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Max-Weight Scheduling in Queueing Networks with
Heavy-Tailed Traffic

Mihalis G. Markakis, Eytan Modiano, and John N. Tsitsiklis

Abstract—We consider the problem of scheduling in a single-
hop switched network with a mix of heavy-tailed and light-
tailed traffic, and analyze the impact of heavy-tailed traffic on
the performance of Max-Weight scheduling. As a performance
metric we use the delay stability of traffic flows: a traffic flow is
delay stable if its expected steady state delay is finite, and delay
unstable otherwise. First, we show that a heavy-tailed traffic
flow is delay unstable under any scheduling policy. Then, we
focus on the celebrated Max-Weight scheduling policy, and show
that a light-tailed flow that conflicts with a heavy-tailed flow
is also delay unstable. This is true irrespective of the rate or
the tail distribution of the light-tailed flow, or other scheduling
constraints in the network. Surprisingly, we show that a light-
tailed flow can become delay unstable, even when it does not
conflict with heavy-tailed traffic. Delay stability in this case may
depend on the rate of the light-tailed flow. Finally, we turn our
attention to the class of Max-Weight-α scheduling policies. We
show that if the α-parameters are chosen suitably, then the sum
of the α-moments of the steady-state queue lengths is finite. We
provide an explicit upper bound for the latter quantity, from
which we derive results related to the delay stability of traffic
flows, and the scaling of moments of steady state queue lengths
with traffic intensity.

I. INTRODUCTION

We consider a single-hop switched network, a queueing
system where the traffic of each flow is buffered in a ded-
icated single-server queue, eventually gets served, and then
exits the system. This model has been used to capture the
dynamics and decisions in data communication networks (e.g.,
wireless networks [10], input-queued switches [20]), flexible
manufacturing systems [8], and cloud computing facilities
[16]. In all of these application areas, not all queues can be
served at the same time, e.g., due to wireless interference
constraints or due to matching constraints in a switch. Thus,
only subsets of servers can be simultaneously active, giving
rise to a fundamental scheduling problem: which subset of
servers to activate, and at which point in time? Clearly, the
overall performance of the network depends critically on the
scheduling policy applied.

The focus of this paper is on a well-studied class of schedul-
ing policies, commonly refered to as Max-Weight policies.
This class of policies was introduced in the seminal work
of Tassiulas and Ephremides [32], and since then, numerous
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studies have analyzed the performance of such policies in
very general settings, e.g., see [1], [10], and the references
therein. A remarkable property of Max-Weight policies is
their throughput optimality, i.e., their ability to stabilize a
queueing network whenever this is possible, without any
explicit information on the arriving traffic. Moreover, it has
been shown that policies from this class achieve low, or even
optimal, average delay for specific network topologies under
light-tailed traffic, and are asymptotically delay optimal in the
heavy traffic regime [9], [22], [27], [31], [33]. 1 However,
the performance of Max-Weight scheduling in the presence of
heavy-tailed traffic is not well-understood.

We are motivated to study networks with heavy-tailed traffic
by empirical evidence that traffic in data communication
networks exhibits strong correlations and statistical similarity
over different time scales. This observation was first made
by Leland et al. [15] through analysis of Ethernet traffic
traces. Subsequent empirical studies have documented this
phenomenon in other networks, while accompanying theoret-
ical studies have associated it with arrival processes that have
heavy tails; see [24] for an overview. Although the impact of
heavy tails has been analyzed extensively in single or multi-
server queues, e.g., see the survey papers [2], [4], the related
work for more complex queueing systems, with a mix of
heavy-tailed and light-tailed traffic, is rather limited. Notable
exceptions are the papers by Borst et al. [3], by Jagannathan
et al. [13], and by Nair et al. [21], all of which study a system
with two parallel queues and a single server, with a mix of
heavy-tailed and light-tailed traffic, under different scheduling
policies.

The present paper aims to fill a gap in the literature,
by analyzing the performance of Max-Weight scheduling in
the context of a switched queueing network, with a mix of
heavy-tailed and light-tailed traffic. In particular, we study
the delay stability of traffic flows: a traffic flow is delay
stable if its expected steady state delay is finite, and delay
unstable otherwise. Relative to the existing literature, our
main contributions are the following: (i) we show that
under the Max-Weight scheduling policy, any light-tailed flow
that conflicts with a heavy-tailed flow is delay unstable; (ii)
surprisingly, we also show that for certain admissible arrival
rates, a light-tailed flow can be delay unstable even if it does
not conflict with heavy-tailed traffic; (iii) we analyze the Max-
Weight-α scheduling policy, and show that if the α-parameters
are chosen suitably, then the α-moments of the steady state

1On the other hand, when Max-Weight scheduling is combined with Back-
Pressure routing in the context of multi-hop networks, there is evidence that
delay performance can be poor, e.g., see the discussion in [5].
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queue lengths is finite. We use this result to prove that, by
proper choice of the α-parameters, all light-tailed flows are
delay stable. Moreover, we show that Max-Weight-α achieves
the optimal scaling of higher moments of steady state queue
lengths with traffic intensity.

The rest of the paper is organized as follows. Section
II includes a detailed presentation of the queueing model
considered in this paper, as well as formal definitions of heavy-
tailed and light-tailed traffic and of delay stability. In Section
III we motivate the subsequent development by presenting,
informally and through simple examples, the main results of
the paper. In Section IV we analyze the performance of the
celebrated Max-Weight scheduling policy. Section V contains
the analysis of the parameterized Max-Weight-α scheduling
policy and of the performance that it achieves, in terms of
delay stability. This section also includes results about the
scaling of moments of steady state queue lengths with the
traffic intensity and the size of the network. We conclude with
a discussion of our findings and future research directions in
Section VI. The appendices contain some background material
and most of the proofs of our results.

II. MODEL AND PROBLEM FORMULATION

We start with a detailed presentation of the queueing model
considered in this paper, together with some necessary defini-
tions and notation.

We denote by R+, Z+, and N the sets of nonnegative reals,
nonnegative integers, and positive integers, respectively. The
cartesian products of M copies of R+ and Z+ are denoted by
RM+ and ZM+ , respectively.

We consider a discrete time switched queueing network,
where arrivals occur at the end of each time slot. Central to
our model is the notion of a traffic flow f ∈ {1, . . . , F},
which is a long-lived stream of traffic that arrives to the
network according to a discrete time stochastic arrival process
{Af (t); t ∈ Z+}. We assume that all arrival processes take
values in Z+, and are independent and identically distributed
(IID) over time. Furthermore, different arrival processes are
mutually independent. We denote by λf = E[Af (0)] > 0 the
rate of traffic flow f and by λ = (λf ; f = 1, . . . , F ) the
vector of the rates of all traffic flows.

Definition 1: (Heavy Tails) A random variable X is heavy-
tailed if E[X2] is infinite, and is light-tailed otherwise. We
define similarly a heavy/light-tailed IID traffic flow.

There are several definitions of heavy/light tails in the
literature. In fact, a random variable is often defined as light-
tailed if it is of exponential-type, and heavy-tailed otherwise.
The definition adopted in this paper has been used in the area
of data communication networks (e.g., see [24]).

In this paper we consider single-hop traffic flows, i.e.,
the traffic of flow f is buffered in a dedicated single-server
queue (queue f and server f , henceforth), eventually gets
served, and then exits the system. Our modeling assumptions
imply that the set of traffic flows can be identified with the
set of queues and the set of servers of the network. The
service discipline within each queue is assumed to be “First

Come, First Served.” The stochastic process {Qf (t); t ∈ Z+}
captures the evolution of the length of queue f . Since our
main motivation comes from data communication networks,
Af (t) will be interpreted as the number of packets that queue
f receives at the end of time slot t, and Qf (t) as the total
number of packets in queue f at the beginning of time slot t.
The arrivals and the lengths of the various queues at time slot
t are captured by the vectors A(t) = (Af (t); f = 1, . . . , F )
and Q(t) = (Qf (t); f = 1, . . . , F ), respectively.

In the context of data communication networks, a batch
of packets arriving to a queue at any given time slot can
be viewed as a single entity, e.g., as a file that needs to be
transmitted. We define the end-to-end delay of a file of flow
f to be the number of time slots that the file spends in the
network, starting from the time slot right after it arrives at
queue f , until the time slot that its last packet gets served. For
k ∈ N, we denote by Df (k) the end-to-end delay of the kth

file of queue f . The vector D(k) = (Df (k); f = 1, . . . , F )
captures the end-to-end delay of the kth files of the different
traffic flows.

