,
implying that traffic flow 2 is delay stable.

Now let us consider the case where λ2 > 1. It is intuitively
clear that irrespective of the specific routing decisions made
at each time slot, a nonvanishing fraction of the traffic of flow
2 has to pass through the bottleneck link (1, 2). This fraction
of the traffic experiences large delays under the Back-Pressure
policy, which implies that the delays of flow 2 are, on average,
large as well.

Proposition 4: Consider the network of Figure 3 under the
Back-Pressure policy, where flow 1 has fixed routing, along
the path

(
(1, 2), (2, 0)

)
, and flow 2 has dynamic routing. If

λ2 > 1 then traffic flow 2 is delay unstable.
Proof: We will make use of Theorem 2, i.e., we will

consider the FM of the network of Figure 3, with initial
conditions q1,1(0) = 1 and zero for all other queues. Eq. (7)
implies the existence of τ > 0, such that ṡ2,1,2(t) = 0 for all
t ∈ [0, τ ]. In turn, Eqs. (4) and (6) imply that

q̇2,1(t) = λ2 − 1 > 0, ∀t ∈ [0, τ ].

Therefore, q2,1(τ) > 0, which implies that queue (2, 1) is
delay unstable according to Theorem 2. Consequently, flow 2
is delay unstable since its end-to-end delay is bounded from
below by the delay experienced in its source queue.

D. The Impact of Heavy Tails on Cross-Traffic

Consider the multi-hop network of Figure 4, which includes
three traffic flows: the heavy-tailed flow 1, and the light-tailed
flows 2 and 3. The source of flow 1 is node 2, whereas the
source of flows 2 and 3 is node 1. The destination of flows 1
and 2 is node 3, whereas the destination of flow 3 is node 4.

Fig. 4. The heavy-tailed flow 1 enters the network at node 2 and exits at
node 3. The light-tailed flow 2 enters the network at node 1 and exits at node
3. The light-tailed flow 3 enters the network at node 1 and exits at node 4.
Traffic flow 3 is delay unstable under the Back-Pressure policy if its arrival
rate is sufficiently high.

Clearly, traffic flow 2 is delay unstable because it has to pass
through the bottleneck link (2, 3). So, the remaining question
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concerns the delay stability of flow 3, which serves as cross-
traffic to flow 2. The following results establish that flow 3
has a nontrivial delay stability region, and provide a sharp
characterization of it.

Proposition 5: Consider the network of Figure 4 under the
Back-Pressure policy. If λ3 >

(
2 + λ1 − 2λ2

)
/3, then traffic

flow 3 is delay unstable.
Proof: (Outline) The proof of this result is based on

Theorem 2, i.e., we study the evolution of the fluid model
of the network of Figure 4, from initial condition q1,2(0) = 1
and zero for all other queues. We show that there exists τ > 0
such that q3,1(τ) > 0, which implies the delay instability of
the source queue of flow 3 and, thus, the delay instability of
flow 3 itself. A detailed proof can be found in Appendix I.

Proposition 6: Consider the network of Figure 4 under the
Back-Pressure policy. If λ3 <

(
2 + λ1 − 2λ2

)
/3 and flows 2

and 3 are exponential-type, then traffic flow 3 is delay stable.
Proof: (Outline) The proof of this result relies on Theo-

rem 3, i.e., we show that the function:

H
(
q(t)

)
= V

(
q(t)

)
+G

(
q(t)

)
,

where

V
(
q(t)

)
= max

{[
q3,1(t)− q3,2(t)

]+
,
[
q2,1(t)− q2,2(t)

]+}
= max

{
q3,1(t),

[
q2,1(t)− q2,2(t)

]+}
,

and
G
(
q(t)

)
=
[
q2,2(t)− q1,2(t)

]+
,

is a Lyapunov function for the FM of the network of Fig-
ure 4. Note that this function is also continuous, piece-
wise linear, and has exponential-type “upward-jumps” in the
stochastic domain, because flows 2 and 3 are assumed to be
exponential-type. Thus, the steady-state length of queue (3, 1)
is exponential-type and, consequently, flow 3 is delay stable.
A detailed proof can be found in Appendix II.

The above example illustrates that under the Back-Pressure
policy, heavy-tailed flows may affect light-tailed flows directly,
if the latter have to pass through bottleneck links, or indirectly,
if they serve as cross-traffic to other light-tailed flows that have
become delay unstable.

E. The Role of Intersecting Paths

Finally, consider the network of Figure 5: the heavy-tailed
flow 1 enters the network at node 1 and exits the network
as soon as it reaches node 5. Flow 1 is allowed to access all
links, so packets can get to node 4 either through the path(
(1, 2), (2, 4)

)
or through the path

(
(1, 3), (3, 4)

)
. After they

reach node 4, though, they have to pass through link (4, 5) in
order to reach their destination. In that sense, the two paths
of flow 1 intersect.

