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Abstract

In an electric power system, demand fluctuations may result in significant
ancillary cost to suppliers. Furthermore, in the near future, deep penetra-
tion of volatile renewable electricity generation is expected to exacerbate the
variability of demand on conventional thermal generating units. We address
this issue by explicitly modeling the ancillary cost associated with demand
variability. We argue that a time-varying price equal to the suppliers’ instan-
taneous marginal cost may not achieve social optimality, and that consumer
demand fluctuations should be properly priced. We propose a dynamic pric-
ing mechanism that explicitly encourages consumers to adapt their consump-
tion so as to offset the variability of demand on conventional units. Through
a dynamic game-theoretic formulation, we show that (under suitable convex-
ity assumptions) the proposed pricing mechanism achieves social optimality
asymptotically, as the number of consumers increases to infinity. Numerical
results demonstrate that compared with marginal cost pricing, the proposed
mechanism creates a stronger incentive for consumers to shift their peak load,
and therefore has the potential to reduce the need for long-term investment
in peaking plants.
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pricing, Social welfare

1. Introduction

Our motivation stems from the fact that fluctuations in the demand on
conventional thermal generating units typically result in significantly in-
creased, and nontrivial, ancillary costs. Today, such demand fluctuations
are mainly due to time-dependent consumer preferences. In addition, in the
future, a certain percentage of electricity production is required by law in
many states in the U.S. to come from renewable sources (Barbose et al.,
2008). The high volatility of renewable energy sources may aggravate the
variability of the demand for conventional thermal generators and result in
significant ancillary cost. More concretely, either a demand surge or a de-
crease in renewable generation may result in (i) higher energy costs due to the
deployment of peaking plants with higher ramping rates but higher marginal
cost, such as oil/gas combustion turbines, and (ii) the cost associated with
resource redispatch? that the system will incur to meet reserve constraints
if the demand increase (or renewable generation decrease) causes a reserve
shortage.

There is general agreement that charging real-time prices (that reflect
current operating conditions) to electricity consumers has the potential of
reducing supplier ancillary cost, improving system efficiency, and lowering
volatility in wholesale prices (US Department of Energy, 2006; Spees and
Lave, 2008; Chao, 2010). Therefore, dynamic pricing, especially real-time
marginal cost pricing, is often identified as a priority for the implementa-
tion of wholesale electricity markets with responsive demand (Hogan, 2010),
which in turn raises many new questions. For example, should prices for a
given time interval be calculated ex ante or ex post? Does real-time pricing
introduce the potential for new types of market instabilities? How is sup-
plier competition affected? In this paper, we abstract away from almost all
of these questions and focus on the specific issue of whether prices should

2A certain level of reserve must always be maintained in an electric power system.
Local reserve shortages are usually due to the quick increase of system load rather than
a capacity deficiency. If the increase of system load makes the system short in reserves,
the system redispatches resources to increase the amount of reserves available. Redispatch
generally increases the generation cost and results in higher prices. The redispatch cost
can be very high (cf. Section 2.3.2 of ISO New England Inc. (2010)).



also explicitly encourage consumers to adapt their demand so as to reduce
supplier ancillary cost.

To illustrate the issue that we focus on, we note that a basic model of
electricity markets assumes that the cost of satisfying a given level A; of
aggregate demand during period ¢ is of the form C(A;). It then follows that
in a well-functioning wholesale market, the observed price should more or
less reflect the marginal cost C’(A;). In particular, prices should be more or
less determined by the aggregate demand level. Empirical data do not quite
support this view. Fig. 1 plots the real-time system load and the hourly
prices on February 11, 2011 and on February 16, 2011, as reported by the
New England ISO (ISO New England Inc., 2011). We observe that prices
do not seem to be determined solely by A; but that the changes in demand,
Ay — A;_1, also play a major role. In particular, the largest prices seem to
occur after a demand surge, and not necessarily at the hour when the load
is highest. We take this as evidence that the total cost over 1"+ 1 periods is

not of the form .
Z C<At)a

t=0
but rather of the form

> (C(A) + H(Ar, Ay)), (1)

t=0

for a suitable function H.

We take the form of Eq. (1) as our starting point and raise the question
of the appropriate prices. We note that wholesale electricity prices set by
an OPF (optimal power flow)-based approach is simply the highest marginal
cost of active generating units (Wu et al., 2004; Sioshansi et al., 2010): at
time t, A; 1 has already been realized, and taking its value for granted, a
consumer is charged a unit price equal to

0
C'(A —H(A; 1, A 2
(t)+8At (A1, Ay), (2)
which is the supplier’s marginal cost at stage t. We refer to this simple ap-
proach as “marginal cost pricing” (MCP), which is essentially the one used in
the price calculation processes implemented by the California ISO (CAISO,
2009), New England ISO (Litvinov, 2011), and NYISO (cf. Section 17.1 of
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Figure 1: Real-time prices and actual system load, ISO New England Inc. Blue bars
represent the real-time system loads and the dots connected by a black line represent the
hourly prices.

NYISO (2012)). However, a simple argument based on standard mathemat-
ical programming optimality conditions shows that for system optimality to
obtain, the demand A;_; should also incur (after A; is realized) a unit price
of (Sioshansi et al., 2010):

0
A1

H(Ai_1, Ay, (3)

This is in essence the pricing mechanism that we analyze in this paper.?
The actual model that we consider will be richer from the one discussed
above in a number of respects. It includes an exogenous source of uncertainty
(e.g., representing weather conditions) that has an impact on consumer util-
ity and supplier cost, and therefore can incorporate the effects of volatile
renewable electricity production®. It allows for consumers with internal state
variables (e.g., a consumer’s demand may be affected by how much electricity
she has already used). It also allows for multiple consumer types (i.e., with

3In current two-settlement systems, the real-time prices are charged only on the dif-
ference of the actual demand and the estimated demand at the day-ahead market. How-
ever, the two-settlement system provides the same real-time incentives to price-taking
consumers, as if they were purchasing all of their electricity at the real-time prices (cf.
Chapter 3-2 of Stoft (2002)).

4The value of demand response on mitigating the variability of renewable generation
has received some recent attention (Stadler, 2008; Rahimi and Ipakchi, 2010).
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different utility functions and different internal state dynamics). Consumers
are generally modeled as price-takers, as would be the case in a model involv-
ing an infinity (a continuum) of consumers. However, we also consider the
case of finite consumer populations and explore certain equilibrium concepts
that are well-suited to the case of finite but large consumer populations. On
the other hand, we ignore most of the distinctions between ex post and ex
ante prices. Instead, we assume that at each time step, the electricity market
clears. The details of how this could happen are important, but are generic
to all electricity markets, hence not specific to our models, and somewhat
orthogonal to the subject of this paper. (See however Appendix A for some
discussion of implementation issues.)

