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In an electric power system, demand fluctuations may result in significant ancillary cost to suppliers. Fur-

thermore, in the near future, deep penetration of volatile renewable electricity generation is expected to

exacerbate the variability of demand on conventional thermal generating units. We address this issue by

explicitly modeling the ancillary cost associated with demand variability. We argue that a time-varying price

equal to the suppliers’ instantaneous marginal cost may not achieve social optimality, and that consumer

demand fluctuations should be properly priced. We propose a dynamic pricing mechanism that explicitly

encourages consumers to adapt their consumption so as to offset the variability of demand on conventional

units. Through a dynamic game-theoretic formulation, we show that (under suitable convexity assumptions)

the proposed pricing mechanism achieves social optimality asymptotically, as the number of consumers

increases to infinity. Numerical results demonstrate that compared with marginal cost pricing, the proposed

mechanism creates a stronger incentive for consumers to shift their peak load, and therefore has the potential

to reduce the need for long-term investment in peaking plants.
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1. Introduction

This paper is motivated by the fact that fluctuations in the demand for electricity to be met by

conventional thermal generating units typically result in significantly increased, and nontrivial,

ancillary costs. Today, such demand fluctuations are mainly due to time-dependent consumer

preferences. In addition, in the future, a certain percentage of electricity production is required

by law in many states in the U.S. to come from renewable resources (Barbose et al. 2008). The

dramatic volatility of renewable energy resources may aggravate the variability of the demand for

conventional thermal generators and result in significant ancillary cost. More concretely, either

a demand surge or a decrease in renewable generation may result in (i) higher energy costs due
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to the deployment of peaking plants with higher ramping rates but higher marginal cost, such

as oil/gas combustion turbines, and (ii) the redispatch cost1 that the system will incur to meet

reserve constraints if the increase of demand (or decrease of renewable generation) causes a reserve

shortage.

There is general agreement that charging real-time prices (that reflect current operating con-

ditions) to electricity consumers has the potential of reducing supplier ancillary cost, improving

system efficiency, and lowering volatility in wholesale prices (US Department of Energy 2006, Spees

and Lave 2008, Chao 2010). Therefore, dynamic pricing, especially real-time marginal cost pricing,

is often identified as a priority for the implementation of wholesale electricity markets with respon-

sive demand (Hogan 2010), which in turn raises many new questions. For example, should prices

for a given time interval be calculated ex ante or ex post? Does real-time pricing introduce the

potential for new types of market instabilities? How is supplier competition affected? In this paper,

we abstract away from almost all of these questions and focus on the specific issue of whether

prices should also explicitly encourage consumers to adapt their demands so as to reduce supplier

ancillary cost.

To illustrate the issue that we focus on, we note that a basic model of electricity markets assumes

that the cost of satisfying a given level At of aggregate demand during period t is of the form

C(At). It then follows that in a well-functioning wholesale market, the observed price should more

or less reflect the marginal cost C ′(At). In particular, prices should be more or less determined

by the aggregate demand level. Empirical data do not quite support this view. Fig. 1 plots the

real-time system load and the hourly prices on February 11, 2011 and on February 16, 2011, as

reported by the New England ISO (ISO New England Inc. 2011). We observe that prices do not

seem to be determined solely by At but that the changes in demand, At−At−1, also play a major

role. In particular, the largest prices seem to occur after a demand surge, and not necessarily at

1 A certain level of reserve must always be maintained in an electric power system. Local reserve shortages are usually
due to the quick increase of system load rather than a capacity deficiency. If the increase of system load makes the
system short in reserves, the system will redispatch resources to increase the amount of reserves available. Redispatch
generally increases the generation cost and results in higher prices. The redispatch cost can be very high (cf. Section
2.3.2 of ISO New England Inc. (2010)).
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Figure 1 Real-time prices and actual system load, ISO New England Inc. Blue bars represent the real-time system

loads and the dots connected by a black line represent the hourly prices.

the hour when the load is highest. We take this as evidence that the total cost over T + 1 periods

is not of the form
T∑
t=0

C(At),

but rather of the form
T∑
t=0

(
C(At) +H(At−1,At)

)
, (1)

for a suitable function H.

We take the form of Eq. (1) as our starting point and raise the question of the appropriate prices.