In a switched network, not all servers can be simultane-
ously active, e.g., due to interference in wireless networks or
matching constraints in a switch. Consequently, not all traffic
flows can be served simultaneously. A set of traffic flows that
can be served simultaneously is called a feasible schedule. We
denote by S the set of all feasible schedules, which is assumed
to be an arbitrary subset of the powerset of {1, . . . , F}. For
simplicity, we assume that all packets have the same size, and
that the service rate of all servers is equal to one packet per
time slot. We denote by Sf (t) ∈ {0, 1} the number of packets
that are scheduled for service from queue f at time slot t. Note
that this is not necessarily equal to the number of packets that
are actually served, because the queue may be empty. We use
the vector notation S(t) = (Sf (t); f = 1, . . . , F ).

Using the notation above, the dynamics of queue f take
the form

Qf (t+ 1) = Qf (t) +Af (t)− Sf (t) · 1{Qf (t)>0},

for all t ∈ Z+, where 1{Qf (t)>0} denotes the indicator function
of the event {Qf (t) > 0}. The vector of initial queue lengths
Q(0) is assumed to be an arbitrary element of ZF+.

Let us now define formally the notion of a scheduling
policy. The past history and present state of the system at
time slot t ∈ N is captured by the vector

H(t) = (Q(0), A(0), . . . , Q(t− 1), A(t− 1), Q(t)).

At time slot 0, we have H(0) = (Q(0)). A (causal) scheduling
policy is a sequence π = (µ0, µ1, . . .) of functions µt :
H(t) → S, t ∈ Z+, used to determine scheduling decisions,
according to S(t) = µt(H(t)).

We restrict our attention to scheduling policies that are
regenerative, i.e., policies under which the network starts
afresh probabilistically at certain time slots. More precisely,
under a regenerative policy there exists a sequence of stopping
times {τn; n ∈ Z+} with the folowing properties. (i) The
sequence {τn+1 − τn; n ∈ Z+} is IID. (ii) Let X(t) =
(Q(t), A(t), S(t)), and consider the processes that describe the
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“cycles” of the network, namely, C0 = {X(t); 0 ≤ t < τ0},
and Cn = {X(τn−1 + t); 0 ≤ t < τn − τn−1}, n ∈ N; then,
{Cn; n ∈ N} is an IID sequence, independent of C0. (iii) The
(lattice) distribution of the cycle lengths, τn+1 − τn, has span
equal to one and finite expectation.

Properties (i) and (ii) imply that the switched network
evolves like a (possibly delayed) regenerative process. Prop-
erty (iii) states that this process is aperiodic and positive
recurrent. We note that Max-Weight-type policies, which are
the focus of this paper, are regenerative (this will be made
precise later). Moreover, a number of other widely studied
policies belong to this class, e.g., priority, round-robin, and
randomized policies.

The following definition gives the precise notion of stability
that we use in this paper.

Definition 2: (Stability) The switched network described
above is stable under a specific scheduling policy if the vector-
valued sequences {Q(t); t ∈ Z+} and {D(k); k ∈ N}
converge in distribution, and their limiting distributions do not
depend on the initial queue lengths Q(0).

Notice that our definition of stability is slightly different
than the commonly used definition (positive recurrence of
the Markov chain of queue lengths), since it includes the
convergence of the sequence of file delays {D(k); k ∈ N}.
The reason is that in this paper we study properties of the
limiting distribution of {D(k); k ∈ N} and, naturally, we
need to ensure that this limiting distribution exists.

Under a stabilizing scheduling policy, we denote by Q =
(Qf ; f = 1, . . . , F ) and D = (Df ; f = 1, . . . , F )
generic random vectors distributed according to the limiting
distributions of {Q(t); t ∈ Z+} and {D(k); k ∈ N},
respectively. The dependence of these limiting distributions on
the scheduling policy has been suppressed from the notation,
but will be clear from the context. We refer to Qf as the
steady state length of queue f . Similarly, we refer to Df as the
steady state delay of a file of traffic flow f . We note that under
a regenerative policy (if one exists), the queueing network is
guaranteed to be stable. This is because the sequences of queue
lengths and file delays are (possibly delayed) aperiodic and
positive recurrent regenerative processes, and, hence, converge
in distribution; see [30].

The stability of the switched network depends on the arrival
rates of the various traffic flows relative to the service rates
of the servers and the scheduling constraints. This relation is
captured by the stability region of the network.

Definition 3: (Stability Region [32]) The stability region
of the queueing network described above, denoted by Λ, is the
set of rate vectors{
λ ∈ RF+

∣∣∣ ∃ ζs ∈ R+, s ∈ S : λ ≤
∑
s∈S

ζs · s,
∑
s∈S

ζs < 1
}
.

In other words, a rate vector λ belongs to Λ if there exists a
convex combination of feasible schedules that covers the rates
of all traffic flows. If a rate vector is in the stability region
of the network, then the traffic corresponding to this vector is
called admissible, and there exists a scheduling policy under
which the network is stable.

Definition 4: (Traffic Intensity) The traffic intensity of a
rate vector λ ∈ Λ is a real number defined as follows:

ρ(λ) = inf
{∑
s∈S

ζs

∣∣∣ λ ≤∑
s∈S

ζs · s; ζs ∈ R+, ∀s ∈ S
}
.

Clearly, arriving traffic with rate vector λ is admissible if
and only if ρ(λ) < 1. Throughout this paper we assume
that the traffic is admissible.

Let us now define the property that we use to evaluate the
performance of scheduling policies, namely, the delay stability
of a traffic flow.

Definition 5: (Delay Stability) A traffic flow f is delay sta-
ble under a specific scheduling policy, if the switched network
is stable under that policy and E[Df ] is finite; otherwise, the
traffic flow f is delay unstable.

The following lemma relates the steady state quantities
E[Qf ] and E[Df ], and will help us prove delay stability
results.

Lemma 1: Consider the switched network described above
under a regenerative scheduling policy. Then,

E[Qf ] <∞ ⇐⇒ E[Df ] <∞, ∀f ∈ {1, . . . , F}.

Proof: see Appendix 1.1.

Theorem 1: (Delay Instability of Heavy Tails) Consider
the switched network described above under a regenerative
scheduling policy. Every heavy-tailed traffic flow is delay
unstable.

Proof: see Appendix 2.

Since there is little we can do about the delay stability of
heavy-tailed flows, we turn our attention to light-tailed traffic.
The Pollaczek-Khinchine formula for the expected delay in a
M/G/1 queue indicates that the intrinsic burstiness of light-
tailed traffic is not sufficient to cause delay instability. How-
ever, scheduling in a queueing network couples the statistics
of different traffic flows. We will see that this coupling can
cause light-tailed flows to become delay unstable, giving rise
to a form of propagation of delay instability.

It should be noted that Lemma 1, Theorem 1, and all
subsequent results are proved under the assumption that the
“First Come, First Served” discipline is used within each
queue. Indeed, a heavy-tailed flow could be delay stable under
other intra-queue service disciplines, e.g., “Last Come, First
Served” or Processor-Sharing; see [4]. However, the focus of
this paper is on the impact of heavy-tailed traffic on light-tailed
flows, under Max-Weight-type scheduling. Since Max-Weight
policies are queue length-based, the main findings of this paper
that characterize this impact (Theorem 2, Propositions 1 and 2,
Corollary 1) remain true irrespective of the service discipline
within each queue.

III. OVERVIEW OF MAIN RESULTS

In this section we introduce, informally and through simple
examples, the main results of the paper and the basic intuition
behind them.
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Let us start with the queueing system of Figure 1, which
consists of two parallel queues and a single server. Traffic
flow 1 is assumed to be heavy-tailed, whereas traffic flow 2 is
light-tailed. Service is allocated according to the Max-Weight
scheduling policy, which is equivalent to “Serve the Longest
Queue” in this simple setting. Theorem 1 implies that traffic
flow 1 is delay unstable. Our findings imply that traffic flow
2 is also delay unstable, even though it is light-tailed. The
intuition behind this result is that queue 1 is occasionally very
long (infinite, in steady state expectation) because of its heavy-
tailed arrivals. When this happens, and under the Max-Weight
policy, queue 2 has to build up to a similar length in order
to receive service. A very long queue then implies very large
delays for the files of that queue under “First Come, First
Served,” which leads to delay instability.

Fig. 1. Delay instability in parallel queues with heavy-tailed traffic.