Theorem 1 implies that queue (1, 1) is delay unstable but
provides no information regarding the other queues of flow
1, namely queues (1, 2), (1, 3), and (1, 4). Since all links
have finite capacities, the endogenous arrivals to those queues
are, by definition, light-tailed. So, one might argue that these

Fig. 5. The heavy-tailed flow 1 enters the network at node 1 and exits the
network after it gets transmitted from node 4. Flow 1 is allowed to access
all links in the network. Queues (1, 2), (1, 3), and (1, 4) are delay unstable
under the Back-Pressure policy because the two alternative paths of flow 1
intersect.

queues are delay stable. Somewhat surprisingly, we show
that these queues are also delay unstable. This is due to the
dynamics induced by the Back-Pressure policy, and the fact
that multiple paths intersect. In particular, the queue at node
4 builds up, and this effect propagates backwards to cause the
buildup of queues 2 and 3.

Proposition 7: Consider the network of Figure 5 under the
Back-Pressure policy. All queues are delay unstable.

Proof: Again, we make use of Theorem 2 to simplify
the proof of this result. More specifically, we consider the
fluid model of the network of Figure 5 from initial condition
q1,1(0) = 1 and zero for all other queues. Since queues (1, 2)
and (1, 3) cannot grow at rate higher than one (the capacity
of the respective links), there exists τ > 0 such that q1,1(t) >
q1,2(t) and q1,1(t) > q1,3(t), for all t ∈ [0, τ ]. Eqs. (6) and
(7) imply that

ṡ1,1,2(t) = ṡ1,1,3(t) = 1, ∀t ∈ [0, τ ].

On the other hand, ṡ1,4,5(t) = 1, for all t ∈ [0, τ ], so it
is clear that on aggregate traffic is accumulating at rate one
between queues (1, 2), (1, 3) and (1, 4) during that interval. As
a consequence of Eq. (7), it follows that traffic does not flow
from node 2 (or 3) to 4 when the queue length at node 2 (or
3) exceeds that of node 4. As a result, the three queues grow
at the same rate, i.e., q̇1,2(t) = q̇1,3(t) = q̇1,4(t) = 1/3, for
all t ∈ [0, τ ]. Therefore, q1,2(τ) = q1,3(τ) = q1,4(τ) = τ/3,
so all three queues are delay unstable according to Theorem
2.

In contrast, if node 4 was the destination node of flow 1,
then it is easy to show that queues (1, 2) and (1, 3) would have
been delay stable. Thus, it is precisely the intersection of paths,
combined with the dynamics imposed by Back-Pressure, that
causes the delay instability.

Theorem 1 states that the traffic of heavy-tailed flows
experiences large end-to-end delays overall, and definitely at
the source queues. Whether these large delays are experienced
only at the source queues, or at several other queues as
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well, is not as important from a practical standpoint. What is
important, though, is the case of intersecting paths in networks
with multiple flows. There, the delay unstable queues that are
created by the intersecting paths may cause cross-traffic light-
tailed flows to be delay unstable, similarly to the network of
Figure 4. We conjecture that, again, the delay stability of cross-
traffic flows depends on the exact values of the arrival rates.

V. THE BACK-PRESSURE-α POLICY

The results and discussion presented above suggest that the
Back-Pressure policy may perform poorly in the presence of
heavy-tailed traffic. The reason is that by treating heavy-tailed
and light-tailed flows “equally,” there are long stretches of
time during which the source queues of heavy-tailed flows
dominate the service. This creates bottleneck links, which, in
turn, may affect the delay stability of light-tailed flows directly
or indirectly.

Intuitively, by discriminating against heavy-tailed flows,
one should be able to eliminate bottlenecks and improve
the overall performance of the network. One way to do this
would be by giving preemptive priority to light-tailed flows.
However, priority policies are undesirable because of fairness
considerations, and also because they can be unstable in many
network settings [10].

Motivated by the Max-Weight-α scheduling policy, studied
in [15] in the context of single-hop networks, here we consider
the Back-Pressure-α policy: instead of comparing the differen-
tial backlogs of the various flows, we compare the differential
backlogs raised to different α-powers, smaller for heavy-tailed
flows and larger for light-tailed flows. In that way we give
partial priority to light-tailed flows.

More concretely, fix αf > 0, for every traffic flow f ∈ F .
Under the Back-Pressure-α policy, S(t) is a feasible schedul-
ing vector that maximizes the aggregate α-weighted Back-
Pressure in the network, i.e.,

S(t) ∈ arg max
∑
f∈F

∑
(i,j)∈Lf

(
Q
αf

f,i(t)−Q
αf

f,j(t)
)
Sf,i,j(t).

If the solution is not unique, then each of the maximizing
scheduling vectors is chosen with equal probability.