A naive view would argue that at time t, At−1 has already been realized, and taking its value for

granted, a consumer should be charged a unit price equal to

C ′(At) +
∂

∂At
H(At−1,At), (2)

which is the supplier’s marginal cost at stage t. We refer to this naive approach as “marginal

cost pricing” (MCP). However, a simple argument based on standard mathematical programming

optimality conditions shows that for system optimality to obtain, the demand At−1 should also

incur (after At is realized) a unit price of

∂

∂At−1

H(At−1,At). (3)
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In day-ahead markets, suppliers typically carry out an intertemporal optimization, and it is rea-

sonable to expect that the two types of marginal costs, captured by Eqs. (2) and (3), are both

properly accounted for. However, in current real-time balancing markets, once At−1 is realized, a

supplier will aim at charging the marginal cost in Eq. (2), but will be unable to charge the addi-

tional marginal cost in Eq. (3) to the past demand At−1. In contrast, the pricing mechanism that

we propose and analyze in this paper is designed to include the additional marginal cost in Eq.

(3).2

The actual model that we consider will be richer from the one discussed above in a number

of respects. It includes an exogenous source of uncertainty (e.g., representing weather conditions)

that has an impact on consumer utility and supplier cost, and therefore the model can incorporate

the effects of volatile renewable electricity production. It allows for consumers with internal state

variables (e.g., a consumer’s demand may be affected by how much electricity she has already

used). It also allows for multiple consumer types (i.e., with different utility functions and different

internal state dynamics). Consumers are generally modeled as price-takers, as would be the case

in a model involving an infinity (a continuum) of consumers. However, we also consider the case

of finite consumer populations and explore certain equilibrium concepts that are well-suited to the

case of finite but large consumer populations. On the other hand, we ignore most of the distinctions

between ex post and ex ante prices. Instead, we assume that at each time step, the electricity

market clears. The details of how this could happen are important, but are generic to electricity

markets, hence not specific to our models, and somewhat orthogonal to the subject of this paper.

(See however Appendix B for some discussion of implementation issues.)

The ancillary cost function H(At−1,At) is of course a central element of our model. How can we

be sure that this is the right form? In general, redispatch and reserve dynamics are complicated

and one should not expect such a function to capture all of the complexity of the true system costs;

2 In current two-settlement systems, the real-time prices are charged only on the difference of the actual demand and
the estimated demand at the day-ahead market. However, the two-settlement system provides the same real-time
incentives to price-taking consumers, as if they were purchasing all of their electricity at the real-time prices (cf.
Chapter 3-2 of Stoft (2002)).
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perhaps, a more complex functional form such as H(At−2,At−1,At) would be more appropriate.

We believe that the form we have chosen is a good enough approximation, at least under certain

conditions. To argue this point, we present in Appendix A an example that involves a more detailed

system model (in which the true cost is a complicated function of the entire history of demands)

and show that a function of the form H(At−1,At) can capture most of the cost of ancillary services.

1.1. Summary of contributions

Before continuing, we provide here a roadmap of the paper together with a summary of our main

contributions.

(a) We provide a stylized (yet quite rich) model of an electricity market, which incorporates the

cost of ancillary services (cf. Section 2).

(b) We provide some justification of the form of the cost function in our model, as a reasonable

approximation of more detailed physical models (cf. Appendix A).

(c) We propose a pricing mechanism that properly charges for the effects of consumer actions

on ancillary services (cf. Section 3).

(d) For a continuum model involving nonatomic price-taking consumers, we consider Dynamic

Oblivious Equilibria (DOE), in which every consumer maximizes her expected payoff under the

sequence of prices induced by a DOE strategy profile (Section 4). We show that (under standard

convexity assumptions), our mechanism maximizes social welfare (cf. Theorem 2 in Section 6).

(e) We carry out a game-theoretic analysis of the case of a large but finite number of consumers.

We show that a large population of consumers who act according to a DOE (derived from an

associated continuum game) results in asymptotically optimal (as the number of consumers goes to

infinity) social welfare (cf. Theorem 2 in Section 6), and asymptotically maximizes every consumer’s

expected payoff (this is an “asymptotic Markov equilibrium” property; cf. Theorem 1 in Section

5).

(f) We illustrate the potential benefits of our mechanism through a simple numerical example.

In particular, we show that compared with marginal cost pricing, the proposed mechanism reduces
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the peak load, and therefore has the potential to reduce the need for long-term investments in

peaking plants (cf. Appendix E).