The ancillary cost function H(A;_1, A¢) is a central element of our model.
How can we be sure that this is the right form? In general, redispatch
and reserve dynamics are complicated and one should not expect such a
function to capture all of the complexity of the true system costs; perhaps,
a more complex functional form such as H(A; o, A;_1, A;) would be more
appropriate. We believe that the form we have chosen is a good enough
approximation, at least under certain conditions. To argue this point, we
present in Appendix B an example that involves a more detailed system
model (in which the true cost is a complicated function of the entire history
of demands) and show that a function of the form H(A; i, A;) can capture
most of the cost of ancillary services.

1.1. Summary and contributions

Before continuing, we provide here a roadmap of the paper together with
a summary of our main contributions.

(a) We provide a stylized (yet quite rich) model of an electricity market,
which incorporates the cost of ancillary services (cf. Section 2).

(b) We provide some justification of the form of the cost function in our
model, as a reasonable approximation of more detailed physical models
(cf. Appendix B).

(c) We propose and analyze a pricing mechanism that properly charges for
the effects of consumer actions on ancillary services (cf. Section 3).

(d) For a continuum model involving non-atomic price-taking consumers,
we consider Dynamic Oblivious Equilibria (DOE), in which every con-



sumer maximizes her expected payoff under the sequence of prices in-
duced by a DOE strategy profile (Section 4). We show that (under
standard convexity assumptions), a mechanism that properly charges
for the effects of consumer actions on ancillary services maximizes social
welfare (cf. Theorem 2 in Section 6).

(e) We carry out a game-theoretic analysis of the case of a large but fi-
nite number of consumers. We show that a large population of con-
sumers who act according to a DOE (derived from an associated con-
tinuum game) results in asymptotically optimal (as the number of con-
sumers goes to infinity) social welfare (cf. Theorem 2 in Section 6), and
asymptotically maximizes every consumer’s expected payoff (this is an

“asymptotic Markov equilibrium” property; cf. Theorem 1 in Section
5).

(f) We illustrate the potential benefits of our mechanism through a sim-
ple numerical example. In particular, we show that compared with
marginal cost pricing, the proposed mechanism reduces the peak load,
and therefore has the potential to reduce the need for long-term invest-
ments in peaking plants (cf. Appendix E).

1.2. Related literature

There are two streams of literature, on electricity pricing and on game
theory, that are relevant to our work, and which we now proceed to discuss,
while also highlighting the differences from the present work.

Regarding electricity markets, the impact of supply friction on economic
efficiency and price volatility has received some recent attention. Mansur
(2008) shows that under ramping constraints, the prices faced by consumers
may not necessarily equal the true supplier marginal cost. In a continuous-
time competitive market model, Cho and Meyn (2010a) show that the limited
capability of generating units to meet real-time demand, due to relatively
slow ramping rates, does not harm social welfare, but may result in extreme
price fluctuations. In a similar spirit, Kizilkale and Mannor (2010) construct
a dynamic game-theoretic model to study the tradeoff between economic ef-
ficiency and price volatility. Cho and Meyn (2010b) construct a dynamic
newsboy model to study the reserve management problem in electricity mar-
kets with exogenous demand. The supplier cost in their model depends
not only on the overall demand, but also on the generation resources used



to satisfy the demand. For example, a quickly increasing demand may re-
quire more responsive and more expensive resources (e.g., peaking generation
plants). Wang et al. (2012) study a somewhat related dynamic competitive
equilibrium that includes ancillary services with ramping constraints. Closer
to the present paper, Sioshansi et al. (2010) suggest that wholesale electricity
prices should explicitly account for intertemporal ramping constraints.

To study the impact of pricing mechanisms on consumer behavior and
load fluctuations, we construct a dynamic game-theoretic model that differs
from existing dynamic models for electricity markets and incorporates both
the consumers’ responses to real-time price fluctuations and the suppliers’
ancillary cost incurred by load swings®. Our main results validate the sug-
gestion made in Sioshansi et al. (2010), from a demand-response (DR) per-
spective: wholesale electricity prices should properly charge for the effects of
consumer actions on ancillary services, because proper price signals will en-
courage consumers to adapt their consumption so as to offset the variability
of demand on conventional units.

On the game-theoretic side, the standard solution concept for stochastic
dynamic games is the Markov perfect equilibrium (MPE) (Fudenberg
and Tirole, 1991; Maskin and Tirole, 1988), involving strategies where an
agent’s action depends on the current state of all agents. As the number
of agents grows large, the computation of an MPE is often intractable (Do-
raszelski and Pakes, 2007). For this reason, alternative equilibrium concepts,
for related games featuring a non-atomic continuum of agents (e.g., “obliv-
ious equilibrium” or “stationary equilibrium” for dynamic games without
aggregate shocks), have received much recent attention (Weintraub et al.,
2009; Adlakha et al., 2011).

There is a large literature on a variety of approximation properties of non-
atomic equilibria (Mas-Colell and Vives, 1993; Al-Najjar, 2004, 2008). Re-
cently, Adlakha et al. (2011) have derived sufficient conditions for a station-
ary equilibrium strategy to have the Asymptotic Markov Equilibrium
(AME) property, i.e., for a stationary equilibrium strategy to asymptotically
maximize every agent’s expected payoff (given that all the other agents use
the same stationary equilibrium strategy), as the number of agents grows
large. Their model includes random shocks that are assumed to be idiosyn-

5Some major differences between our model and existing ones are discussed at the end
of Section 2.



cratic to each agent. However, in the problem that we are interested in, it
is important to incorporate aggregate shocks (such as weather conditions)
that have a global impact on all agents. In this spirit, Weintraub et al.
(2010) consider a market model with aggregate profit shocks, and study an
equilibrium concept at which every firm’s strategy depends on the firm’s
current state and on the recent history of the aggregate shock. Finally, for
dynamic oligopoly models with a few dominant firms and many fringe firms,
[frachy and Weintraub (2012) propose and analyze a new equilibrium con-
cept, moment-based Markov equilibrium (MME), in which each firm’s action
depends on the aggregate shock, the exact states of the dominant firms, and
a few aggregate statistics on the distribution of fringe firm states.

For a general dynamic game model with aggregate shocks, Bodoh-Creed
(2012) shows that a non-atomic counterpart of an MPE, which we refer to as
a Dynamic Oblivious Equilibrium (DOE) in this paper, asymptotically
approximates an MPE in the sense that as the number of agents increases
to infinity, the actions taken in an MPE can be well approximated by those
taken by a DOE strategy of the non-atomic limit game. However, without
further restrictive assumptions on the agents’ state transition kernel, the
approximation property of the actions taken by a DOE strategy does not
necessarily imply the AME property of the DOE, and we are not aware of
any AME results for models that include aggregate shocks. Thus, our work
is different in this respect: for a dynamic non-atomic model with aggregate
shocks, which is a simplified variation of the general model considered in
Bodoh-Creed (2012), we prove the AME property of a DOE.