Before we state our main result regarding the Back-
Pressure-α policy, we make an additional assumption: the set
of links that flow f is allowed to access, Lf , together with
the associated nodes form a Directed Acyclic Graph (DAG) in
which nodes sf and df are the only source and sink nodes,
respectively. While most of the proof of Theorem 5 goes
through without it, the DAG assumption is required in the
derivation of Eq. (23), which helps translate the admissibility
of the arrivals into negative drift of the considered Lyapunov
function.

Theorem 5: Consider the multi-hop switched queueing
network of Section II with the additional DAG assumption,
under the Back-Pressure-α policy. If E

[
A
αf+1
f (0)

]
is finite,

for all f ∈ F , then the network is stable and∑
f∈F

∑
i∈Nf

E
[
Q
αf

f,i

]
<∞.

Proof: See Appendix III.

Corollary 1: (Delay Stability under Back-Pressure-α)
Consider the multi-hop network of Section II with the addi-
tional DAG assumption, under the Back-Pressure-α policy. If
the α-parameters of all light-tailed flows are equal to one, and
the α-parameters of heavy-tailed flows are sufficiently small,
then all light-tailed flows are delay stable.

Proof: We recall our standing assumption that all traffic
flows have (1 + γ) moments, for some γ > 0. If the α-
parameters of all light-tailed flows are equal to one, and the α-
parameters of heavy-tailed flows are less then γ, then Theorem
5 and Little’s Law imply that every queue of every light-tailed
flow is delay stable. The linearity of expectations implies the
delay stability of all light-tailed flows.

Combining Corollary 1 with Theorem 1, we conclude that
the Back-Pressure-α policy achieves the best possible perfor-
mance with respect to the delay stability criterion, provided
the α-parameters are suitably chosen.

A special case of the Back-Pressure-α policy has been
considered by Bui et al. [2], where all α-parameters take the
same value. We note that their setting includes just light-
tailed traffic and, additionally, the existence of congestion
controllers. Thus, the insight that smaller parameter values
should be used for heavy-tailed flows, so that light-tailed flows
are given some form of priority, does not arise in their setting.

VI. RELATIONSHIP TO PRIOR WORK

The present paper naturally builds upon and extends previ-
ous works that have analyzed single-hop networks with heavy-
tailed traffic under Max-Weight-type policies [9], [15]. As a
consequence, certain similarities with existing literature can be
found at the technical level, e.g., sample path arguments are
used to prove delay instability under Max-Weight and Back-
Pressure; drift analysis of α-weighted Lyapunov functions
is used to prove delay stability under Max-Weight-α and
Back-Pressure-α. Moreover, some parallels can be drawn in
terms of high-level insights, e.g., a light-tailed flow passing
through a bottleneck link resembles, to some extent, the notion
of conflict between heavy-tailed and light-tailed flows, cf.
Theorem 2 of [15]; the fact that light-tailed flows must be
given some form of priority over heavy-tailed traffic is the
main reason that both the Back-Pressure-α policy and the
Max-Weight-α policy perform well. However, the concrete
insights that we derived regarding the impact of network
topology, routing constraints, and link capacities on the delay
performance of Back-Pressure policies, and the corresponding
“network design guidelines,” are meaningful only in a multi-
hop setting and, thus, novel compared to prior work on single-
hop networks.

In terms of methodology, by employing the advanced ma-
chinery of fluid approximations for delay stability analysis
developed in the companion paper [16], we are able to
obtain results that would have been difficult to prove through
the direct stochastic analysis adopted in prior works, e.g.,
Propositions 5 and 6. Moreover, the drift analysis of piecewise
linear Lyapunov functions, such as the one we introduce in the
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proof of Proposition 6, provides a systematic way for the delay
analysis of the Back-Pressure policy in networks with a mix
of heavy-tailed and exponential-type traffic.

In this work we have attempted to illustrate the behavior
of multi-hop networks with heavy-tailed traffic under Back-
Pressure policies in the clearest and most concrete way.
Thus, we focused on phenomena and insights whose origin is
precisely the multi-hop nature of the network and the corre-
sponding flow-scheduling constraints. We believe the behavior
of more complex network models that include a combination
of flow-scheduling and link-scheduling constraints, can be
understood in terms of the insights derived here as well as
in previous papers. For example, Theorem 2 of [15] implies
that if a link conflicts with a bottleneck link, then it becomes
a bottleneck link itself. As another example, we expect that
the Back-Pressure-α policy performs well even in multi-hop
networks with link-scheduling constraints, at least for arrival
rates that can be stably supported by these networks.