1.2. Related literature

There are two streams of literature, on electricity pricing and on game theory, that are relevant to

our work, and which we now proceed to discuss, while also highlighting the differences from the

present work.

Regarding electricity markets, the impact of supply friction on economic efficiency and price

volatility has received some recent attention. Mansur (2008) shows that under ramping constraints,

the prices faced by consumers may not necessarily equal the true supplier marginal cost. In a

continuous-time competitive market model, Cho and Meyn (2010a) show that the limited capa-

bility of generating units to meet real-time demand, due to relatively low ramping rates, does not

harm social welfare, but may result in extreme price fluctuations. In a similar spirit, Kizilkale and

Mannor (2010) construct a dynamic game-theoretic model to study the tradeoff between economic

efficiency and price volatility. Closer to the present paper, Cho and Meyn (2010b) construct a

dynamic newsboy model to study the reserve management problem in electricity markets, where

the demand is assumed to be exogenous. The supplier cost in their model depends not only on

the overall demand, but also on the generation resources used to satisfy the demand. For exam-

ple, a quickly increasing demand may require more responsive and more expensive resources (e.g.,

peaking generation plants).

To study the impact of pricing mechanisms on consumer behavior and load fluctuations, we

construct a dynamic game-theoretic model that differs from existing dynamic models for electricity

markets and incorporates both the consumers’ responses to real-time price fluctuations and the

suppliers’ ancillary cost incurred by load swings. Some major differences between our model and

existing ones are discussed at the end of Section 2.

On the game-theoretic side, the standard solution concept for stochastic dynamic games is the

Markov perfect equilibrium (MPE) (Fudenberg and Tirole 1991, Maskin and Tirole 1988),
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involving strategies where an agent’s action depends on the current state of all agents. As the num-

ber of agents grows large, the computation of an MPE is often intractable (Doraszelski and Pakes

2007). For this reason, alternative equilibrium concepts, for related games featuring a nonatomic

continuum of agents (e.g., “oblivious equilibrium” or “stationary equilibrium” for dynamic games

without aggregate shocks), have received much recent attention (Weintraub et al. 2009, Adlakha

et al. 2011).

There is a large literature on a variety of approximation properties of nonatomic equilibria (Mas-

Colell and Vives 1993, Al-Najjar 2004, 2008). Recently, Adlakha et al. (2011) derive sufficient

conditions for a stationary equilibrium strategy to have the Asymptotic Markov Equilibrium

(AME) property, i.e., a stationary equilibrium strategy asymptotically maximizes every agent’s

expected payoff (given that all the other agents use the same stationary equilibrium strategy), as

the number of agents grows large. Their model includes random shocks that are assumed to be

idiosyncratic across agents. However, in the problem that we are interested in, it is important to

incorporate aggregate shocks (such as weather conditions) that have a global impact on all agents.

In this spirit, Weintraub et al. (2010) consider a market model with aggregate profit shocks, and

study an equilibrium concept at which every firm’s strategy depends on the firm’s current state and

on the recent history of the aggregate shock. For a general dynamic game model with aggregate

shocks, Bodoh-Creed (2010) shows that a nonatomic counterpart of an MPE, which we refer to as a

Dynamic Oblivious Equilibrium (DOE) in this paper, asymptotically approximates an MPE

in the sense that as the number of agents increases to infinity, the actions taken in an MPE can

be well approximated by those taken by a DOE strategy of the nonatomic limit game. However,

without further restrictive assumptions on the agents’ state transition kernel, the approximation

property of the actions taken by a DOE strategy does not imply the AME property of the DOE,

and we are not aware of any AME results for models that include aggregate shocks. Our work is

different in this respect: for a dynamic nonatomic model with aggregate shocks, which is a simplified

variation of the general model considered in Bodoh-Creed (2010), we prove the AME property of

a DOE.
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The efficiency of nonatomic equilibria for static games has been addressed in recent research

(Roughgarden and Tardos 2004, Milchtaich 2004, Bodoh-Creed 2011). For a dynamic industry

model with a continuum of identical producers and exogenous aggregate shocks, Lucas and Prescott

(1971) show (under convexity assumptions) that the expected social welfare is maximized at a

unique competitive equilibrium. In a similar spirit, in this paper we show (under convexity assump-

tions) that the proposed pricing mechanism maximizes the expected social welfare in a model

involving a continuum of (possibly heterogeneous) consumers. We also consider the case of a large

but finite number of consumers, and show that the expected social welfare is approximately maxi-

mized if all consumers act according to a nonatomic equilibrium (DOE). For large dynamic games,

the asymptotic social optimality of nonatomic equilibria (DOEs) established in this paper seems

to be new.