The efficiency of non-atomic equilibria for static games has been addressed
in recent research (Roughgarden and Tardos, 2004; Milchtaich, 2004; Bodoh-
Creed, 2011). For a dynamic industry model with a continuum of identical
producers and exogenous aggregate shocks, Lucas and Prescott (1971) show
(under convexity assumptions) that the expected social welfare is maximized
at a unique competitive equilibrium. In a similar spirit, in this paper we
show (under convexity assumptions) that the proposed pricing mechanism
maximizes the expected social welfare in a model involving a continuum of
(possibly heterogeneous) consumers. We also consider the case of a large
but finite number of consumers, and show that the expected social welfare
is approximately maximized if all consumers act according to a non-atomic
equilibrium (DOE). For large dynamic games, the asymptotic social opti-
mality of non-atomic equilibria (DOESs) established in this paper seems to be
new.



2. Model

We consider a (T + 1)-stage dynamic game with the following elements:

1.

10.

The game is played in discrete time. We index the time periods
with t = 0,1,...,7. Each stage may represent a five minute interval
in real-time balancing markets where prices and dispatch solutions are
typically provided at five minute intervals.

There are n consumers, indexed by 1,...,n.

. At each stage t, let s; € S be an exogenous state, which evolves as

a Markov chain and whose transitions are not affected by consumer
actions. The set S is assumed to be finite. In electricity markets, the
exogenous state may represent time and/or weather conditions, which
impact consumer utility and supplier cost. It may also represent the
level of renewable generation.

For notational conciseness, for ¢t > 1, let 5, = (s;_1, ¢), and let 5y = sq.
We use S; to denote the set of all possible 5,. We refer to 5; as the
global state at stage t.

. Given an initial global state sy, the initial states (types) of the con-

sumers, {z;(},, are independently drawn according to a probability
measure 1), over a finite set X;. We use X to denote the cardinality of
Xo.

The state of consumer i at stage ¢ is denoted by z;,. At t = 0,
consumer ¢’s initial state, z;g, indicates her type. For ¢t = 1,...,T,
we have z;; = (20, 2it), where z;; € Z and Z = [0, Z] is a compact
subset of R. The variables {z;;} ; allow us to model intertemporal
substitution effects in consumer i’s demand.

. We use &; to denote a consumer’s state space at stage t. In partic-

ular, at stage t > 1, X, = Xy x Z.

. At stage ¢, consumer ¢ takes an action a;; and receives a non-negative

utility® Uy (24, st, i)

Each consumer’s action space is A = [0, B], where B is a positive
real number. (In the electric power context, B could reflect a local
transmission capacity constraint.)

We use A; = > | a;; to denote the aggregate demand at stage .

6At t =0, Up is a mapping from Xy x S x A to [0, 00), while for ¢t > 1, U, is a mapping
from Xy x Z xS x A to [0, 00).



11.

12.

13.

14.

15.

Given consumer ¢’s current state, x;;, and the next exogenous state
S¢+1, the next state of consumer ¢ is determined by her action taken at
stage t, i.e., Ti1p1 = (Tip, Zigtr1), Where 2,401 = 7(Ti4, Qit, Sev1), for a
given function 7.

Let Gy = A; + R; be the capacity available at stage t, where R; is the
system reserve at stage t. For simplicity, we assume that the system
reserve at stage t depends only on the current aggregate demand, A,
and the current exogenous state s;. That is, we have R; = g(Ay, ;)
for a given function of g that reflects the reserve policy of the system
operator.

At stage t, let C'(Ay, Ry, s;) be the total conventional generation cost,
that is, the sum of the supplier’s cost to meet the aggregate demand
A; through its primary energy resources, e.g., coal-based and nuclear
power plants, and the cost to maintain a system reserve R;. Since
R; usually depends only on A, and s;, we can write C(4;, Ry, s;) as
a function of A; and s, i.e., there exists a primary cost function
C:R x8 — [0,00) such that C(A;,s;) = C(Ay, Ry, s;). We assume
that for any s € S, C(+, s) is nondecreasing.

At stage t > 1, let H(A;_1, Ay, Ri_1, Ry, s;) denote the ancillary cost
incurred by load swings”. Since R; usually depends only on A; and sy,
we can write H (A,_1, Ay, Ri_1, Ry, s;) as a function of A,_1, A, 8,1, and
s, i.e., there exists an ancillary cost function H : R?* x §* — [0, o)
such that H = H(A,_1, A;,5,). The ancillary cost at stage 0 is assumed
to be a function of sy and A,.

At stage 0, the total supplier cost is of the form

C(Ao, So) + HQ(A(), So), (4)
and for t = 1,...,T, the total supplier cost at stage t is given by
C(At,st) + H(AtflyAtagt)- (5)

In contrast to existing dynamic models for electricity markets with an
exogenous demand process (Cho and Meyn, 2010a,b), our dynamic game-
theoretic model incorporates the consumer reactions to price fluctuations,

“In general, the supplier ancillary cost may depend on the entire history of sys-
tem load and global states. However, ancillary cost functions with the simple form
H(A4_1, A¢, Ri_1, Ry, s¢) can serve as a good approximation of the supplier’s true ancillary
cost (cf. Appendix B).
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and allows us to study the impact of pricing mechanisms on consumer behav-
ior and economic efficiency. Through a dynamic game-theoretic formulation,
Kizilkale and Mannor (2010) study the tradeoff between economic efficiency
and price volatility. Our model is different from the one studied in Kizilkale
and Mannor (2010) in the following respects:

1. Our model allows the generation cost to depend on an exogenous state,
and therefore can incorporate supply-side volatility due to uncertainty
in renewable electricity generation. As an example, consider a case
where the exogenous state, s;, represents the electricity generation from
renewable resources at stage t. Then the demand for conventional
generation is A; — s;. For example, the system reserve can be set
as the maximum of the minimum system reserve requirement® R(s;)
and a certain fraction of the current system load, say, dA; for some
constant § > 0. The cost function, C'(A;, Ry, s;), then depends only on
the output of conventional generating units, A; — s;, and the system
reserve, max{ R(s;), dA;}. Furthermore, the ancillary cost incurred at
stage t depends on the system reserve and the outputs of conventional
generating units at stages ¢ — 1 and ¢, and is therefore a function of
Ai_1, Ag, Si—1, and sy.