VII. CONCLUSION

The main objective of this paper was to obtain insights
on the delay performance of multi-hop networks with heavy-
tailed traffic under the widely studied class of Back-Pressure
policies. Our analysis highlighted the significance of “bottle-
neck links,” i.e., links that are allowed to serve the source
queues of heavy-tailed traffic flows. The fundamental insight
was that traffic flows that have to pass through bottleneck
links experience large delays under Back-Pressure. We then
investigated reasons that may force a light-tailed flow to pass
through a bottleneck link, identifying the following: (i) the
network topology, i.e., the source-destination paths that the
network offers to the given flow; (ii) the routing constraints,
i.e., the a priori decisions regarding which links the particular
flow is allowed to traverse; (iii) the link capacities relative to
the arrival rates, i.e., whether the combined capacity of non-
bottleneck paths is sufficient to support the arrival rate of the
flow.

These insights can be interpreted as rough “network design
guidelines.” For example, in a multi-hop network under the
Back-Pressure policy, heavy-tailed flows should be relatively
constrained in terms of the links that they are allowed to
access, whereas the network should provide multiple source-
destination paths to light-tailed flows; the latter flows should
be left unconstrained to dynamically find their way around
heavy-tailed traffic. Moreover, these alternate paths should
have enough capacity to support the rates of light-tailed traffic.
In contrast, leaving heavy-tailed flows unconstrained while
forcing light-tailed flows to compete with them could be
detrimental to the overall delay performance of the network.

An alternative way to achieve good delay performance in
a multi-hop network with heavy-tailed traffic is through the
parameterized Back-Pressure-α policy. We showed that this
policy can delay stabilize all light-tailed flows in the network,
provided that its α-parameters are chosen suitably. In order to
pick appropriate parameter values, though, some knowledge of
higher order moments of the different traffic flows is required.

The results of this paper were consistently presented in
terms of delay stability, a rather crude performance metric
that attempts to capture the notion of large delays in a binary
manner. However, many of them can be significantly refined.
For instance, if we generalize the notion of a heavy-tailed
flow to be one that has infinite (k + 1)st moment of arrivals,
for some k ∈ N, then any light-tailed flow that has to pass
through the bottleneck links of a heavy-tailed flow has infinite
kth moment of steady-state aggregate queue length under
the Back-Pressure policy; this can be established through a
straightforward extension of Theorem 2. Under certain regu-
larity assumptions, this approach could also give lower bounds
on queue length asymptotics. Moreover, regarding networks
with a mix of heavy-tailed and exponential-type traffic, delay
stability can be proved via drift analysis of piecewise linear
Lyapunov functions. As Theorem 3 suggests, this type of
analysis guarantees not only the delay stability of light-tailed
flows, but also exponential upper bounds on the respective
steady-state queue-length asymptotics; see Theorem 2.3 in [7].

Finally, while strictly speaking the existence of heavy-tailed
traffic, i.e., arrival processes with infinite variance, could be
a subject of debate, our results can be directly interpreted
in the context of a network with a mix of bursty and non-
bursty traffic, a setting that is prevalent in data communication
networks.

APPENDIX I - PROOF OF PROPOSITION 5

The proof of this result is based on Theorem 2, i.e., we
study the evolution of the fluid model of the network of Figure
4, from initial condition q1,2(0) = 1 and zero for all other
queues. We distinguish between two phases in the evolution
of the (fluid) system.

In the first phase, the length of queue (1, 2) is greater than
the length of queue (2, 2) due to the initial conditions, so Eq.
(7) implies that the service capacity of link (2, 3) is allocated
solely to flow 1. Moreover, link (2, 4) transmits only traffic
of flow 3, which results in queue (3, 2) being always empty.
Eq. (7) implies that Back-Pressure splits the service capacity
of link (1, 2) in such a way, so that the differential backlogs
of flows 2 and 3 over that link remain the same, i.e., zero.
Consequently, queues (2, 1) and (2, 2) build up together and
at a constant rate throughout this phase. In mathematical terms,
Eq. (4) implies that q̇1,2(t) < 0 whereas q̇2,2 = q̇2,1(t) > 0.
Therefore, there exists τ ′ > 0 such that q1,2(τ ′) = q2,2(τ ′) =
q2,1(τ ′) > 0.

In the second phase, the differential backlog of flows 1 and
2 over link (2, 3) is the same, so Eq. (7) implies that this
link serves from both flows simultaneously until one of the
two queues empties. Throughout this interval, the arrival and
service rates need to satisfy the following linear system:(
λ2− ṡ2,1,2(t)

)
−
(
ṡ2,1,2(t)− ṡ2,2,3(t)

)
= λ3− ṡ3,1,2(t), (11)

λ1 − ṡ1,2,3(t) = ṡ2,1,2(t)− ṡ2,2,3(t), (12)

ṡ2,1,2(t) + ṡ3,1,2(t) = 1, (13)

ṡ1,2,3(t) + ṡ2,2,3(t) = 1. (14)
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Eq. (11) follows from Eq. (7), and is due to the fact that the
Back-Pressure policy tries to keep the differential backlogs of
flows 2 and 3 over link (1, 2) the same. We note that queue
(3, 2) remains zero throughout both phases, so that the rate
of change of its length is also zero. Eq. (12) follows from a
similar argument for link (2, 3). Eqs. (13) and (14) result from
Eq. (6).