2. Model

We consider a (T + 1)-stage dynamic game with the following elements:

1. The game is played in discrete time. We index the time periods with t= 0,1, . . . , T . Each

stage may represent a five minute interval in real-time balancing markets where prices and dispatch

solutions are typically provided at five minute intervals.

2. There are n consumers, indexed by 1, . . . , n.

3. At each stage t, let st ∈ S be an exogenous state, which evolves as a Markov chain and

whose transitions are not affected by consumer actions. The set S is assumed to be finite. In

electricity markets, the exogenous state may represent time and/or weather conditions, which

impact consumer utility and supplier cost. It may also represent the level of renewable generation.

4. For notational conciseness, for t≥ 1, let st = (st−1, st), and let s0 = s0. We use St to denote

the set of all possible st. We refer to st as the global state at stage t.

5. Given an initial global state s0, the initial states (types) of the consumers, {xi,0}ni=1,

are independently drawn according to a probability measure ηs0 over a finite set X0. We use X to

denote the cardinality of X0.
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6. The state of consumer i at stage t is denoted by xi,t. At t= 0, consumer i’s initial state,

xi,0, indicates her type. For t= 1, . . . , T , we have xi,t = (xi,0, zi,t), where zi,t ∈ Z and Z = [0,Z] is

a compact subset of R. The variables {zi,t}ni=1 allow us to model intertemporal substitution effects

in consumer i’s demand.

7. We use Xt to denote a consumer’s state space at stage t. In particular, at stage t ≥ 1,

Xt =X0×Z.

8. At stage t, consumer i takes an action ai,t and receives a nonnegative utility3 Ut(xi,t, st, ai,t).

9. Each consumer’s action space is A = [0,B], where B is a positive real number. (In the

electric power context, B could reflect a local transmission capacity constraint.)

10. We use At =
∑n

i=1 ai,t to denote the aggregate demand at stage t.

11. Given consumer i’s current state, xi,t, and the next exogenous state st+1, the next state of

consumer i is determined by her action taken at stage t, i.e., xi,t+1 = (xi,0, zi,t+1), where zi,t+1 =

r(xi,t, ai,t, st+1), for a given function r.

12. Let Gt =At +Rt be the capacity available at stage t, where Rt is the system reserve at

stage t. For simplicity, we assume that the system reserve at stage t depends only on the current

aggregate demand, At, and the current exogenous state st. That is, we have Rt = g(At, st) for a

given function of g that reflects the reserve policy of the system operator.

13. At stage t, let C(At,Rt, st) be the total conventional generation cost, that is, the sum of

the supplier’s cost to meet the aggregate demand At through its primary energy resources, e.g.,

base-load power plants, and the cost to maintain a system reserve Rt. Since Rt depends only on

At and st, we can write C(At,Rt, st) as a function of At and st, i.e., there exists a primary cost

function C : R× S → [0,∞) such that C(At, st) = C(At,Rt, st). We assume that for any s ∈ S,

C(·, s) is nondecreasing.

14. At stage t≥ 1, let H(At−1,At,Rt−1,Rt, st) denote the ancillary cost incurred by load swings4.

3 At t= 0, U0 is a mapping from X0×S×A to [0,∞), while for t≥ 1, Ut is a mapping from X0×Z×S×A to [0,∞).

4 In general, the supplier ancillary cost may depend on the entire history of system load and global states. However,
ancillary cost functions with the simple form H(At−1,At,Rt−1,Rt, st) can serve as a good approximation of the
supplier’s true ancillary cost (cf. Appendix A).
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Since Rt depends only on At and st, we can write H(At−1,At,Rt−1,Rt, st) as a function of At−1,

At, st−1, and st, i.e., there exists an ancillary cost function H : R2 × S2 → [0,∞) such that

H =H(At−1,At, st). The ancillary cost at stage 0 is assumed to be a function of s0 and A0.