Systems of parallel queues have been analyzed extensively
in the literature. One of the main reasons is that their simple
dynamics often lead to elegant analysis and simple results. In
this paper we go beyond parallel queues, and analyze queueing
networks with a more complicated structure. An example is the
queueing network of Figure 2, where traffic flow 1 is assumed
to be heavy-tailed, whereas traffic flows 2 and 3 are light-
tailed. The server can serve either queue 1 alone, or queues 2
and 3 simultaneously. This example could represent a wireless
network with interference constraints. In this setting the Max-
Weight policy compares the length of queue 1 to the sum of the
lengths of queues 2 and 3, and serves the “heavier” schedule.

The intuition from the previous example suggests that at
least one of the queues 2 and 3 has to build up to the order
of magnitude of queue 1, in order for these two queues to
receive service. In other words, we expect that at least one of
the traffic flows 2 and 3 will be delay unstable under Max-
Weight. Our findings imply that, in fact, both traffic flows
are delay unstable. The main idea behind this result is the
following: with positive probability, the arrival processes to
queues 2 and 3 exhibit their “average” behavior. In that case,
the corresponding queues build up slowly and together, which
implies that when they finally claim the server, they have both
built up to the order of magnitude of queue 1.

The simple networks of Figures 1 and 2 illustrate special
cases of a general result: every light-tailed flow that conflicts

Fig. 2. Propagation of delay instability: conflicting with heavy-tailed traffic.

with a heavy-tailed flow is delay unstable. For more details,
see Theorem 2 in Section IV.A.

Fig. 3. Propagation of delay instability: non-conflicting with heavy-tailed
traffic.

Going one step further, consider the queueing network of
Figure 3. Traffic flow 1 is assumed to be heavy-tailed, whereas
traffic flows 2 and 3 are light-tailed. The server can serve
either queues 1 and 2 simultaneously, or queue 3 alone. In this
setting the Max-Weight policy compares the length of queue
3 to the sum of the lengths of queues 1 and 2, and serves the
“heavier” schedule. The intuition from the previous examples
suggests that traffic flow 3 is delay unstable, but there is a
nontrivial question regarding the delay stability of traffic flow
2. One would expect that this flow is delay stable: it is light-
tailed itself, and is served together with a heavy-tailed flow,
which should result in more service opportunities under Max-
Weight. Surprisingly though, we show that there exist arrival
rates within the stability region of this network, such that
traffic flow 2 is delay unstable. The key observation here is
that even though traffic flow 2 does not conflict with heavy-
tailed traffic, it does conflict with traffic flow 3, which is
delay unstable because it conflicts with heavy-tailed traffic.
Conversely, we also show that traffic flow 2 is delay stable, if
its rate is sufficiently low. For more details see Propositions 1
and 2 in Section IV.B.
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The examples above suggest that in queueing networks
with heavy-tailed traffic, delay instability not only appears
but propagates through the network under the Max-Weight
policy. Seeking a remedy to this situation, we turn to the more
general Max-Weight-α scheduling policy. This policy assigns
a positive α-parameter to each traffic flow, and instead of using
the queue lengths to calculate the weight of a schedule, it uses
the respective α-powers of the queue lengths. Our findings
imply that in the network of Figure 1, we can guarantee that
traffic flow 2 is delay stable, provided the α-parameter
for traffic flow 1 is sufficiently small. In other words, we
can prevent the propagation of delay instability. This is a
special case of a general result: if the α-parameters of the
Max-Weight-α policy are chosen suitably, then the sum of the
α-moments of steady state queue lengths is finite (see Theorem
3 in Section V.A).

IV. MAX-WEIGHT SCHEDULING

In this section we evaluate the performance of the Max-
Weight scheduling policy in terms of the delay stability of
traffic flows. Informally speaking, the “weight” of a feasible
schedule is the sum of the lengths of all queues included
in it. As its name suggests, the Max-Weight policy activates
a feasible schedule that has maximum weight, at any given
time slot. More formally, under the Max-Weight policy, the
scheduling vector S(t) satisfies

S(t) ∈ arg max
(Sf )∈S

{ F∑
f=1

Qf (t) · Sf
}
.

If the set on the right-hand side includes multiple feasible
schedules, then one of them is chosen uniformly at random.
The following lemma states that the network is stable under the
Max-Weight policy. Essentially, this result is well-known, e.g.,
for light-tailed traffic, see [32]; for more general arrivals, see
[31]. A subtle point is that in this paper we adopt a somewhat
different definition for stability. So, we need to ensure that,
apart from the sequences of queue lengths, the sequences of
file delays converge as well.

Lemma 2: (Stability under Max-Weight) The switched
network described in Section II is stable under the Max-Weight
scheduling policy.

Proof: Consider the switched network of Section II under
the Max-Weight scheduling policy. It can be verified that the
sequence {Q(t); t ∈ Z+} is a time-homogeneous, irreducible,
and aperiodic Markov chain on the countable state-space ZF+.
Proposition 2 of [31] implies that this Markov chain is also
positive recurrent. Hence, {Q(t); t ∈ Z+} converges in
distribution, and its limiting distribution does not depend on
Q(0). Based on this, it can be verified that the sequence
{D(k); k ∈ N} is a (possibly delayed) aperiodic and positive
recurrent regenerative process. Therefore, it also converges in
distribution, and its limiting distribution does not depend on
Q(0); see [30].

A. Conflicting with Heavy-Tailed Flows

Next, we state one of the main results of the paper, which
generalizes our observations from the simple networks of
Figures 1 and 2. Before we give the result, let us define
precisely the notion of conflict between traffic flows.

Definition 6: Traffic flow f conflicts with f ′, and vice versa,
if there exists no feasible schedule in S that includes both f
and f ′.

Theorem 2: (Conflicting with Heavy Tails) Consider the
switched network described in Section II under the Max-
Weight scheduling policy. Every light-tailed flow that conflicts
with a heavy-tailed flow is delay unstable.

Proof: see Appendix 3.

We emphasize the generality of this result. Namely, a light-
tailed flow that conflicts with heavy-tailed traffic is delay
unstable, irrespective of (i) its arrival rate; (ii) the tail asymp-
totics of its arrivals; (iii) whether it is scheduled alone or with
other traffic flows. Hence, we view Theorem 2 as capturing a
universal phenomenon of instability propagation.

B. Non-Conflicting with Heavy-Tailed Flows

So far we have shown that (i) a heavy-tailed traffic flow
is delay unstable under any regenerative scheduling policy;
and (ii) a light-tailed traffic flow that conflicts with a heavy-
tailed flow is delay unstable under the Max-Weight scheduling
policy. It seems reasonable to assume that a light-tailed flow
that does not conflict with heavy-tailed traffic is delay stable.
Surprisingly, this is not always the case. We demonstrate this
by means of a simple example.

Let us come back to the queueing system of Figure 3.
The feasible schedules of this system are {1, 2} and {3},
and all queues are served at unit rate whenever the respective
schedules are activated. The rate vector λ = (λ1, λ2, λ3) is
assumed admissible. The following proposition shows that
traffic flow 2 is delay unstable if its rate is sufficiently high.

Proposition 1: (Rate-Dependent Delay Instability) Con-
sider the switched network of Figure 3 under the Max-Weight
scheduling policy. If the arriving traffic is admissible and the
rates satisfy λ2 > (1 +λ1−λ3)/2, then traffic flow 2 is delay
unstable.

Proof: (Sketch) Our approach is based on tracking the
evolution of the system on a particular set of “fluid” sample
paths: assume that at time slot 0, queue 1 receives a very large
file, consisting of b packets. For a long period of time after
that, queue 3 does not receive service under the Max-Weight
policy, and builds up. If the arrival processes of all traffic flows
are close to their “average behavior,” then at the time slot when
the service switches from schedule {1, 2} to schedule {3}, the
lengths of both queues 1 and 3 are proportional to b, whereas
queue 2 is still small. From that point on, the Max-Weight
policy will drain the weights of the two schedules at roughly
the same rate, until one of the weights becomes zero.

Let µf be the average departure rate from queue f during
the latter period. For the weights of the two schedules to be
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drained at the same rate, the departure rates have to satisfy:

λ1 + λ2 − µ1 − µ2 = λ3 − µ3.

Moreover, the fact that Max-Weight is a work-conserving
policy implies that

µ1 + µ3 = 1.

Finally, since queues 1 and 2 are served simultaneously, and
queue 2 may be empty during parts of the draining period, we
have that

µ1 ≥ µ2.

The above equations and some simple algebra imply that

1 + λ1 + λ2 − λ3

3
≥ µ2.