2. More important, instead of penalizing each consumer’s attempt to
change her own action across time, the ancillary cost function in our
model penalizes the change in the aggregate demand by all consumers.
The change in a single consumer’s action may harm or benefit the social
welfare, while aggregate demand volatility is usually undesirable.

The main feature of our model is the ancillary cost function H, which
makes the supplier cost non-separable over time. In an electric power system,
the ancillary cost function models the costs associated with the variability of
conventional thermal generator output, such as the energy cost of peaking
plants. Note that the ancillary cost is not necessarily zero when A, < A; 1,
because thermal generating units have ramping-down constraints, and be-
cause a decrease in renewable electricity production may lead to an increase
of the system reserve, even if A, < A, ;. The presence of the ancillary cost

8Conventionally, the minimum system reserve is usually defined by the biggest online
generator (Wang et al., 2003). Since renewable generation causes important fluctuations,
reserves should also be allowed to depend on the level of renewable generation (that is
incorporated by the global state s;).
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function makes conventional marginal cost pricing inefficient (cf. Example 1
in Section 3).

To keep the model simple, we do not incorporate any idiosyncratic ran-
domness in the consumer state evolution. Thus, besides the randomness of
consumer types (initial states), the only source of stochasticity in the model
is the exogenous state s;.

To effectively highlight the impact of pricing mechanisms on consumer
behavior, as well as on economic efficiency and demand volatility, we have
made the following simplifications and assumptions for the power grid:

(a) Asin Cho and Meyn (2010a), we assume that the physical production
capacity is large enough so that the possible changes of the generation
capacity are not constrained.

(b) Transmission capacity is large enough to avoid any congestion. We also
assume that the cost of supplying electricity to consumers at different
locations is the same. Therefore, a common price for all consumers is
appropriate.

(c) We use a simplified form of ancillary cost functions, H(A;_1, A, 5,;), to
approximate the supplier ancillary cost. In Appendix B, we discuss
this approximation and present a numerical example to justify it.

Actual power systems and markets are quite complex and our model
does not necessarily capture all relevant aspects in a realistic manner. For
example, the assumption of two types of generators may not be satisfied in
real power systems. However, we make such assumptions for specificity, and
in order to avoid an exceedingly complex model, while still being able to
develop our main argument, which is somewhat orthogonal to such issues.

3. The Pricing Mechanism

The marginal cost pricing mechanism discussed in Section 1 charges a
time-varying unit price on each consumer’s demand. As demonstrated in
the following example, a time-varying price that equals the supplier’s instan-
taneous marginal cost may not achieve social optimality in a setting that
includes ancillary costs. For this reason, we propose a new pricing mecha-
nism that takes into account the ancillary cost associated with a consumer’s
demand at the previous stage.

12



Example 1. This example shows that at an efficient competitive equilibrium
(between one supplier and one consumer), the per-unit price charged to the
consumer does not equal the supplier’s instantaneous marginal cost. Consider
a two-stage deterministic model with one consumer and one supplier. At
stage ¢, the consumer’s utility function is U; : [0,00) — [0,00). Let a;
denote the demand at stage t, and let a = (ag, a;). Let g; denote the actual
generation at stage ¢, and let g = (go, g1). Two unit prices, py and p;, are
charged on the consumption at stage 0 and 1, respectively. Let p = (po, p1).
The consumer’s payoff-maximization problem is

Maximize  Up(ag) — poao + Ui(ar) — pras. (6)

Let Hy be identically zero, and let the ancillary cost function at stage 1
depend only on the difference between the supply at the two stages. That
is, the ancillary cost at stage 1 is of the form H(g; — go). The supplier’s
profit-maximization problem is

Maxgnize Pogo + P1g1 — C(g0) — C(g1) — H(g1 — go)- (7)

The social planner’s problem is

Ma();ig)lize Uo(ao) + Ui(ar) — C(g0) — C(g1) — H(g1 — go) ®
subject to a=g.
Now consider a competitive equilibrium, (a, g, p), at which the vector
a solves the consumer’s optimization problem (6), the vector g solves the sup-
plier’s optimization problem (7), and the market clears, i.e., a = g. Suppose
that the utility functions are concave and continuously differentiable, and
that the cost functions C' and H are convex and continuously differentiable.
We further assume that H'(0) = 0, and that for ¢ = 0,1, U/(0) > C(0),
U/(B) < C'(B). Then, there exists a competitive equilibrium, (a,g,p),
which satisfies the following conditions:
Us(ao) = po, C'(ag) — H'(a1 — ag) = po, (9)
U{(CLl) = P1, C/(Gl) -+ H’(a1 — Clo) = pP1-
We conclude that the competitive equilibrium solves the social welfare max-
imization problem in (8), because it satisfies the following (sufficient) opti-
mality conditions:

Us(ao) = C'(ao) — H'(a1 — ag),  Uj(a1) = C'(a1) + H'(a1 — ao),

ap = go, a1 = gi-

(10)

13



However, we observe that the socially optimal price py does not equal
the supplier’s instantaneous marginal cost at stage 0, C'(ag). Hence, by
setting the price equal to C'(ag), as would be done in a real-time balancing
market, we may not achieve social optimality. More generally, marginal cost
pricing need not be socially optimal because it does not take into account
the externality conferred by the action ay on the ancillary cost at stage 1,
H(a; — ap). At a socially optimal competitive equilibrium, the consumer
should pay

(C'(ao) — H'(a1 — ag))ao + (C'(a1) + H'(a1 — ag)) a,

i.e., the price on ag should be the sum of the supplier marginal cost at stage
0, C'(ap), and the marginal ancillary cost associated with ag, —H'(a; — ayg),
which is determined at the next stage, after a; is realized. U

Before describing the precise pricing mechanism we propose, we introduce
a differentiability assumption on the cost functions.

Assumption 1. For any s € S, C(+,s) and Hy(-, s) are continuously differ-
entiable on [0,00). For any (A',35) € Ax8?, H(A, A',3) and H(A', A,S) are
continuously differentiable in A on [0, 00).

Inspired by Example 1, we introduce prices

pt:CI(AtaSt)y t=20,...,T, (11)
and
_ a‘l—‘l(félt—17"4t)§t) . aH(At—lyAt7§t) B
qt B 8At_1 ’ U}t - aAt I t— 1,...’T, (12)

At stage 0, we let go = 0 and wy = H} (Ao, s0). Under the proposed pricing
mechanism, consumer ¢’s payoff at stage t is given by

Ue(zit, St i) — (Pt + W) — qraiz—1- (13)

Note that p; + w; is the supplier marginal cost at stage ¢ (including the
marginal ancillary cost). The proposed pricing mechanism charges consumer

9At the boundary of the domain, 0, we require continuity of the right-derivatives of C,
Ho, and H.
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1 an additional price g; on her previous demand, equal to the marginal ancil-
lary cost with respect to a;;—;.