15. At stage 0, the total supplier cost is of the form

C(A0, s0) +H0(A0, s0), (4)

and for t= 1, . . . , T , the total supplier cost at stage t is given by

C(At, st) +H(At−1,At, st). (5)

In contrast to existing dynamic models for electricity markets with an exogenous demand process

(Cho and Meyn 2010a,b), our dynamic game-theoretic model incorporates the consumer reactions

to price fluctuations, and allows us to study the impact of pricing mechanisms on consumer behavior

and economic efficiency. Through a dynamic game-theoretic formulation, Kizilkale and Mannor

(2010) study the tradeoff between economic efficiency and price volatility. Our model is different

from the one studied in Kizilkale and Mannor (2010) in the following respects:

1. Our model allows the generation cost to depend on an exogenous state, and therefore can

incorporate supply-side volatility due to uncertainty in renewable electricity generation. As an

example, consider a case where the exogenous state, st, represents the electricity generation from

renewable resources at stage t. Then the demand for conventional generation is At − st. Suppose

that the system reserve is proportional to the system load, say, δAt for some constant δ > 0. The

cost function, C(At,Rt, st), then depends only on the output of conventional generating units,

At− st, and the system reserve, δAt. The ancillary cost occurred at stage t depends on the system

reserve and the outputs of conventional generating units at stages t− 1 and t, and is therefore a

function of At−1, At, st−1, and st.

2. More important, instead of penalizing each consumer’s attempt to change her own action

across time, the ancillary cost function in our model penalizes the change in the aggregate demand

by all consumers. The change in a single consumer’s action may harm or benefit the social welfare,

while the volatility of the aggregate demand is usually undesirable.
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The main feature of our model is the ancillary cost function H, which makes the supplier cost

nonseparable over time. In an electric power system, the ancillary cost function models the costs

associated with the variability of conventional thermal generator output, such as the energy cost

of peaking plants and the redispatch cost. Note that the ancillary cost is not necessarily zero

when At ≤At−1, because thermal generating units have ramping-down constraints, and because a

decrease in renewable electricity production may lead to an increase of the system reserve, even

if At ≤At−1. The presence of the ancillary cost function makes conventional marginal cost pricing

inefficient (cf. Example 1 in Section 3).

To keep the model simple, we do not incorporate any idiosyncratic randomness in consumer

state evolution. Thus, besides the randomness of consumer types (initial states), the only source

of stochasticity in the model is the exogenous state st.

To effectively highlight the impact of pricing mechanisms on consumer behavior, as well as

on economic efficiency and demand volatility, we have made the following simplifications and

assumptions for the power grid:

(a) As in Cho and Meyn (2010a), we assume that the physical production capacity is large

enough so that the possible changes of the generation capacity are not constrained.

(b) Transmission capacity is large enough to avoid any congestion. We also assume that the cost

of supplying electricity to consumers at different locations is the same. Therefore, a common price

for all consumers is appropriate.

(c) We use a simplified form of ancillary cost functions, H(At−1,At,Rt−1,Rt, st), to approxi-

mate the supplier ancillary cost. In Appendix A, we present a numerical example to justify this

approximation.

3. The Pricing Mechanism

The marginal cost pricing mechanism discussed in Section 1 charges a time-varying unit price on

each consumer’s demand. As demonstrated in the following example, a time-varying price that

equals the supplier’s instantaneous marginal cost may not achieve social optimality in a setting
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that includes ancillary costs. For this reason, we propose a new pricing mechanism that takes into

account the ancillary cost associated with a consumer’s demand at the previous stage.

Example 1. Consider a two-stage deterministic model with one consumer and one supplier. At

stage t, the consumer’s utility function is Ut : [0,∞)→ [0,∞). Let at denote the demand at stage

t, and let a= (a0, a1). Let gt denote the actual generation at stage t, and let g = (g0, g1). Two unit

prices, p0 and p1, are charged on the consumption at stage 0 and 1, respectively. Let p = (p0, p1).