Now suppose that the arrival rates satisfy

λ2 >
1 + λ1 − λ3

2
.

Then,

λ2 >
1 + λ1 + λ2 − λ3

3
≥ µ2.

This implies that queue 2 builds up at a roughly constant
rate during a period of time whose duration is proportional
to b. Thus, queue 2 eventually builds up to size O(b), and the
integral of Q2(t) over a busy period of the process becomes of
order O(b2). In that case E[Q2] is infinite, because b is drawn
from a heavy-tailed distribution (see Lemma 3 in Appendix
1.2). Finally, Lemma 1 implies the delay instability of queue
2. A detailed proof of Proposition 1 can be found in [18].

Now we establish that when λ2 < (1 + λ1 − λ3)/2 queue
2 is delay stable, achieving, thus, an exact characterization of
the “delay stability region” of queue 2. In order to do that,
we further assume that light-tailed traffic has exponentially
decaying tails. Formally, a nonnegative random variable X
is exponential-type, if there exists some θ > 0 such that
E[exp(θX)] is finite.

Proposition 2: (Rate-Dependent Delay Stability) Consider
the switched network of Figure 3 under the Max-Weight
scheduling policy, with admissible arriving traffic. Suppose
that A2(0) and A3(0) are exponential-type, and that there
exists some γ > 0 such that E[Aγ+1

1 (0)] is finite. If the arrival
rates satisfy λ2 < (1+λ1−λ3)/2, then queue 2 is delay stable,
and the steady state length of queue 2 is exponential-type.

Proof: (Sketch) The proof of Proposition 2 is based
on drift analysis of the following piecewise linear Lyapunov
function, which is nonincreasing in the length of the heavy-
tailed queue, and has a negative drift only when λ2 <
(1 + λ1 − λ3)/2:

G(t) = 3Q2(t) +
[
Q3(t)−Q1(t)−Q2(t)

]+
,

where [x]+ stands for max{x, 0}, the nonnegative part of a
scalar x. In particular, we show that for sufficiently large (but
fixed) T ∈ N, there exist positive constants α and ε, such that

E
[
G(t+ T )−G(t) + ε ; G(t) > α

∣∣∣ Ft] ≤ 0,

where Ft is the σ-algebra generated by Q(0), A(0), . . . , Q(t−
1), A(t − 1), Q(t), and E[X;A | H] is a shorthand notation
for E[X · 1A | H].

The above drift condition, and the fact that the arrivals to
queues 2 and 3 are exponential-type, imply that the (steady
state) random variable

3Q2 + [Q3 −Q1 −Q2]+

is exponential-type (see Theorem 2.3 in [11]). A detailed proof
of Proposition 2 can be found in [18].

V. MAX-WEIGHT-α SCHEDULING

The results of the previous section suggest that Max-Weight
scheduling performs poorly in the presence of heavy-tailed
traffic. The reason is that by treating heavy-tailed and light-
tailed flows equally, there are very long stretches of time
during which heavy-tailed traffic dominates the service. This
leads some light-tailed flows to experience very large delays.
Intuitively, by discriminating against heavy-tailed flows, one
should be able to improve the overall performance of the net-
work, namely to mitigate the propagation of delay instability.
One way to do this is by giving preemptive priority to the
light-tailed flows. However, priority-based scheduling policies
are undesirable because of fairness considerations, and also
because they can be unstable in many network settings, e.g.,
see [14], [25].

Instead, we focus on the Max-Weight-α scheduling policy:
given constants αf > 0, f ∈ {1, . . . , F}, the scheduling
vector S(t) satisfies

S(t) ∈ arg max
(Sf )∈S

{ F∑
f=1

Q
αf

f (t) · Sf
}
.

If the set on the right-hand side includes multiple feasible
schedules, one of them is chosen uniformly at random. By
choosing smaller values for the α-parameters of heavy-tailed
flows and larger values for light-tailed flows, we give a form
of partial priority to light-tailed traffic.

A. The Main Result

Let us start with a preview of the main result of this section:
if the α-parameters of the Max-Weight-α policy are chosen
so that E[A

αf+1
f (0)] is finite, for all f ∈ {1, . . . , F}, then the

network is stable and the steady state queue lengths satisfy:

E[Q
αf

f ] <∞, ∀f ∈ {1, . . . , F}.

An earlier work by Eryilmaz et al. has given a similar result for
the case of parallel queues with a single server; see Theorem
1 of [6]. In this paper we extend their result to a single-hop
switched network setting. Moreover, we provide an explicit
upper bound on the sum of the α-moments of the steady
state queue lengths. Before we do that we need the following
definition.

Definition 7: (Covering Number of Feasible Schedules)
The covering number k∗ of the set of feasible schedules
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is defined as the smallest number k for which there exist
s1, . . . , sk ∈ S with

⋃k
i=1 s

i = {1, . . . , F}.

Theorem 3: (Max-Weight-α Scheduling) Consider the
switched network described in Section II under the Max-
Weight-α scheduling policy. Let the intensity of the arriving
traffic be ρ < 1. If E[A

αf+1
f (0)] is finite, for all f ∈

{1, . . . , F}, then the network is stable and the steady state
queue lengths satisfy

F∑
f=1

E[Q
αf

f ] ≤
F∑
f=1

H
(
ρ, k∗, αf ,E[A

αf+1
f (0)]

)
,

where

H
(
ρ, k∗, αf ,E[A

αf+1
f (0)]

)
=


2k∗

1−ρ ·
(
E[A

αf+1
f (0)] + 1

)
, αf ≤ 1,(

2k∗

1−ρ

)αf

·Kαf + 2k∗

1−ρ ·K, αf > 1,

and K = 2αf−1 · αf ·
(
E[A

αf+1
f (0)] + 1

)
.

Proof: see Appendix 4.

It is known that bounds derived from conventional Lya-
punov arguments are, in general, loose. The bound provided
in Theorem 3 is, probably, no exception to this rule, e.g., see
Corollary 3 and the subsequent discussion, in Section V.C. In
this light, the value of Theorem 3 lies on the following: (i) it
gives a feel for which structural parameters of the network
and which characteristics of the arriving traffic may affect
the actual performance of Max-Weight-type policies; (ii) it
provides the correct scaling of higher order queue length
moments with traffic intensity (see Corollary 2, in Section
V.B).

B. Traffic Burstiness and Delay Stability

A first corollary of Theorem 3 relates to the delay stability
of light-tailed flows.

Corollary 1: (Delay Stability under Max-Weight-α) Con-
sider the switched network described in Section II under the
Max-Weight-α scheduling policy. Suppose that there exists
some γ > 0 such that E[Aγ+1

f (0)] is finite, for all f ∈
{1, . . . , F}. If the α-parameters of all light-tailed flows are
equal to 1, and the α-parameters of heavy-tailed flows are
sufficiently small, then all light-tailed flows are delay stable.

Proof: With the particular choice of α-parameters, Theo-
rem 3 guarantees that the expected steady state queue length
of all light-tailed flows is finite. Lemma 1 relates this result
to delay stability.

Combining this with Theorem 1, we conclude that, when the
α-parameters are chosen suitably, the Max-Weight-α policy
delay-stabilizes a traffic flow whenever this is possible.

Max-Weight-α turns out to perform well in terms of an-
other criterion too. Theorem 3 implies that by choosing the
α-parameters so that E[A

αf+1
f (0)] is finite, for all f ∈

{1, . . . , F}, the steady state queue length moment E[Q
αf

f ] is
finite, for all f ∈ {1, . . . , F}. The following result suggests

that, for traffic flows with polynomially decaying tails, this is
the best we can do under any regenerative scheduling policy.

Theorem 4: Consider the switched network described in
Section II under a regenerative scheduling policy. If, for any
given f ∈ {1, . . . , F} and γ > 0, the moment E[Aγ+1

f (0)] is
infinite, then E[Qγf ] is infinite.

Proof: This result is well-known in the context of a
M/G/1 queue, e.g., see Section 3.2 of [4]. It can be proved
similarly to Theorem 1.

Thus, when the α-parameters are chosen suitably, the Max-
Weight-α policy guarantees the finiteness of the highest pos-
sible moments for traffic flows with polynomially decaying
tails.

C. Scaling Results under Light-Tailed Traffic

Although this paper focuses on heavy-tailed traffic and its
consequences, some implications of Theorem 3 are of general
interest. In this section we assume that all traffic flows in
the network are light-tailed, and analyze how the sum of the
α-moments of steady state queue lengths scales with traffic
intensity and the size of the network.