The above equations and some simple algebra imply that

ṡ3,1,2(t) =
2 + λ1 − 2λ2 + 2λ3

5
.

Therefore,

λ3 > ṡ3,1,2(t) ⇐⇒ λ3 >
2 + λ1 − 2λ2

3
.

Finally, notice that the duration of the second phase is
bounded away from zero, since the queue lengths q1,2(τ ′)
and q2,2(τ ′) are also bounded away from zero. Therefore, if
λ3 >

(
2 + λ1 − 2λ2

)
/3, then there exists τ > τ ′ such that

q̇3,1(t) > 0, for all t ∈ [τ ′, τ ], because of Eq. (4). Therefore,
q3,1(τ) > 0, which implies that queue (3, 1) is delay unstable
according to Theorem 2. Flow 3 is, thus, delay unstable since
the delay experienced in the source queue bounds from below
the end-to-end delay.

APPENDIX II - PROOF OF PROPOSITION 6

Consider the candidate Lyapunov function for the FM:

H
(
q(t)

)
= V

(
q(t)

)
+G

(
q(t)

)
,

where G
(
q(t)

)
=
[
q2,2(t)− q1,2(t)

]+
and

V
(
q(t)

)
= max

{[
q3,1(t)− q3,2(t)

]+
,
[
q2,1(t)− q2,2(t)

]+}
= max

{
q3,1(t),

[
q2,1(t)− q2,2(t)

]+}
.

Note that this function is continuous, piecewise linear,
and has exponential-type “upward-jumps” in the stochastic
domain, because flows 2 and 3 are assumed to be exponential-
type. Thus, by means of Theorem 3, it suffices to show that
H(·) is, indeed, a Lyapunov function for the FM.

Our proof strategy is as follows. First, we distinguish cases
regarding the derivatives of the two terms of H(·): cases (a),
(b), and (c) pertaining to term V (·), cases (1), (2), and (3)
pertaining to term G(·). Then, we combine these cases to
compute the derivative of H(·) in the different regions of the
state space.

Case (a): if q3,1(t) >
[
q2,1(t)− q2,2(t)

]+
then V

(
q(t)

)
=

q3,1(t) > 0, which implies that

V̇
(
q(t)

)
= λ3 − 1 < 0;

Case (b): if q3,1(t) <
[
q2,1(t)− q2,2(t)

]+
then V

(
q(t)

)
=

q2,1(t)− q2,2(t) > 0, which implies that

V̇
(
q(t)

)
= (λ2−1)−

(
1− ṡ2,2,3(t)

)
= λ2 + ṡ2,2,3(t)−2 < 0;

Case (c): if q3,1(t) =
[
q2,1(t) − q2,2(t)

]+
then V

(
q(t)

)
=

q3,1(t) = q2,1(t)− q2,2(t), which implies that

V̇
(
q(t)

)
= λ3 − ṡ3,1,2(t)

=
(
λ2 − ṡ2,1,2(t)

)
−
(
ṡ2,1,2(t)− ṡ2,2,3(t)

)
,

where the service rates satisfy Eq. (11);
Case (1): if q2,2(t) > q1,2(t) then G

(
q(t)

)
= q2,2(t) −

q1,2(t) > 0, which implies that

Ġ
(
q(t)

)
= ṡ2,1,2(t)− 1− λ1 < 0;

Case (2): if q2,2(t) < q1,2(t) then G
(
q(t)

)
= 0, and also

Ġ
(
q(t)

)
= 0;

Case (3): if q2,2(t) = q1,2(t) then G
(
q(t)

)
= 0, but now

Ġ
(
q(t)

)
=
(
ṡ2,1,2(t)− ṡ2,2,3(t)

)
−
(
λ1 − ṡ1,2,3(t)

)
= 0,

according to Eq. (12)

Now, in order to show that H(·) is a Lyapunov function
for the FM, we have to show that its derivative is negative
and bounded away from zero in all nine regions of the state
space, whenever H(·) is greater than zero. We note that the
stability conditions in this example translate to λ1 + λ2 < 1
and λ2 + λ3 < 1.

Region (a,1):

Ġ
(
q(t)

)
= λ3 − 1 + ṡ2,1,2(t)− 1− λ1 = λ3 − λ1 − 2 < 0;

Region (a,2): Ġ
(
q(t)

)
= λ3 − 1 < 0;

Region (a,3): Ġ
(
q(t)

)
= λ3 − 1 < 0;

Region (b,1):

Ġ
(
q(t)

)
= λ2 + ṡ2,2,3(t)− 2 + ṡ2,1,2(t)− 1− λ1 < 0;

Region (b,2): Ġ
(
q(t)

)
= λ2 + ṡ2,2,3(t)− 2 < 0;

Region (b,3): Ġ
(
q(t)

)
= λ2 + ṡ2,2,3(t)− 2 < 0;

Region (c,1): Ġ
(
q(t)

)
= λ2 − λ1 − ṡ2,1,2(t).