The consumer’s payoff-maximization problem is

Maximize
a

U0(a0)− p0a0 +U1(a1)− p1a1. (6)

Let H0 be identically zero, and let the ancillary cost function at stage 1 depend only on the

difference between the supply at the two stages. That is, the ancillary cost at stage 1 is of the form

H(g1− g0). The supplier’s profit-maximization problem is

Maximize
g

p0g0 + p1g1−C(g0)−C(g1)−H(g1− g0). (7)

The social planner’s problem is

Maximize
(a,g)

U0(a0) +U1(a1)−C(g0)−C(g1)−H(g1− g0)

subject to a= g.
(8)

Now consider a competitive equilibrium, (a,g,p), at which the vector a solves the consumer’s

optimization problem (6), the vector g solves the supplier’s optimization problem (7), and the

market clears, i.e., a= g. Suppose that the utility functions are concave and continuously differen-

tiable, and that the cost functions C and H are convex and continuously differentiable. We further

assume that H ′(0) = 0, and that for t= 0,1, U ′t(0)> C ′(0), U ′t(B)< C ′(B). Then, there exists a

competitive equilibrium, (a,g,p), which satisfies the following conditions:{
U ′0(a0) = p0,

U ′1(a1) = p1,

{
C ′(a0)−H ′(a1− a0) = p0,

C ′(a1) +H ′(a1− a0) = p1.
(9)

We conclude that the competitive equilibrium solves the social welfare maximization problem in

(8), because it satisfies the following (sufficient) optimality conditions:

U ′0(a0) =C ′(a0)−H ′(a1− a0), U ′1(a1) =C ′(a1) +H ′(a1− a0),

a0 = g0, a1 = g1.
(10)
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However, we observe that the socially optimal price p0 does not equal the supplier’s instantaneous

marginal cost at stage 0, C ′(a0). Hence, by setting the price equal to C ′(a0), as would be done in

a real-time balancing market, we may not achieve social optimality. More generally, marginal cost

pricing need not be socially optimal because it does not take into account the externality conferred

by the action a0 on the ancillary cost at stage 1, H(a1 − a0). At a socially optimal competitive

equilibrium, the consumer should pay

(
C ′(a0)−H ′(a1− a0)

)
a0 +

(
C ′(a1) +H ′(a1− a0)

)
a1,

i.e., the price on a0 should be the sum of the supplier marginal cost at stage 0, C ′(a0), and the

marginal ancillary cost associated with a0, −H ′(a1 − a0), which is determined at the next stage,

after a1 is realized. �

Before describing the precise pricing mechanism we propose, we introduce a differentiability

assumption on the cost functions.

Assumption 1. For any s ∈ S, C(·, s) and H0(·, s) are continuously differentiable on [0,∞). For

any (A′, s)∈A×S2, H(A,A′, s) and H(A′,A, s) are continuously differentiable in A on [0,∞).5

Inspired by Example 1, we introduce prices

pt =C ′(At, st), t= 0, . . . , T, (11)

and

qt =
∂H(At−1,At, st)

∂At−1

, wt =
∂H(At−1,At, st)

∂At
, t= 1, . . . , T. (12)

At stage 0, we let q0 = 0 and w0 =H ′0(A0, s0). Under the proposed pricing mechanism, consumer

i’s payoff at stage t is given by

Ut(xi,t, st, ai,t)− (pt +wt)ai,t− qtai,t−1. (13)

5 At the boundary of the domain, 0, we require continuity of the right-derivatives of C, H0, and H.



Tsitsiklis and Xu: Pricing of Fluctuations in Electricity Markets
14

Note that pt +wt is the supplier marginal cost at stage t (including the marginal ancillary cost).

The proposed pricing mechanism charges consumer i an additional price qt on her previous demand,

equal to the marginal ancillary cost with respect to ai,t−1.

We now define some of the notation that we will be using. For t= 1, . . . , T , let yi,t = (ai,t−1, xi,t)

be the augmented state of consumer i at stage t. At t = 0, let yi,0 = xi,0. For stage t, let Yt

be the set of all possible augmented states. In particular, we have Y0 = X0, and Yt =A×Xt, for

t= 1, . . . , T .

Let ∆n(D) be the set of empirical probability distributions over a given set D that can be

generated by n samples from D. (Note that empirical distributions are always discrete, even if D

is a continuous set.) Let ft ∈∆n(Yt) be the empirical distribution of the augmented state of all

consumers at stage t, and let f−i,t ∈∆n−1(Yt) be the empirical distribution of the augmented state

of all consumers (excluding consumer i) at stage t. We refer to ft as the population state at

stage t. Let ut ∈∆n(A) denote the empirical distribution of all consumers’ actions at stage t, and

let u−i,t ∈∆n−1(A) be the empirical distribution of all consumers’ (excluding consumer i) actions

at stage t.