Corollary 2: (Scaling with Traffic Intensity) Let us fix
a switched network and constants α ≥ 1 and B > 0. The
Max-Weight-α scheduling policy is applied with αf = α, for
all f ∈ {1, . . . , F}. Assume that the traffic arriving to the
network is admissible, and that E[Aα+1

f (0)] ≤ B, for all f .
Then,

F∑
f=1

E[Qαf ] ≤ M(k∗, α,B)

(1− ρ)α
,

where M(k∗, α,B) is a constant that depends only on k∗, α,
and B. Moreover, under any stabilizing scheduling policy,

F∑
f=1

E[Qαf ] ≥ M ′(α)

(1− ρ)α
,

where M ′(α) is a constant that depends only on α.
Proof: The first part of the result follows directly from

Theorem 3. Regarding the second part, Theorem 2.1 of [28]
implies that under any stabilizing scheduling policy there
exists an absolute constant M̃ , such that

F∑
f=1

E[Qf ] ≥ M̃

1− ρ
.

Using Jensen’s inequality, we have
F∑
f=1

E[Qαf ] ≥
F∑
f=1

(E[Qf ])α ≥ 1

Fα

( F∑
f=1

E[Qf ]
)α
.

Consequently, there exists a constant M ′(α) that depends only
on α, such that

F∑
f=1

E[Qαf ] ≥ M ′(α)

(1− ρ)α
,

under any stabilizing scheduling policy.
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Similar scaling results appear in queueing theory, mostly
in the context of single-server queues, e.g., see Chapter 3 of
[12]. More recently, results of this flavor have been shown for
particular queueing networks, such as input-queued switches
[26], [28]. All related work, though, concerns the scaling of
first moments. Corollary 2 gives the precise scaling of higher
order steady state queue length moments with traffic intensity,
and shows that Max-Weight-α achieves the optimal scaling
of the α-moments.

Finally, we turn our attention to the performance of the
Max-Weight scheduling policy under Bernoulli traffic, i.e.,
when each of the arrival processes {Af (t); t ∈ Z+} is an
independent Bernoulli process with parameter λf > 0. We
denote by Smax the maximum number of traffic flows that
any feasible schedule s ∈ S can serve.

The following bound characterizes the performance of Max-
Weight in terms of structural parameters of the network and
the traffic intensity.

Corollary 3: (Scaling under Bernoulli Traffic) Consider
the switched network described in Section II under the Max-
Weight scheduling policy. Assume that the traffic arriving to
the network is Bernoulli, with traffic intensity ρ < 1. Then,

F∑
f=1

E[Qf ] ≤ 2k∗Smax

(1 + ρ

1− ρ

)
.

Proof: If all traffic flows are light-tailed and all α-
parameters are equal to one, a more careful accounting in
the proof of Theorem 3 provides the following tighter upper
bound:

F∑
f=1

E[Qf ] ≤ 2k∗

1− ρ

(
Smax +

F∑
f=1

E[A2
f (0)]

)
.

If the traffic arriving to the network is Bernoulli, then
E[A2

f (0)] = λf , for all f ∈ {1, . . . , F}. Moreover, the fact
that the arriving traffic has intensity ρ, implies the existence
of nonnegative real numbers ζs, for s ∈ S, such that

λf ≤
∑
s∈S

ζs · sf , ∀f ∈ {1, . . . , F},

with
∑F
f=1 ζs = ρ. Consequently,

F∑
f=1

E[A2
f (0)] =

F∑
f=1

λf ≤
F∑
f=1

∑
s∈S

ζs · sf ≤
∑
s∈S

ζs · Smax

= ρ · Smax,

and the result follows.

Example 1: (n Parallel Queues) Consider a single-server
system with n parallel queues. The arriving traffic is assumed
to be Bernoulli, with traffic intensity ρ < 1. In this case k∗ = n
and Smax = 1. Corollary 3 implies that under the Max-Weight
scheduling policy, the sum of the steady state queue lengths
is bounded from above as follows:

n∑
i=1

E[Qi] ≤
4n

1− ρ
.

The aggregate queue length of a system of parallel queues
under a work-conserving scheduling policy evolves like
a discrete time M/G/1 queue, from which we infer that∑n
i=1 E[Qi] = Θ

(
1

1−ρ

)
. So, in the context of parallel queues,

the scaling provided by Corollary 3 is tight with respect to the
traffic intensity, but not necessarily tight with respect to the
size of the network.

Example 2: (n×n Input-Queued Switch) Consider a n×
n input-queued switch. The arriving traffic is assumed to be
Bernoulli, with traffic intensity ρ < 1. In this case k∗ = n and
Smax = n. Corollary 3 implies that under the Max-Weight
scheduling policy, the sum of the steady state queue lengths
is bounded from above as follows:

n∑
i=1

n∑
j=1

E[Qij ] ≤
4n2

1− ρ
.

In the context of an input-queued switch, the joint scaling
provided by Corollary 3, in terms of both the traffic intensity
and the size of the network, is the tightest currently known.
However, it should be noted that the correct scaling under
Max-Weight as ρ goes to one, and as n becomes large, is an
open problem [26]. On a related note, a different scheduling
policy has been recently shown to achieve the optimal joint
scaling [29].

VI. DISCUSSION

The main conclusion of this paper is that the Max-Weight
scheduling policy performs poorly in the presence of heavy-
tailed traffic. More specifically, we show that the phenomenon
of delay instability not only arises but can propagate to a sig-
nificant part of the network, possibly depending on the arrival
rates. However, from the sketches of the proofs of Propositions
1 and 2, it becomes obvious that analyzing rate-dependent
delay (in)stability phenomena is somewhat involved, even
in simple queueing systems like the one in Figure 3. The
analysis of more complex networks is the subject of ongoing
research, and relies on fluid approximations, renewal theory,
and stochastic Lyapunov theory [19].

Another important conclusion is that the Max-Weight-α
scheduling policy can be used to alleviate the effects of heavy-
tailed traffic, and is order optimal if its α-parameters are
chosen suitably. However, for Max-Weight-α to perform well,
some knowledge of higher order statistics of the traffic flows is
required. If the α-parameters are not chosen appropriately, then
in light of Theorem 4, this policy may also perform poorly.

An important direction for future research is to consider
queueing networks with correlated traffic, as opposed to the
IID arrivals that are assumed in this paper. As alluded to
earlier, evidence suggests that traffic in data communication
networks exhibits strong correlations in time, e.g., long-range
dependence. We believe that the shortcomings of Max-Weight
persist in the presence of correlated traffic. In particular,
queues that receive LRD traffic are likely to dominate the
service for long periods of time, leading to large delays at
conflicting queues. For a related work in a more abstract
context, see also [23].
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APPENDIX 1 - BACKGROUND MATERIAL

1.1 BASTA, Little’s Law, and Delay Stability

In this section we state the steady state versions of two
important results in queueing theory, the “Bernoulli Arrivals
See Time Averages” property and Little’s Law, which we
subsequently use to prove Lemma 1.

Consider the switched network described in Section II. Let
τf,k be the random time slot of the arrival of the kth file
to queue f , k ∈ N, f ∈ {1, . . . , F}. We assign two marks
to this file: (i) the vector of queue lengths upon its arrival
Qc(f)(k) = (Qg(τf,k); g = 1, . . . , F ); and (ii) its end-to-end
delay Df (k).

Under a regenerative scheduling policy, and for a given
f ∈ {1, . . . , F}, the vector-valued sequences {Qc(f)(k); k ∈
N} and {Q(t); t ∈ Z+} are (possibly delayed) aperiodic
and positive recurrent regenerative processes. Therefore, they
converge in distribution, and their limiting distributions do not
depend on Q(0); see [30]. We denote by Qc(f) = (Q

c(f)
g ; g =

1, . . . , F ) and Q = (Qg; g = 1, . . . , F ) generic random
vectors distributed according to these limiting distributions.

The arrival of files at queue f constitutes a Bernoulli process
with parameter pf = P(Af (0) > 0), since all arrival processes
are IID. The Bernoulli Arrivals See Time Averages (BASTA)
property relates the limiting distributions Qc(f) and Q.

Theorem 5: (BASTA) Consider the switched network
described in Section II under a regenerative scheduling policy.
The random vectors Q and Qc(f) are identically distributed,
for all f ∈ {1, . . . , F}.