We now define some of the notation that we will be using. For t =
1,...,7T, let yir = (@i1—1,7;1) be the augmented state of consumer i at
stage t. At ¢t =0, let y;0 = x;0. For stage ¢, let ), be the set of all possible
augmented states. In particular, we have )y = Xy, and ), = A x A}, for
t=1,...,T.

Let A, (D) be the set of empirical probability distributions over a given
set D that can be generated by n samples from D. (Note that empirical
distributions are always discrete, even if D is a continuous set.) Let f; €
A, (Yy) be the empirical distribution of the augmented state of all consumers
at stage t, and let f_,; € A,_1()}) be the empirical distribution of the
augmented state of all consumers (excluding consumer i) at stage t. We
refer to f; as the population state at stage ¢t. Let u; € A,(A) denote the
empirical distribution of all consumers’ actions at stage ¢, and let u_;; €
A,—1(A) be the empirical distribution of all consumers’ (excluding consumer
i) actions at stage t.

For a given n, it can be seen from (11) and (12) that the prices, and
thus the stage payoff in (13), are determined by the current global state,
5;, consumer ¢’s current augmented state, y;;, and current action, a;;, as
well as the empirical distributions, f_;; and u_;, of other consumers’ current
augmented state and action. Hence, for a certain function 7(+), we can write
the stage payoff in (13) as

T(Yit Sty Wity foipsU—iy) = Up(@ig, Sesaip) — (0r + wi)aiy — qaig—1.  (14)

4. A Continuum Model and Dynamic Oblivious Strategies

To study the aggregate behavior of a large number of consumers, we
consider a non-atomic game involving a continuum of infinitesimally small
consumers, indexed by i € [0,1]. We assume that (under state sq) a fraction
s, Of the consumers has initial state z. In a non-atomic model, any single
consumer’s action has no influence on the aggregate demand and the prices.
We consider a class of strategies (dynamic oblivious strategies) in which
a consumer’s action depends only on the history of past exogenous states,
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hi = (S0, ..,5), and her own current state'®, i.e., of the form
Qi = vt(xi,ta ht)-

Suppose that consumer i uses a dynamic oblivious strategy 7 = (D, ..., Ur).
Since there is no idiosyncratic randomness, given a history h;, the state z;,
of consumer ¢ at stage ¢t depends only on her initial state z; o. That is, there
is a mapping lyp, 1 Xy — A4, such that z;; = ly,(x:0). Therefore, we can
specify the action taken by a dynamic oblivious strategy in the alternative
form

iy = (20, he) = DIy, (210), o). (15)

We refer to v = (v, ...,vr) as a dynamic oblivious strategy, and let U
be the set of all such strategies.

An alternative formulation involving strategies that depend on consumer
expectations on future prices would lead to a Rational Expectations Equi-
librium (REE), an equilibrium concept based on the rational expectations
approach pioneered by Muth (1961). In our continuum model, since the only
source of stochasticity is from the exogenous state s;, future prices under any
given strategy profile, are completely determined by the history h;. There-
fore, it is reasonable to expect that strategies of the form (15) will lead to
an equilibrium concept that is identical in outcomes with a REE (cf. the
discussion in Section 4.2).

Before formally defining a Dynamic Oblivious Equilibrium (DOE), we
first provide some of the intuition behind the definition. In a continuum
model, if all consumers use a common dynamic oblivious strategy v, the
aggregate demand and the prices at stage ¢ depend only on the history of
exogenous states, hy = (sg,...,$). A dynamic oblivious strategy v is a DOE
(cf. the formal definition in Section 4.2) if it maximizes every consumer’s
expected total payoff, under the sequence of prices that v induces. In Section
4.3, we associate a continuum model with a sequence of n-consumer models
(n = 1,2,...), and specify the relation between the continuum model and
the corresponding n-consumer model.

1ONote that a dynamic oblivious strategy depends only on the consumer’s current state,
instead of her augmented state. As we will see in Section 4.2, in a continuum model,
since any single consumer ¢ has no influence on the prices, a best response or equilibrium
strategy need not take into account the action a; 1 taken at the previous stage.
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4.1. The sequence of prices induced by a dynamic oblivious strategy

Let hy = (so,...,s:) denote a history up to stage ¢, and let H; = S**!
denote the set of all possible such histories. Recall that in a continuum
model, given an initial global state sg, the distribution of consumers’ initial
states is 7,,. Therefore, under a history hy, if all consumers use the same
dynamic oblivious strategy v, then the average demand is

Ao = 3 o) - (). (16)

rEXy

We now introduce the cost functions in a continuum model. Let C
R x S — [0,00) be a primary cost function. Let H : R* x §* — [0, 00) be
an ancillary cost function at stage ¢t > 1, and let ﬁo :R xS — [0,00) be an
ancillary cost function at the initial stage 0.

Given the cost functions in a continuum model, we define the sequence of
prices induced by a dynamic oblivious strategy as follows (cf. Eqs. (11)-(12)):

ﬁthj,ht - C/(At\u,hta St)7 a()\zz,ho = 07 Z’170|1/,h0 = H(/)(AO|1/,h07 50)7 (17)
and for t > 1,

8F[ (A/tfl‘l/,ht_1 ) A/t|1/,ht ’ §t>
agt—lh/,ht_l

aﬁ (A/tfl‘l/,ht_1 ) A/ﬂl/,ht ) §t>
agﬂl/,ht

qt|l/,ht = ) wt|l/,ht = .

(18)

4.2. Equilibrium strategies

In this subsection we define the concept of a DOE. Suppose that all
consumers other than 7 use a dynamic oblivious strategy v. In a continuum
model, consumer ¢’s action does not affect the prices. If all consumers except
7 use a dynamic oblivious strategy v, consumer 7’s oblivious stage value
(the stage payoff in a continuum model) under a history h; and an action
1, 18

%i,t(yz‘,ta ht, Qi ¢ | V) = Ut(%’,t, St a'i,t) - (@\u,ht + ﬁ;ﬂu,ht)ai,t - %u,htaz;t—la (19)

where the prices, Piy,n,, Wejp,h,, a0 Gyl p,, are defined in (17) and (18). Since
a single consumer’s action cannot influence g, the last term in (19) is not
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affected by the action a;+, and the decision a;,; at stage ¢ need not take a; ;—1
into account, but should take ¢;,; into account.
Consumer #’s oblivious stage value under a dynamic oblivious strategy o,

isll

- N A ~ N
Wi,t(yi,t, hy | v, V) = Wi,t(yi,t, D, Vt(xi,()y ht) | V)~ (20>

In particular, we use 7;¢(vi¢, he | v, ) to denote the oblivious stage value of
consumer ¢ at stage t, if all consumers use the strategy v. Given an initial
global state sy and an initial state of consumer 4, z;, her oblivious value
function (total future expected payoff function in a continuum model) is

T
Vio(Tio, 80 | ,v) =E {Z%i,r(yi,T,hT | 7, V)} ) (21)
7=0

where the expectation is over the future global states, {s,}1_;.