For a given n, it can be seen from (11) and (12) that the prices, and thus the stage payoff in

(13), are determined by the current global state, st, consumer i’s current augmented state, yi,t,

and current action, ai,t, as well as the empirical distributions, f−i,t and u−i,t of other consumers’

current augmented state and action. Hence, for a certain function π(·), we can write the stage

payoff in (13) as

π(yi,t, st, ai,t, f−i,t, u−i,t) =Ut(xi,t, st, ai,t)− (pt +wt)ai,t− qtai,t−1. (14)

4. A Continuum Model and Dynamic Oblivious Strategies

To study the aggregate behavior of a large number of consumers, we consider a nonatomic game

involving a continuum of infinitesimally small consumers, indexed by i ∈ [0,1]. We assume that

(under state s0) a fraction ηs0 of the consumers has initial state x. In a nonatomic model, any

single consumer’s action has no influence on the aggregate demand and the prices. We consider a
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class of strategies (dynamic oblivious strategies) in which a consumer’s action depends only on the

history of past exogenous states, ht = (s0, . . . , st), and her own current state6, i.e., of the form

ai,t = νt(xi,t, ht).

Suppose that consumer i uses a dynamic oblivious strategy ν = (ν0, . . . , νT ). Since there is no

idiosyncratic randomness, given a history ht, the state xi,t of consumer i at stage t depends only

on her initial state xi,0. That is, there is a mapping lν,ht : X0 → Xt, such that xi,t = lν,ht(xi,0).

Therefore, we can specify the action taken by a dynamic oblivious strategy in the alternative form

ai,t = νt(xi,0, ht)
∆
= νt(lν,ht(xi,0), ht). (15)

We refer to ν = (ν0, . . . , νT ) as a dynamic oblivious strategy, and let V be the set of all such

strategies.

An alternative formulation involving strategies that depend on consumer expectations on future

prices would lead to a Rational Expectations Equilibrium (REE), an equilibrium concept based on

the rational expectations approach pioneered by Muth (1961). In our continuum model, since the

only source of stochasticity is from the exogenous state st, future prices under any given strategy

profile, are completely determined by the history ht. Therefore, it is reasonable to expect that

strategies of the form (15) will lead to an equilibrium concept that is identical in outcomes with a

REE (cf. the discussion in Section 4.2).

Before formally defining a Dynamic Oblivious Equilibrium (DOE), we first provide some of the

intuition behind the definition. In a continuum model, if all consumers use a common dynamic

oblivious strategy ν, the aggregate demand and the prices at stage t depend only on the history

of exogenous states, ht = (s0, . . . , st). A dynamic oblivious strategy ν is a DOE (cf. the formal

definition in Section 4.2) if it maximizes every consumer’s expected total payoff, under the sequence

6 Note that a dynamic oblivious strategy depends only on the consumer’s current state, instead of her augmented
state. As we will see in Section 4.2, in a continuum model, since any single consumer has no influence on the prices,
a best response or equilibrium strategy need not take into account the action taken at the previous stage.
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of prices that ν induces. In Section 4.3, we associate a continuum model with a sequence of n-

consumer models (n = 1,2, . . .), and specify the relation between the continuum model and the

corresponding n-consumer model.

4.1. The sequence of prices induced by a dynamic oblivious strategy

Let ht = (s0, . . . , st) denote a history up to stage t, and let Ht = St+1 denote the set of all possible

such histories. Recall that in a continuum model, given an initial global state s0, the distribution

of consumers’ initial states is ηs0 . Therefore, under a history ht, if all consumers use the same

dynamic oblivious strategy ν, then the average demand is

Ãt|ν,ht =
∑
x∈X0

ηs0(x) · νt(x,ht). (16)

We now introduce the cost functions in a continuum model. Let C̃ :R×S → [0,∞) be a primary

cost function. Let H̃ : R2 ×S2→ [0,∞) be an ancillary cost function at stage t≥ 1, and let H̃0 :

R×S → [0,∞) be an ancillary cost function at the initial stage 0.