We note that in this region we have that q3,1(t) =
[
q2,1(t)−

q2,2(t)
]+

> 0. Thus, ṡ2,1,2(t) satisfies Eqs. (11) and (13)
with ṡ2,2,3(t) = 1. The solution to this linear system gives
ṡ2,1,2(t) = (2 + λ2 − λ3)/3, which implies that

Ġ
(
q(t)

)
= λ2 − λ1 −

2 + λ2 − λ3
3

=
−2− 3λ1 + 2λ2 + λ3

3
< 0;

Region (c,2): Ġ
(
q(t)

)
= λ2 − 2ṡ2,1,2(t).

Here, we have to assume that q3,1(t) =
[
q2,1(t) −

q2,2(t)
]+

> 0, otherwise H(·) would have zero value. Thus,
ṡ2,1,2(t) satisfies Eqs. (11) and (13) with ṡ2,2,3(t) = 0. The
solution to this linear system gives ṡ2,1,2(t) = (1+λ2−λ3)/3,
which implies that

Ġ
(
q(t)

)
= λ2 −

2 + 2λ2 − 2λ3
3

=
−2 + λ2 + 2λ3

3
< 0;
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Region (c,3): Ġ
(
q(t)

)
= λ3 − ṡ3,1,2(t).

Similarly to the previous case, we have to assume that
q3,1(t) =

[
q2,1(t) − q2,2(t)

]+
> 0, otherwise H(·) would

have zero value. Thus, ṡ3,1,2(t) satisfies Eqs. (11)-(14). The
solution to this linear system, as we saw in Proposition 6,
gives ṡ3,1,2(t) = (2 + λ1 − 2λ2 + 2λ3)/5, which implies that

Ġ
(
q(t)

)
< 0,

precisely when λ3 < (2 + λ1 − 2λ2)/3.

APPENDIX III - PROOF OF THEOREM 5

Under the dynamics induced by the Back-Pressure-α policy
the sequence

{
Q(t); t ∈ Z+

}
is a time-homogeneous,

irreducible, and aperiodic Markov chain on a countable state
space. We will show that this Markov chain is also positive
recurrent, and we will obtain moment bounds on the steady-
state queue lengths, through drift analysis of the candidate
Lyapunov function

V
(
Q(t)

)
=
∑
f∈F

∑
i∈Nf

1

αf + 1
Q
αf+1
f,i (t).

Throughout the proof we use the shorthand notation

Tf,i(t) =
∑

j:(i,j)∈Lf

Sf,i,j(t)

for the departures from queue (f, i), and

Rf,i(t) =
∑

j:(j,i)∈Lf

Sf,j,i(t) +Af (t) · 1{i=sf}

for the arrivals at queue (f, i), at time slot t.
Moreover, we let

Vf,i
(
Q(t)

)
=

1

αf + 1
Q
αf+1
f,i (t).

The Lyapunov function can be written in the form

V
(
Q(t)

)
=
∑
f∈F

∑
i∈Nf

Vf,i
(
Q(t)

)
,

which implies that

E
[
V
(
Q(t+ 1)

)
− V

(
Q(t)

) ∣∣ Ft]
=
∑
f∈F

∑
i∈Nf

E
[
Vf,i
(
Q(t+ 1)

)
− Vf,i

(
Q(t)

) ∣∣ Ft]. (15)

We will perform the drift analysis of function V (·) by upper-
bounding the terms on the right-hand side of Eq. (15).

Using the notation above and the dynamics of the multi-hop
network, we have that

E
[
Vf,i
(
Q(t+ 1)

) ∣∣ Ft] =
1

αf + 1

(
Qf,i(t) + ∆f,i(t)

)αf+1
,

(16)
where ∆f,i(t) = Rf,i(t) − Tf,i(t). Now we distinguish
between three cases:

(i) if i = df then Eq. (3) implies that

E
[
Vf,df

(
Q(t+ 1)

)
− Vf,df

(
Q(t)

) ∣∣ Ft] = 0; (17)

(ii) if i 6= df and αf < 1, then we consider the zeroth order
Taylor expansion of the right-hand side of Eq. (16) around
Qf,i(t):

1

αf + 1

(
Qf,i(t)+∆f,i(t)

)αf+1

=
1

αf + 1
Q
αf+1
f,i (t) + ∆f,i(t) · ξαf ,

which implies that

E
[
Vf,i
(
Q(t+ 1)

) ∣∣ Ft] ≤ Vf,i(Q(t)
)

+E
[
∆f,i(t) · ξαf

∣∣ Ft],
for some ξ ∈

[
Qf,i(t)− Tf,i(t), Qf,i(t) +Rf,i(t)

]
.