Now let Lf (t) be the number of files in queue f at time
slot t, either in queue or in service. Under a regenerative
scheduling policy, the sequences {Lf (t); t ∈ Z+} and
{Df (k); k ∈ N} are (possibly delayed) aperiodic and positive
recurrent regenerative processes. Hence, they converge in
distribution, and their limiting distributions do not depend on
Q(0); see [30]. We denote by Lf and Df generic random
variables distributed according to these limiting distributions.
Little’s Law relates their expected values.

Theorem 6: (Little’s Law) Consider the switched network
described in Section II under a regenerative scheduling policy.
Then,

E[Lf ] = pf · E[Df ], ∀f ∈ {1, . . . , F}.

This holds even if the above expectations are infinite.

Theorems 5 and 6 can be proved by combining the rather
elementary time-average versions of BASTA and Little’s Law
(which can be found in [17] and [35], respectively), with well-
known ergodicity properties of regenerative stochastic systems.

We now use these results to prove Lemma 1. Let us start
with the implication

E[Qf ] <∞ =⇒ E[Df ] <∞, ∀f ∈ {1, . . . , F}.

Fix a traffic flow f ∈ {1, . . . , F}, and assume that E[Qf ] is
finite. Since every file has at least one packet, then for all
t ∈ Z+, and for all b ∈ Z+,

P(Qf (t) > b) ≥ P(Lf (t) > b).

We have argued that under a regenerative scheduling policy,
the sequences {Qf (t); t ∈ Z+} and {Lf (t); t ∈ Z+}
converge in distribution. So, taking the limit as t goes to
infinity, we have

P(Qf > b) ≥ P(Lf > b), ∀b ∈ Z+,

which implies that

E[Qf ] ≥ E[Lf ].

Combining this inequality with Little’s Law and the assump-
tion that E[Qf ] is finite, we conclude that E[Df ] is finite.

Let us now prove the implication

E[Qf ] =∞ =⇒ E[Df ] =∞, ∀f ∈ {1, . . . , F}.

Fix a traffic flow f ∈ {1, . . . , F}, and assume that E[Qf ] is
infinite. The end-to-end delay of a file is bounded from below
by the length of the respective queue upon its arrival, since
the service discipline within each queue is “First Come, First
Served.” So, for all k ∈ N, and for all b ∈ Z+,

P(Df (k) > b) ≥ P(Qf (τf,k) > b).

We have argued that under a regenerative scheduling policy,
the sequences {Df (k); k ∈ N} and {Qf (τf,k); k ∈ N}
converge in distribution. So, taking the limit as k goes to
infinity, we have

P(Df > b) ≥ P(Q
c(f)
f > b), ∀b ∈ Z+.

Combining this with the BASTA property, we get

P(Df > b) ≥ P(Qf > b), ∀b ∈ Z+,

which implies that

E[Df ] ≥ E[Qf ].

Finally, the assumption that E[Qf ] is infinite implies that
E[Df ] is infinite as well.

1.2 Truncated Rewards

Consider the switched network described in Section II under
a regenerative scheduling policy. By definition, there exists a
sequence of stopping times {τn; n ∈ Z+}, which constitutes a
(possibly delayed) renewal process, i.e., the sequence {τn+1−
τn; n ∈ Z+} is IID. Moreover, the lattice distribution of cycle
lengths has span equal to one and finite expectation.

For t ∈ Z+, let R(t) be an instantaneous reward, which
is assumed to be an arbitrary scalar-valued function of Q(t).
We define the truncated reward as RM (t) = min{R(t),M},
where M is a positive integer. Under a regenerative scheduling
policy, the sequences {R(t); t ∈ Z+} and {RM (t); t ∈ Z+}
are (possibly delayed) aperiodic and positive recurrent regen-
erative processes. Consequently, they converge in distribution,
and their limiting distributions do not depend on Q(0); see
[30]. Let R and RM be generic random variables distributed
according to these limiting distributions. We denote by Ragg
the aggregate reward, i.e., the reward accumulated over a
regeneration cycle. Similarly, RMagg represents the aggregate
truncated reward.
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Lemma 3: Consider the switched network described in
Section II under a regenerative scheduling policy. Suppose that
there exists a random variable Y with infinite expectation, and
a nondecreasing function f(·), such that

lim
M→∞

f(M) =∞,

and
E[min{Y, f(M)}] ≤ E[RMagg]. (1)

Then, E[R] is infinite.
Proof: By definition, regeneration cycle lengths have

finite expectation, and E[RMagg] is bounded from above by
M · E[τ1 − τ0]. Then, the Renewal Reward theorem implies
that

E[RMagg]

E[τ1 − τ0]
= lim
T→∞

1

T

T−1∑
t=0

RM (t), (2)

almost surely; see Section 3.4 of [7]. The sequence
{RM (t); t ∈ Z+} is a (possibly delayed) positive recurrent
regenerative process, which is also uniformly bounded by M .
Then, the Ergodic theorem for regenerative processes implies
that

lim
T→∞

1

T

T−1∑
t=0

RM (t) = lim
T→∞

1

T

T−1∑
t=0

min{R(t),M}

= E[min{R,M}], (3)

almost surely; see [30]. Eqs. (1)-(3) give

E[min{Y, f(M)}]
E[τ1 − τ0]

≤ E[min{R,M}].

By taking the limit as M goes to infinity on both sides, and
using the Monotone Convergence theorem, we obtain

E[Y ]

E[τ1 − τ0]
≤ E[R];

see Section 5.3 of [34]. Finally, the fact that E[Y ] is infinite
implies that E[R] is infinite as well.

1.3 “Average Behavior” of IID Processes

The following result is a well-known corollary of the Strong
Law of Large Numbers. We provide a proof for completeness.

Lemma 4: Consider a sequence of IID random variables
{B(τ); τ ∈ N}, taking values in Z+, with finite rate λ =
E[B(1)] > 0. For any given ε > 0, there exists a constant
δ > 0, such that

P
({

(λ− ε)t− δ ≤
t∑

τ=1

B(τ) ≤ (λ+ ε)t+ δ
}
, ∀t ∈ N

)
> 0.

Proof: We define an event Cm by

Cm =
{ ∣∣∣1

t

t∑
τ=1

B(τ)− λ
∣∣∣ ≤ ε, ∀ t ≥ m}.

By the Strong Law of Large Numbers,

P(∪m≥1Cm) = 1.

Because the sequence of events Cm is nondecreasing, the
continuity property of probabilities implies that

lim
m→∞

P(Cm) = 1.

So, let us therefore fix some T , such that P(CT ) > 1/2. Now
consider the event

D =
{

0 ≤
T∑
τ=1

B(τ) ≤ δ
}
.

We choose δ large enough so that P(D) > 1/2 and δ ≥ λT .
Notice that

P(CT ∩D) ≥ P(CT ) + P(D)− 1 >
1

2
+

1

2
− 1 = 0.

Finally, note that when both CT and D occur, then∣∣∣ t∑
τ=1

B(τ)− λt
∣∣∣ ≤ εt+ δ, ∀ t ∈ N,

so that the latter event has positive probability, which is the
desired result.

APPENDIX 2 - PROOF OF THEOREM 1
Consider a heavy-tailed traffic flow h ∈ {1, . . . , F}. We will

show that E[Qh] is infinite under any regenerative scheduling
policy. Combined with Lemma 1, this will imply that traffic
flow h is delay unstable.

Consider a fictitious queue, denoted by h̃, which has exactly
the same arrivals and initial length as queue h, but is served at
unit rate whenever nonempty. We denote by Qh̃(t) the length
of queue h̃ at time slot t. Since the arriving traffic is assumed
admissible, the queue length process {Qh̃(t); t ∈ Z+}
converges to a limiting distribution Qh̃.

An easy inductive argument can show that the length of
queue h dominates the length of queue h̃ at all time slots,
under any regenerative scheduling policy. This implies that
for all t ∈ Z+, and for all b ∈ Z+,

P(Qh(t) > b) ≥ P(Qh̃(t) > b).

Taking the limit as t goes to infinity, and using the fact that
both queue length processes converge in distribution, we have

P(Qh > b) ≥ P(Qh̃ > b), ∀b ∈ Z+.

So, in order to prove the desired result, it suffices to show that
E[Qh̃] is infinite.