Definition 1. A strategy v is a Dynamic Oblivious Equilibrium (DOE)
of

sup ‘N/z‘,o(l‘i,o,so | v, v) = ‘N/z‘,o(xz‘,oyso | v, v), Vaio € Xy, Vsp€S.
vey

A DOE is guaranteed to exist, under suitable assumptions, and this is
known to be the case for our model (under our assumptions), and even for
a more general model that includes idiosyncratic randomness (Bergin and
Bernhardt, 1992). The DOE, as defined above, is essentially the same concept
as the “dynamic competitive equilibrium” studied in Bodoh-Creed (2012),
which is defined as the non-atomic equivalent of an MPE, in a continuum
model. At a DOE, the beliefs of all consumers on future prices are consistent
with the equilibrium outcomes. Therefore, a DOE is identical in outcomes
with a Rational Expectations Equilibrium (REE).

Note that to compute a DOE one has to keep track of the entire history
of shocks, and that consumers may not have the rationality or computational
power to calculate a DOE. However, in future electricity markets, consumers
may receive price estimates from utilities and/or the independent system
operator (ISO) through advanced metering infrastructures. (In Appendix

Recall that the initial state (the type) of consumer i, %50, is included in its state x; 4,
as well in its augmented state y; ;, for any t.
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A, we provide some discussion of a possible implementation of the proposed
real-time pricing mechanism.) If utilities and/or the ISO could make accu-
rate estimates (contingent on future history of the exogenous state) of the
prices'?, a REE (equivalently, a DOE) will be a plausible outcome of such
a market. Furthermore, we will show (Theorem 2) that under the proposed
pricing mechanism, and under certain convexity assumptions, a DOE is so-
cially optimal for the continuum model.

4.8. The n-consumer model associated with a continuum model

We would like to take the cost functions in a continuum model to ap-
proximate the cost functions in an n-consumer model. Since the continuum
of consumers is described by distributions over [0, 1], the demand given in
(16) can be regarded as the average demand per consumer. To capture this
correspondence, we assume the following relation between the cost functions
in a continuum model and their counterparts in a corresponding n-consumer
model.

Assumption 2. For anyn €N, any s € S, and any 5 in S%, we have
~ (A ~ (A
C"(A,s) =nC (—,s) , H{y(A,s)=nH, (—,s) ,
n n

and

n n

H™(A,A'5) =nH (é, él,g) :
where the superscript n is used to indicate that these are the cost functions
associated with an n-consumer model.
Assumption 2 implies that
(C™Y(A,s) = C'(A/n, s), (HMY(A,s) = H\(A/n,s), s€S,
and for any 5 € S2,
OH™(A,A'5)  OH(A/n, A'/n,3) OH™(A, A'5)  OH(A/n, A'/n,s)

oA ~ T (A oA 0(A/n)

12\We note that several recent works show that a reasonably accurate approximation
could be achieved even if the agents’ strategy depends only on the recent history (as
opposed to the full history) of the aggregate shock (Bodoh-Creed, 2012; Weintraub et al.,
2010). These results suggest that utilities may be able to obtain accurate price estimates
by taking into account only the recent history of the aggregate shock.
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so that there is a correspondence between the marginal cost in the contin-
uum model (evaluated at the average demand) and in the corresponding
n-consumer model.

5. Approximation in Large Games

In this section, we consider a sequence of dynamic games, and show that
as the number of consumers increases to infinity, a DOE strategy for the
corresponding continuum game is asymptotically optimal for every consumer
(i.e., an approximate best response), if the other consumers follow that same
strategy. In the rest of the paper, we often use a superscript n to indicate
quantities associated with an n-consumer model.

Suppose that all consumers except ¢ use a dynamic oblivious strategy v.
Given a history h; and an empirical distribution f7, ,, we use v(hy, f"; ;,v) to
denote the empirical distribution, u", ,, of the actions taken by consumers ex-
cluding ¢. In an n-consumer model, suppose that consumer ¢ uses a history-
dependent strategy " = {k}'}L_, of the form

At = Fu’?(yz‘,u hy, ffi,t>7 (22)

while the other consumers use a dynamic oblivious strategy v. Let K, denote
the set of all possible history-dependent strategies " for the n-consumer
model. Note that since all other consumers use the oblivious strategy v, f;,
is completely determined by v, f,,, and h;.

The stage payoff received by consumer i at time ¢ is

ﬂ-irft(yi,h h’t7 fﬁi’t ’ ’in7 y) = ﬂ-n (yi,t7§t7 a‘i,t7 fﬁll’ﬂ‘) U(h’t7 fﬁliﬂ‘/? V)) ) (23>

where a;; = K} (i, be, f7;), and the stage payoff function on the right-hand
side is given in (14). Given an initial global state, sy, and consumer ¢’s initial
state, x; 0, consumer i’s expected payoff under the strategy " is

T
VZB (xi,07 S0 ’ ’in’ V) =E {Z ﬂ-zt(yi,h hta fili,t ’ ’in’ V)} ) (24>

t=0

where the expectation is over the initial distribution f”; ; and over the future
global states, {s;}{_,. In particular, we use V;§ (x;0, S0 | v,) to denote the
expected payoff obtained by consumer i if all consumers use the strategy v.
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Definition 2. A dynamic oblivious strategy v has the asymptotic Markov
equilibrium (AME) property (Adlakha et al., 2011), if for any initial global
state sp € S, any initial consumer state ;9 € Xy, and any sequence of
history-dependent strategies {k"}, we have

lim sup (Vﬁ) (i, 50 | K", V) — Vi (xi0, 50 | v, V)) < 0.
n—oo
We will show that every DOE has the AME property, under the following
assumption, which strengthens Assumption 1.

Assumption 3. We assume that:

3.1. The following four families of functions, of A, {5’(A, s): s €S},
{Hy(A,s) + s € S}, {0H(A,A',5)/0A © (A)3) € Ax S}, and

{0H(A', A,35)/0A : (A')3) € A x 82}, are uniformly equicontinuous

on [0, 00).1?
3.2. The marginal costs are bounded from above, i.e.,
IC'(A,s)| < P, |H)(As)| <P, V(A s)€AxXS,
and

<P g#%éﬁgP,WA@eAxﬁ,

OH(A,A'3)
HA

where P is a positive constant.