Consider the event Γf,i(t) =
{

∆f,i(t) ≤ 0
}

and its
complement. The expression above can be written in the form

E
[
Vf,i
(
Q(t+ 1)

) ∣∣ Ft]
≤Vf,i

(
Q(t)

)
+ E

[
∆f,i(t)

(
Qf,i(t)− Tf,i(t)

)αf ; Γf,i(t)
∣∣∣ Ft]

+ E
[
∆f,i(t)

(
Qf,i(t) +Rf,i(t)

)αf ; Γcf,i(t)
∣∣∣ Ft].

Note that Qf,i(t), Rf,i(t), and Tf,i(t) are nonnegative
integers, Tf,i(t) ≤ Qf,i(t), and Tf,i(t) ≤ dmax, where dmax

is the maximum number of outgoing edges of any node in G.
It can be verified that(

Qf,i(t) +Rf,i(t)
)αf ≤ Qαf

f,i(t) +R
αf

f,i(t),

and (
Qf,i(t)− Tf,i(t)

)αf ≥ Qαf

f,i(t)− d
αf
max.

Using these inequalities we can write

E
[
Vf,i
(
Q(t+ 1)

) ∣∣ Ft]
≤Vf,i

(
Q(t)

)
+ E

[
∆f,i(t)

∣∣ Ft] ·Qαf

f,i(t)

− E
[
∆f,i(t) · T

αf

f,i (t); Γf,i(t)
∣∣∣ Ft]

+ E
[
∆f,i(t) ·R

αf

f,i(t); Γcf,i(t)
∣∣∣ Ft],

which implies that

E
[
Vf,i
(
Q(t+ 1)

) ∣∣ Ft]
≤Vf,i

(
Q(t)

)
+ E

[
∆f,i(t)

∣∣ Ft] ·Qαf

f,i(t) + d
αf+1
max

+ E
[
R
αf+1
f,i (t); Γcf,i(t)

∣∣∣ Ft].
Since E

[
A
αf+1
f (0)

]
is finite and all arrivals pro-

cesses are mutually independent and IID over time slots,
E
[
R
αf+1
f,i (t); Γcf,i(t)

∣∣∣ Ft] is finite. Thus, there exists a finite
constant cf,i such that

E
[
Vf,i
(
Q(t+ 1)

)
−Vf,i

(
Q(t)

) ∣∣ Ft]
≤E
[
∆f,i(t)

∣∣ Ft] ·Qαf

f,i(t) + cf,i; (18)

(iii) if i 6= df and αf ≥ 1, then we consider the first order
Taylor expansion of the right-hand side of Eq. (16) around
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Qf,i(t):

1

αf + 1

(
Qf,i(t) + ∆f,i(t)

)αf+1

=
1

αf + 1
Q
αf+1
f,i (t) + ∆f,i(t)Q

αf

f,i(t) +
∆2
f,i(t)

2
· αf · ξαf−1

which implies that

E
[
Vf,i
(
Q(t+ 1)

)∣∣Ft] ≤Vf,i(Q(t)
)

+ E
[
∆f,i(t)

∣∣Ft]Qαf

f,i(t)

+
1

2
E
[
∆2
f,i(t) · αf · ξαf−1

∣∣∣ Ft],
for some ξ ∈

[
Qf,i(t)− Tf,i(t), Qf,i(t) +Rf,i(t)

]
.

Since αf ≥ 1, the last term can be bounded from above as
follows:

1

2
E
[
∆2
f,i(t) · αf · ξαf−1

∣∣∣ Ft]
≤1

2
E
[
∆2
f,i(t)αf

(
Qf,i(t) +Rf,i(t)

)αf−1
∣∣∣ Ft].

It can be verified that(
Qf,i(t) +Rf,i(t)

)αf−1 ≤ 2αf−1
(
Q
αf−1
f,i (t) +R

αf−1
f,i (t)

)
,

and
∆2
f,i(t) ≤ R2

f,i(t) + d2max.

Using these inequalities we can write

1

2
E
[
∆2
f,i(t)·αf · ξαf−1

∣∣∣ Ft]
≤2αf−2 · αf ·

(
E
[
R2
f,i(t)

∣∣∣ Ft]+ d2max

)
Q
αf−1
f,i

+ 2αf−2 · αf ·
(
E
[
R
αf+1
f,i (t)

∣∣∣ Ft]
+ d2max · E

[
R
αf−1
f,i (t)

∣∣∣ Ft]).
Thus, for every yf,i > 0 there exists a constant cf,i(yf,i)

such that
1

2
E
[
∆2
f,i(t) · αf · ξαf−1

∣∣∣ Ft] ≤ yf,n ·Qαf

f,i(t) + cf,i(yf,i).