Notice that the length of queue h̃ evolves as a positive
recurrent Markov chain, and the empty state is recurrent.
Hence, the time slots that initiate busy periods of queue h̃
constitute a (possibly delayed) renewal process. We define an
instantaneous reward on this renewal process:

RM (t) = min{Qh̃(t),M}, ∀t ∈ Z+,

where M is some finite integer.
Without loss of generality, assume that a busy period starts

at time slot 0, and let b be the size of the file that initiates it.
Since queue h̃ is served at unit rate, its length is at least b/2
packets over a time period of length at least b/2 time slots.
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This implies that the aggregate reward RMagg , i.e., the reward
accumulated over a renewal period, is bounded from below as
follows:

RMagg ≥
b

2
·min

{ b
2
,M
}
≥ min

{b2
4
,M2

}
.

Consequently, the expected aggregate reward is bounded from
below as follows:

E[RMagg] ≥
∞∑
b=0

min
{b2

4
,M2

}
· P(Ah(0) = b)

= E
[

min
{A2

h(0)

4
,M2

}]
.

Then, Lemma 3 (see Appendix 1.2) applied to Y =
(1/4)A2

h(0), implies that E[Qh̃] is infinite. This, in turn,
implies that E[Qh] is infinite, which, combined with Lemma
1, gives the desired result.

APPENDIX 3 - PROOF OF THEOREM 2

Consider a heavy-tailed traffic flow h, and a light-tailed flow
l that conflicts with h. We will show that, under the Max-
Weight scheduling policy, E[Ql] is infinite. Combined with
Lemma 1, this will imply that traffic flow l is delay unstable.

Notice that the vector of queue lengths evolves as a positive
recurrent Markov chain, and the empty state is recurrent.
Hence, the time slots that initiate busy periods of the system
constitute a (possibly delayed) renewal process. We define an
instantaneous reward on this renewal process:

RM (t) = min{Ql(t),M}, ∀t ∈ Z+,

where M is a positive integer.
Without loss of generality, assume that a busy period of the

network starts at time slot 0. Consider the set of sample paths
where at time slot 0, queue h receives a file of size b packets,
and all other queues receive no traffic; we denote this set of
sample paths by H(b). Since the arrival processes of different
traffic flows are mutually independent,

P(H(b)) = P(Ah(0) = b) ·
∏
g 6=h

P(Ag(0) = 0).

This quantity is positive as long as b is in the support of
Ah(0), because the rate vector is admissible (hence λg < 1)
and P(Ag(0) = 0) ≥ 1 − λg > 0. For sample paths in H(b),
denote by Tb the first time slot when the length of queue h
becomes less than or equal to the sum of the lengths of all
other queues:

Tb = min
{
t > 0

∣∣∣ ∑
g 6=h

Qg(t) ≥ Qh(t)
}
· 1H(b).

Under the Max-Weight scheduling policy, queue l receives no
service until time slot Tb. Moreover, queue h is served at unit
rate. So, for sample paths in H(b),

b− (Tb − 1) ≤ Qh(Tb) ≤
∑
g 6=h

Qg(Tb) =
∑
g 6=h

Tb−1∑
t=1

Ag(t).

Lemma 4 implies that for every ε > 0 there exists δ > 0,
such that the set of sample paths

∆ =
{∣∣∣ t∑

τ=1

Ag(τ)− λg
∣∣∣ ≤ ε · t+ δ, ∀t ∈ N, ∀g 6= h

}
,

has positive probability (see Appendix 1.3 for a proof of this
result.) We denote by H̃(b) the set of sample paths ∆∩H(b).
Due to the IID nature of the arriving traffic,

P(H̃(b)) = P(∆) · P(H(b)).

For sample paths in H̃(b), we have

Tb − 1 ≥ b− (F − 1) · δ∑
g 6=h(λg + ε) + 1

.

Moreover,

Ql(Tb) =

Tb−1∑
t=1

Al(t) ≥ (λl − ε) · (Tb − 1)− δ.

Consequently, there exist positive constants c and b0 such that
for every b ≥ b0, and any sample path in H̃(b), we have

Ql(Tb) ≥ cb.

Since at most one packet from queue l can be served at
each time slot, the length of queue l is at least cb/2 over a
time period of length at least cb/2 time slots. This implies that
the aggregate reward RMagg , i.e., the reward accumulated over
a renewal period, satisfies the lower bound

RMagg · 1{b≥b0} · 1H̃(b) ≥ min
{(cb

2

)2

· 1{b≥b0},M
2
}
· 1H̃(b).

Then, the expected aggregate reward satisfies

E[RMagg] ≥ P(∆) ·
∏
g 6=h

P(Ag(0) = 0)

·
∞∑
b=1

min
{(cb

2

)2

· 1{b≥b0},M
2
}
· P(Ah(0) = B).

So, there exists a positive constant c′, such that

E[RMagg] ≥ c′ · E
[

min
{(cAh(0)

2

)2

· 1{Ah(0)≥b0},M
2
}]
.

Lemma 3 (see Appendix 1.2) applied to Y = (1/4)c2A2
h(0) ·

1{Ah(0)≥b0}, implies that E[Ql] is infinite. Then, Lemma 1
gives the desired result.

APPENDIX 4 - PROOF OF THEOREM 3

The admissibility of the arriving traffic implies that we can
find a set of feasible schedules {σk; k = 1, . . . , k∗} that
satisfies

k∗⋃
k=1

σk = {1, . . . , F}.

By the definition of the intensity parameter ρ ∈ (0, 1), there
exist nonnegative numbers ζi, i = 1, . . . , I , adding up to 1,
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and feasible schedules s̃i, i = 1, . . . , I , such that

λ ≤ ρ ·
I∑
i=1

ζi · s̃i.

Notice that(
(1− ρ) ·

k∗∑
k=1

1

k∗
· σk + ρ ·

I∑
i=1

ζi · s̃i
)
∈ Λ,

where Λ denotes the closure of the set Λ. This is because we
have a convex combination of (I+k∗) feasible schedules, and
the stability region is known to be a convex set; see Section
3.2 of [10]. Moreover,

(1− ρ) ·
k∗∑
k=1

1

k∗
· σk =

1− ρ
k∗
·
k∗∑
k=1

σk ≥ 1− ρ
k∗
· 1F ,

where 1F denotes the F -dimensional vector of ones.
A well-known monotonicity property of the stability region

is the following: if 0 ≤ λ′ ≤ λ′′ componentwise, and λ′′ ∈ Λ,
then λ′ ∈ Λ. Using this property, we have that(1− ρ

k∗
· 1F + λ

)
∈ Λ.

This, in turn, implies the existence of nonnegative numbers
θj , j = 1, · · · , J , adding up to 1, and of feasible schedules
sj = (sjf ), j = 1, · · · , J , such that

λf ≤
J∑
j=1

θj · sjf −
1− ρ
k∗

, ∀f ∈ {1, . . . , F}. (4)

Under the Max-Weight-α scheduling policy, the sequence
{Q(t); t ∈ Z+} is a time-homogeneous, irreducible, and
aperiodic Markov chain on the countable state-space ZF+.
In order to establish positive recurrence, we use the convex
Lyapunov function

V (t) =

F∑
f=1

1

αf + 1
Q
αf+1
f (t).

We have

E[V (t+ 1) | Ft]

=

F∑
f=1

E
[ 1

αf + 1
(Qf (t) + ∆f (t))αf+1

∣∣∣ Ft],
where

∆f (t) = Af (t)− Sf (t) · 1{Qf (t)>0},

and Ft is the σ-algebra generated by Q(0), A(0), . . . , Q(t −
1), A(t−1), Q(t). Throughout the proof we use the shorthand
notation

Vf (t) =
1

αf + 1
Q
αf+1
f (t).

We consider the conditional expectation of the terms Vf (t+1),
distinguishing between two cases.

(i) αf ≤ 1: Consider the zeroth order Taylor expansion

around Qf (t) (i.e., the mean value theorem):

1

αf + 1

(
Qf (t) + ∆f (t)

)αf+1

=
1

αf + 1
Q
αf+1
f (t) + ∆f (t) · ξ(t)αf ,

for some ξ(t) ∈
[
Qf (t)−Sf (t) · 1{Qf (t)>0}, Qf (t) +Af (t)

]
.

Thus,

Vf (t+ 1) = Vf (t) + ∆f (t) · ξ(t)αf ,

and

E[Vf (t+ 1) | Ft] = Vf (t) + E[∆f (t) · ξ(t)αf | Ft].