3.3. The utility functions, {Uy(z, s,a)}_,, are continuous in a and bounded
from abowve, i.e.,

U(z,s,a) < Q, t=0,...,T, V(z,s,a) € X xS X A,

where () is a positive constant.

13A sufficient condition for this assumption to hold is to require a universal bound on
the derivatives of the functions in each family.
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Combining with Assumption 2, Assumption 3.1 implies that for any € > 0,
there exists a 0 > 0 such that for any positive integer n, if |A — A] < nd,
then for every s € S,

[(C™)(As) = (C")V(Ays)| < [(HG)(As) — (Hp)' (A s)| < e (25)
and for any (A’,5) € A x 82,

OH™(A,A'5)  OH"(A,A,3)

OH"(A', A,3) 8H"(A’,Z, 3)
— <e.
0A 0A

0A 0A -
(26)
Note that the boundness of the cost function derivatives implies the Lip-
schitz continuity of the cost functions. Combining with Assumption 2, for
any pair of real numbers (A, A), any positive integer n, and for every s € S
we have

.|

|C™(A,s) — C™(A,s)| < P|A—A], |H'(A,s) — Hy (A, s)| < PJA—A],
(27)
and for any (A’,5) € A x 82,

|H"(A,A')5) — H*(A, A',5)| < P|A— A4,

_ _ (28)
|H"(A,A,5) — H*(A',A,5)| < P|[A—A].

The following theorem states that a DOE strategy approximately max-
imizes a consumer’s expected payoff (among all possible history-dependent
strategies) in a dynamic game with a large but finite number of consumers,
if the other consumers also use that strategy.

Theorem 1. Suppose that Assumptions 2-3 hold. FEvery DOFE has the AMFE
property.

Theorem 1 is proved in Appendix C. Various approximation properties
of non-atomic equilibrium concepts in a continuum game have been investi-
gated in previous works. Sufficient conditions for a stationary equilibrium (an
equilibrium concept for a continuum game without aggregate uncertainty) to
have the AME property are derived in Adlakha et al. (2011). For a contin-
uum game with both idiosyncratic and aggregate uncertainties, Bodoh-Creed
(2012) shows that as the number of agents increases to infinity, the actions
taken in an MPE can be well approximated by some DOE strategy of the
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non-atomic limit game. Note, however, that in a general n-consumer game,
even if all consumers take an action that is close to the action taken by a DOE
strategy of the non-atomic limit game, the population states and the prices
in the n-consumer game can still be very different from their counterparts in
the non-atomic limit game. Therefore, without further assumptions on the
consumers’ state transition kernel (e.g., continuous dependence of consumer
states on their previous actions), the approximation property of a DOE on
the action space does not necessarily imply the AME property of the DOE.

6. Asymptotic Social Optimality

In Section 6.1, we define the social welfare associated with an n-consumer
model and with a continuum model. In Section 6.2, we show that for a con-
tinuum model, the social welfare is maximized (over all symmetric dynamic
oblivious strategy profiles) at a DOE, and that for a sequence of n-consumer
models, if all consumers use the DOE strategy of the corresponding con-
tinuum model, then the social welfare is asymptotically maximized, as the
number of consumers increases to infinity.

6.1. Social welfare

In an n-consumer model, let x; = (z14,...,2n¢) and a; = (a1, ..., any)
be the vectors of consumer states and actions, respectively, at stage t. Let
a; = (ay_1,a) for t > 1, and @y = ag. For t = 1,...,T, the social welfare

realized at stage t is
n

Wi (xe,5,a) = —C"(Ay, se) — H' (A1, Ay, St) + Z Ui(wiy, S, ai0), (29)

=1

and at stage 0, the social welfare is
W/ (%0, 50,a0) = —C" (Ao, s0) — Hg (Ao, 50) + Z Uo(i0, 50, ip).  (30)
i=1

Because of the symmetry of the problem, the social welfare at stage t
depends on x; and a; only through the empirical distribution of state-action
pairs. In particular, under a symmetric history-dependent strategy profile
K" = (Kk",...,Kk") (cf. the definition of a history-dependent strategy in Eq.
(22)), we can write the social welfare at time ¢ (with a slight abuse of no-
tation) as W(fl*,h: | k™). Given an initial global state sy and an initial
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population state f', the expected social welfare achieved under a symmetric
history-dependent strategy profile k" is given by

T
Wo (fg's 50 | &) = Wi'(fg' s0 | £7) + E {Z WS | H")} (3D

t=1

where the expectation is over the future global states {s;}._,. In particular,
we use WJ'(f, so | ¥™) to denote the expected social welfare achieved by the
“symmetric dynamic oblivious strategy profile”, v" = (v,...,v).

In a continuum model, suppose that all consumers use a common dynamic
oblivious strategy v. Given an initial global state sy, the expected social

welfare is

Wo(so | v) = Wo(so | u)+E{ZWt(ht | y)}, (32)

t=1

where the expectation is over the future global states, {s;}-_,. Here, ﬁ(ht |
v) is the stage social welfare under history h;:

Wihy | v) = =C(Ayns 5t) — H(Ar e 1> Aty 52)
+ 3 0@ U (g (@), st vi(, he)) . t=1,...T,

reXp
(33)
where [, 5, maps a consumer’s initial state into her state at stage ¢, under the
history h; and the dynamic oblivious strategy v. The social welfare at stage
0 is given by

Wo(so | v) = =C(Aowngs 50) — Ho(Aojwngs 50) + Y 1o (2)Us (2, 50, vo(, 50)) -
TEX)

(34)

6.2. Asymptotic social optimality of a DOE

We now define some notation that will be useful in this subsection. Since
there is no idiosyncratic randomness, given a history h;, the state of consumer
¢ at stage t depends only on her initial state x;(, and her actions taken at
7=0,...,t —1. At stage t > 1, the history h; and the transition function
Zitt1 = T(Tig, Qit, St11) define a mapping ky, : Xy x A" — Z:

Zit = kht (l’ip, ai0y--- aa'i,t—l)7 t= 1, e ,T. (35)
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Given an initial state x;(, consumer ¢’s total utility under a history h, can
be written as a function of her actions taken at stages 7 =0, ..., ¢

Uht(%,o, a; 0y - - - 7ai,t) = UO(l'i,Oa 50, ai,O)

t
+ Z Ur(i0, kn, (%30, G0, - - s Qir—1), 57, Qir).
T=1
(36)
Before proving the main result of this section, we introduce a series of
assumptions on the convexity and differentiability of the cost and utility
functions.

Assumption 4. We assume the following:

4.1. For any s € S, 5(, s) is convex; for any s € 82, ﬁ(A,A’,E) is convex
in (A, A).

4.2. For any hr € Hr and any x,0 € Xy, the function defined in (36) is
concave with respect to the vector (a g, ..., a;r).