Consequently,

E
[
Vf,i
(
Q(t+ 1)

)
− Vf,i

(
Q(t)

) ∣∣ Ft]
≤E
[
∆f,i(t)

∣∣ Ft] ·Qαf

f,i(t) + yf,n ·Q
αf

f,i(t) + cf,i(yf,i).

(19)

Eqs. (15), (17), (18), and (19) imply that, for every δ > 0
there exist constants cf,i(δ), i ∈ Nf , f ∈ F , such that

E
[
V
(
Q(t+1)

)
− V

(
Q(t)

) ∣∣ Ft]
≤− E

[∑
f∈F

∑
i∈Nf

Q
αf

f,i(t)

·
( ∑
j:(i,j)∈Lf

Sf,i,j(t)−
∑

j:(j,i)∈Lf

Sf,j,i(t)
) ∣∣∣ Ft]

+
∑
f∈F

∑
i∈Nf

Q
αf

f,i(t) · E
[
Af (t); i = sf

∣∣ Ft]
+ δ

∑
f∈F

∑
i∈Nf

Q
αf

f,i(t) +
∑
f∈F

∑
i∈Nf

cf,i(δ). (20)

Now, for notational convenience, define the quantity

Wi,j(t) = max
f :(i,j)∈Lf

[
Q
αf

f,i(t)−Q
αf

f,j(t)
]
.

Through simple algebra, and using the fact that under our
policy Sf,i,j(t) is set to 1 for some f that attains the maximum
in the definition of Wi,j(t), we have that

E
[∑
f∈F

∑
i∈Nf

Q
αf

f,i(t)

·
( ∑
j:(i,j)∈Lf

Sf,i,j(t)−
∑

j:(j,i)∈Lf

Sf,j,i(t)
) ∣∣∣ Ft]

=E
[∑
f∈F

∑
(i,j)∈Lf

(
Q
αf

f,i(t)−Q
αf

f,j(t)
)
Sf,i,j(t)

∣∣∣ Ft]
=
∑

(i,j)∈L

Wi,j(t). (21)

On the other hand,∑
f∈F

∑
i∈Nf

Q
αf

f,i(t) · E
[
Af (t); i = sf

∣∣ Ft] =
∑
f∈F

λfQ
αf

f,sf
(t).

(22)
Let Pf be the set of distinct source-destination paths of

traffic flow f ∈ F . The fact that the arrival rate vector λ is
in the stability region of the network implies the existence of
constants ε > 0 and ζf,p ≥ 0, for p ∈ Pf , f ∈ F , such that

λf =
∑
p∈Pf

ζf,p, ∀f ∈ F ,

ζf,i,j =
∑

p:(i,j)∈p

ζf,p, ∀(i, j) ∈ Lf , ∀f ∈ F ,

and ∑
f :(i,j)∈Lf

ζf,i,j ≤ 1− ε, ∀(i, j) ∈ L.

Thus,∑
f∈F

λfQ
αf

f,sf
(t) =

∑
f∈F

∑
p∈Pf

ζf,pQ
αf

f,sf
(t)

=
∑
f∈F

∑
p∈Pf

∑
(i,j)∈p

ζf,p

(
Q
αf

f,i(t)−Q
αf

f,j(t)
)
,

≤
∑
f∈F

∑
(i,j)∈Lf

ζf,i,jWi,j(t)

=
∑

(i,j)∈L

∑
f :(i,j)∈Lf

ζf,i,jWi,j(t)

≤ (1− ε)
∑

(i,j)∈L

Wi,j(t). (23)

Eqs. (20)-(23) imply that

E
[
V
(
Q(t+ 1)

)
−V
(
Q(t)

) ∣∣ Ft]
≤− ε

∑
(i,j)∈L

Wi,j(t) + δ
∑
f∈F

∑
i∈Nf

Q
αf

f,i(t)

+
∑
f∈F

∑
i∈Nf

cf,i(δ).

Finally, since Qf,df (t) = 0, the sum of the α-weighted
differential backlogs along any (directed and acyclic) source-
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destination path in Lf upper bounds the αf -power of each of
the queue lengths of flow f along that path. Hence, it can be
verified that there exists a large enough ε′ > 0 such that∑

f∈F

∑
i∈Nf

Q
αf

f,i(t) ≤ ε
′
∑

(i,j)∈L

Wi,j(t).

If δ is chosen sufficiently small, there exist constants γ > 0
and β <∞ such that

E
[
V
(
Q(t+ 1)

)
−V

(
Q(t)

) ∣∣ Ft] ≤ −γ∑
f∈F

∑
i∈Nf

Q
αf

f,i(t) +β.

Then, the Foster-Lyapunov stability criterion and moment
bound (e.g., see Corollary 2.1.5 of [8]) implies that the
queueing network is stable and that

∑
f∈F

∑
i∈Nf

E
[
Q
αf

f,i

]
is finite.
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