Consider the event Γf (t) = {∆f (t) < 0} and its comple-
ment. We have

E[Vf (t+ 1) | Ft]
≤Vf (t) + E[∆f (t) · (Qf (t) +Af (t))αf · 1{Γc

f (t)} | Ft]
+E[∆f (t) · (Qf (t)− Sf (t) · 1{Qf (t)>0})

αf · 1{Γf (t)} | Ft].
(5)

Since Qf (t), Qf (t) − Sf (t) · 1{Qf (t)>0}, and Af (t) are
nonnegative numbers and αf ∈ (0, 1], it can be verified that(

Qf (t) +Af (t)
)αf

≤ Qαf

f (t) +A
αf

f (t). (6)

Moreover, because they are also integers, it can be verified
that(
Qf (t)−Sf (t)·1{Qf (t)>0}

)αf

≥ Qαf

f (t)−Sf (t)·1{Qf (t)>0}.

(7)
Eqs. (5)-(7) imply that

E[Vf (t+ 1) | Ft]
≤Vf (t) + E[∆f (t) | Ft] ·Q

αf

f (t)

+ E[∆f (t) ·Aαf

f (t) · 1{Γc
f (t)} | Ft]

+ E[−∆f (t) · Sf (t) · 1{Qf (t)>0} · 1{Γf (t)} | Ft].

If ∆f (t) < 0, which is the event Γf (t), then −∆f (t) ≤ 1.
Also, if ∆f (t) ≥ 0, which is the event Γcf (t), then ∆f (t) ≤
Af (t), so that ∆f (t) ·Aαf

f (t) ≤ Aαf+1
f (t). Consequently,

E[Vf (t+ 1) | Ft] ≤Vf (t) + E[∆f (t) | Ft] ·Q
αf

f (t)

+ E[A
αf+1
f (t) · 1{Γc

f (t)} | Ft] + 1.

Finally, the fact that the random variables {Af (t); t ∈ Z+}
are IID gives

E[Vf (t+ 1) | Ft]
≤Vf (t) + E[∆f (t) | Ft] ·Q

αf

f (t) + E[A
αf+1
f (0)] + 1.

The inequality above implies trivially that

E[Vf (t+ 1) | Ft] ≤Vf (t) + E[∆f (t) | Ft] ·Q
αf

f (t)

+
1− ρ
2k∗

·Qαf

f (t) + E[A
αf+1
f (0)] + 1. (8)

(ii) αf > 1: Consider the first order Taylor expansion
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around Qf (t):

1

αf + 1

(
Qf (t) + ∆f (t)

)αf+1

=
1

αf + 1
Qf (t)αf+1 + ∆f (t) ·Qαf

f (t) +
∆2
f (t)

2
· αf · ξ(t)αf−1

for some ξ(t) ∈
[
Qf (t)−Sf (t) · 1{Qf (t)>0}, Qf (t) +Af (t)

]
.

Then,

E[Vf (t+ 1) | Ft] =Vf (t) + E[∆f (t) | Ft] ·Q
αf

f (t)

+ E
[∆2

f (t)

2
· αf · ξ(t)αf−1

∣∣∣ Ft]. (9)

Since ∆2
f (t) · αf ≥ 0 and αf − 1 ≥ 0, the last term can be

bounded from above as follows:

E
[∆2

f (t)

2
·αf · ξ(t)αf−1

∣∣∣ Ft]
≤E
[∆2

f (t)

2
· αf · (Qf (t) +Af (t))αf−1

∣∣∣ Ft]. (10)

Moreover, it is easy to verify that for αf ≥ 1,(
Qf (t) +Af (t)

)αf−1

≤ 2αf−1 ·
(
Q
αf−1
f (t) +A

αf−1
f (t)

)
,

(11)

and also that
∆2
f (t) ≤ A2

f (t) + 1. (12)

Eqs. (10)-(12) imply that

E
[∆2

f (t)

2
·αf · ξαf−1

∣∣∣ Ft]
≤2αf−2 · αf ·

(
E[A2

f (t)] + 1
)
·Qαf−1

f (t)

+ 2αf−2 · αf ·
(
E[A

αf+1
f (t)] + E[A

αf−1
f (t)]

)
≤K ·Qαf−1

f (t) +K, (13)

where K = 2αf−1 · αf ·
(
E[A

αf+1
f (0)] + 1

)
. Then, Eqs. (9)

and (13) imply that

E[Vf (t+ 1) | Ft]
≤Vf (t) + E[∆f (t) | Ft] ·Q

αf

f (t) +K ·Qαf−1
f (t) +K

=Vf (t) + E[∆f (t) | Ft] ·Q
αf

f (t) +
1− ρ
2k∗

·Qαf

f (t)

+
(
K ·Qαf−1

f (t)− 1− ρ
2k∗

·Qαf

f (t) +K
)
. (14)

Our goal is to bound from above the last term on the right-
hand side of Eq. (14). Relaxing the constraint that Qf (t) has
to be an integer, we have

K ·Qαf−1
f (t)− 1− ρ

2k∗
·Qαf

f (t) +K

≤ max
x∈R+

{
K · xαf−1 − 1− ρ

2k∗
· xαf +K

}
, ∀t ∈ Z+.

(15)

It can be verified that the optimization problem on the right-
hand side has the unique solution x∗ = 2k∗K

1−ρ ·
αf−1
αf

. The

corresponding optimal value is

Kαf ·
( 2k∗

1− ρ

)αf−1

· (αf − 1)αf−1

α
αf

f

+K

≤Kαf ·
( 2k∗

1− ρ

)αf−1

+K. (16)

Eqs. (15) and (16) imply that for all t ∈ Z+,

K ·Qαf−1
f (t)− 1− ρ

2k∗
·Qαf

f (t)+K ≤ Kαf ·
( 2k∗

1− ρ

)αf−1

+K.

(17)

Finally, Eqs. (14) and (17) give

E[Vf (t+ 1) | Ft] =Vf (t) + E[∆f (t) | Ft] ·Q
αf

f (t)

+
1− ρ
2k∗

·Qαf

f (t)

+Kαf ·
( 2k∗

1− ρ

)αf−1

+K. (18)

Summarizing our findings from cases (i) and (ii), Eqs. (8)
and (18) imply that

E[Vf (t+ 1) | Ft] ≤Vf (t) + E[∆f (t) | Ft] ·Q
αf

f (t)

+
1− ρ
2k∗

·Qαf

f (t)

+H
(
ρ, k∗, αf ,E[A

αf+1
f (0)]

)
,

for all f ∈ {1, . . . , F}, where

H
(
ρ, k∗, αf ,E[A

αf+1
f (0)]

)
=


2k∗

1−ρ ·
(
E[A

αf+1
f (0)] + 1

)
, αf ≤ 1,(

2k∗

1−ρ

)αf

·Kαf + 2k∗

1−ρ ·K, αf > 1,

and K = 2αf−1 · αf ·
(
E[A

αf+1
f (0)] + 1

)
. Summing over all

f ∈ {1, . . . , F}, gives

E[V (t+ 1) | Ft]

≤V (t) +

F∑
f=1

(λf − Sf (t) · 1{Qf (t)>0}) ·Q
αf

f (t)

+
1− ρ
2k∗

·
F∑
f=1

Q
αf

f (t) +

F∑
f=1

H
(
ρ, k∗, αf ,E[A

αf+1
f (0)]

)
.

Taking into account Eq. (4), we have

E[V (t+ 1) | Ft] ≤V (t)− 1− ρ
2k∗

·
F∑
f=1

Q
αf

f (t)

+

F∑
f=1

H
(
ρ, k∗, αf ,E[A

αf+1
f (0)]

)

+

F∑
f=1

( J∑
j=1

θj · sjf − Sf (t)
)
·Qαf

f (t).

By definition of the Max-Weight-α policy, the last term is
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nonpositive. So,

E[V (t+ 1)− V (t) | Ft] ≤−
1− ρ
2k∗

·
F∑
f=1

Q
αf

f (t)

+

F∑
f=1

H
(
ρ, k∗, αf ,E[A

αf+1
f (0)]

)
.

Then, the Foster-Lyapunov stability criterion and moment
bound (e.g., see Corollary 2.1.5 of [12]) implies that the
sequence {Q(t); t ∈ Z+} converges in distribution. Moreover,
its limiting distribution (Qf ; f = 1, . . . , F ) does not depend
on Q(0), and satisfies

F∑
f=1

E[Q
αf

f ] ≤ 2k∗

1− ρ
·
F∑
f=1

H
(
ρ, k∗, αf ,E[A

αf+1
f (0)]

)
.

Based on this, it can be verified that the sequence
{D(k); k ∈ N} is a (possibly delayed) aperiodic and positive
recurrent regenerative process. Hence, it also converges in
distribution, and its limiting distribution does not depend on
Q(0); see [30].
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