4.3. Foranyt > 1, any hy € Hy, and any x;9 € Xy, the function ky, defined
in (35) is monotonic in a; ., for T =0,...,t — 1; further, its left and
right derivatives with respect to a; , exist, forT=0,...,t — 1.

4.4. For t > 1, and for any (z,s,a) € Xy x S x A, the left and right
derivatives of the utility function Uy(x, z,s,a) in z exist.

We note that supplier cost functions are generally not convex (because, for
example, of start-up costs), and that there is a substantial literature on the
pricing of non-convexities in electricity markets (Motto and Galiana, 2004;
O’Neill et al., 2005; Araoz and Jornsten, 2011). The convexity assumption
(Assumption 4.1) results in a tractable analytical setting that can be used to
provide some theoretic results, and is often used in the literature on optimal
power flow (OPF) (Wu et al., 2004; Lavaei and Low, 2012) and on energy
market economics (Baldick et al., 2004; Sioshansi and Oren, 2007). We finally
note that even for non-convex cost functions, the proof of Theorem 2 (in
Appendix D) shows that in a non-atomic game, a DOE corresponds to a
local optimum of the social welfare. This is the best one could wish for
since a local optimal cannot be improved unless a significant fraction of the
consumers change their action simultaneously.
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For concave utility functions (with respect to a), Assumption 4.2 requires
that the transition function kj, preserves concavity (a linear function would
be an example). Assumptions 4.1 and 4.2 guarantee that in both models
(a dynamic game with a finite number of consumers, and the corresponding
continuum game), the expected social welfare (consumer i’s expected payoff)
is concave in the vector of actions taken by all consumers (respectively, by
consumer 7). Assumptions 4.3 and 4.4 ensure the existence of left and right
derivatives of the expected social welfare given in (32), with respect to the
actions taken by consumers. An example where Assumptions 4.2-4.4 hold is
given next.

Example 2. We show in this example that Assumptions 4.2-4.4 hold for
a large category of deferrable electric loads. For appliances such as Plug-
in Hybrid Electric Vehicles (PHEVSs), dish washers, or clothes washers, a
customer usually only cares whether a task is completed before a certain
time.

Given an initial state (type) of consumer i, x;0, let D(x;0) and T'(x;0)
indicate her total desired demand and the stage by which the task has to be
completed, respectively. Under a given history h;, the total utility accumu-
lated by consumer ¢ until time ¢ is assumed to be of the form

min{7T'(x;,0),t}

Un, (%i0, @iy - - ig) = Z | i, min { D(z;p), Z a7 ;
7=0

for some function Z. If for every z;o € Xy, Z(x;p, -) is nondecreasing and
concave, then Assumption 4.2 holds. At stage t = 0, we have

Uo(xz‘,m 50, az‘,O) =7 (%‘,0, min {D(xi,o), Gz‘,o}) .

Fort=1,....T(z;p), we let z;; = Zi_:lo a;.r, and

Ui(@i0, Zig, 51, @iy) = Z (T30, min {D(240), @iy + Zig})
—Z (xi,07 min {D(l‘i’o), Zi,t}) .
Fort > T(x;0) + 1, we let 2, = D(x;0), and let Uy(;¢, S¢, a;¢) be identically

zero. Suppose that for every z;o € Ap, the right and left derivatives of
Z(x;p, -) exist. Then, Assumptions 4.3 and 4.4 hold. [

Theorem 2. Suppose that Assumptions 2-4 hold. Let v be a DOE of the
continuum game. Then, the following hold.
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(a) In the continuum game, the social welfare is mazximized (over all dy-
namic oblivious strateqy profiles) at the DOE, i.e., 14

Wo(so | V) = supgeg Wo(so | ¥), Vsp € S,
where BV is the set of all dynamic oblivious strategies.

(b) For a sequence of n-consumer games, the symmetric DOE strategy pro-
file, v" = (v,...,v), asymptotically mazimizes the expected social wel-
fare, as the number of consumers increases to infinity. That is, for any
initial global state sy, and any sequence of symmetric history-dependent
strategy profiles {k"}, we have'®

W 0| ) W )

n—00 n

limsup E {

where the expectation is over the initial population state, f§.

The proof of Theorem 2 is given in Appendix D.

7. Conclusion and Future Directions

In an electric power system, load swings may result in significant ancillary
cost to suppliers. Motivated by the observation that marginal cost pricing
may not achieve social optimality in electricity markets, we propose a new
dynamic pricing mechanism that takes into account the externality conferred
by a consumer’s action on future ancillary costs. Besides proposing a suitable
game-theoretic model that incorporates the cost of load fluctuations and a
particular pricing mechanism for electricity markets, a main contribution of
this paper is to show that the proposed pricing mechanism achieves social

4Note that we are only comparing the social welfare under different symmetric dy-
namic oblivious strategy profiles, where all consumers are using the same dynamic oblivious
strategy (v or ¢). This is no loss of generality because under Assumption 4, the social
welfare in a continuum game is a concave function of the collection of consumer actions
taken under the different histories. Hence, it can be shown that the optimal social welfare
can be achieved by a symmetric dynamic oblivious strategy profile.

15Under Assumption 4, the social welfare in an n-consumer game is a concave func-
tion of the collection of consumer actions taken under the different histories. Therefore,
SUP,negq, Wi (f5', 50 | £") is also the maximum social welfare that can be achieved by a
(possibly non-symmetric) history-dependent strategy profile.
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optimality in a dynamic non-atomic game, and approximate social optimality
for the case of finitely many consumers, under certain convexity assumptions.

To compare the proposed pricing mechanism with marginal cost pricing,
we have studied a numerical example in which demand increases sharply
at the last stage (cf. Appendix E). In this example, the proposed pricing
mechanism creates a stronger incentive (compared to marginal cost pricing)
for consumers to shift their peak load, through an additional negative price
charged on off-peak consumer demand. As a result, compared with marginal
cost pricing, the proposed pricing mechanism achieves a higher social welfare,
and at the same time, reduces the peak load, and therefore has the potential
to reduce the need for long-term investments in peaking plants.

We believe that the constructed dynamic game-theoretic model, the pro-
posed pricing mechanism, and more importantly, the insights provided by
this work, can be applied to more general markets with friction. As an ex-
tension and future work, one can potentially develop and use variations of
our framework to a market of a perishable product/service where demand
fluctuations incur significant cost to suppliers. Examples include data centers
implementing cloud services that suffer from the switching costs to toggle a
server into and out of a power-saving mode (Lin et al., 2011), and large orga-
nizations such as hospitals that use on-call staff to meet unexpected demand.
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