Given the cost functions in a continuum model, we define the sequence of prices induced by a

dynamic oblivious strategy as follows:

p̃t|ν,ht = C̃ ′(Ãt|ν,ht , st), q̃0|ν,h0 = 0, w̃0|ν,h0 = H̃ ′0(Ã0|ν,h0 , s0), (17)

and for t≥ 1,

q̃t|ν,ht =
∂H̃

(
Ãt−1|ν,ht−1

, Ãt|ν,ht , st

)
∂Ãt−1|ν,ht−1

, w̃t|ν,ht =
∂H̃

(
Ãt−1|ν,ht−1

, Ãt|ν,ht , st

)
∂Ãt|ν,ht

. (18)

4.2. Equilibrium strategies

In this subsection we define the concept of a DOE. Suppose that all consumers other than i use a

dynamic oblivious strategy ν. In a continuum model, consumer i’s action does not affect the prices.

If all consumers except i use a dynamic oblivious strategy ν, consumer i’s oblivious stage value

(the stage payoff in a continuum model) under a history ht and an action ai,t, is

π̃i,t(yi,t, ht, ai,t | ν) =Ut(xi,t, st, ai,t)− (p̃t|ν,ht + w̃t|ν,ht)ai,t− q̃t|ν,htai,t−1, (19)
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where the prices, p̃t|ν,ht , w̃t|ν,ht , and q̃t|ν,ht , are defined in (17) and (18). Since a single consumer’s

action cannot influence q̃t, the last term in (19) is not affected by the action ai,t, and the decision

ai,t at stage t need not take ai,t−1 into account, but should take q̃t+1 into account.

Consumer i’s oblivious stage value under a dynamic oblivious strategy ν̂, is7

π̃i,t(yi,t, ht | ν̂, ν)
∆
= π̃i,t(yi,t, ht, ν̂t(xi,0, ht) | ν). (20)

In particular, we use π̃i,t(yi,t, ht | ν, ν) to denote the oblivious stage value of consumer i at stage t, if

all consumers use the strategy ν. Given an initial global state s0 and an initial state of consumer i,

xi,0, her oblivious value function (total future expected payoff function in a continuum model)

is

Ṽi,0(xi,0, s0 | ν̂, ν) =E

{
T∑
τ=0

π̃i,τ (yi,τ , hτ | ν̂, ν)

}
, (21)

where the expectation is over the future global states, {sτ}Tτ=1.

Definition 1. A strategy ν is a Dynamic Oblivious Equilibrium (DOE) if

sup
ν̂∈V

Ṽi,0(xi,0, s0 | ν̂, ν) = Ṽi,0(xi,0, s0 | ν, ν), ∀xi,0 ∈X0, ∀s0 ∈ S.

A DOE is guaranteed to exist, under suitable assumptions, and this is known to be the case for

our model (under our assumptions), and even for a more general model that includes idiosyncratic

randomness (Bergin and Bernhardt 1992). The DOE, as defined above, is essentially the same

concept as the “dynamic competitive equilibrium” studied in Bodoh-Creed (2010), which is defined

as the nonatomic equivalent of an MPE, in a continuum model. At a DOE, the beliefs of all

consumers on future prices are consistent with the equilibrium outcomes. Therefore, a DOE is

identical in outcomes with a Rational Expectations Equilibrium (REE).

In future electricity markets, consumers may form rational expectations of future prices through

an adaptive learning process, or they may receive price estimates from utilities and/or the inde-

pendent system operator through advanced metering infrastructures. (In Appendix B, we provide

7 Recall that the initial state (the type) of consumer i, xi,0, is included in its state xi,t, for any t.
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some discussion of a possible implementation of the proposed real-time pricing mechanism.) If

so, a REE (equivalently, a DOE) will be a plausible outcome of such a market. Furthermore, we

will show (Theorem 2) that under the proposed pricing mechanism, and under certain convexity

assumptions, a DOE is socially optimal for the continuum model.

For a dynamic market model with aggregate profit shocks, Weintraub et al. (2010) introduce a

concept of “extended oblivious equilibrium” at which every firm’s strategy depends on its current

state and on the recent history (as opposed to the full history) of the aggregate shock. The extended

oblivious equilibrium is computationally tractable; however, an equilibrium strategy may not be

an approximate best response for every firm, even if the number of firms is large (cf. the error

bounds derived in Section 8.3 of Weintraub et al. (2010)).

Note that the definition of a DOE strategy requires optimality (attaining the supremum in

Definition 2) only along the equilibrium path (Bodoh-Creed 2010). Thus, a DOE is similar in spirit

to the “self-confirming equilibria” in Fudenberg and Levine (1993) and the “subjective equilibria”

in Kalai and Lehrer (1995), in which each agent forms correct beliefs about her opponents only

along the equilibrium path.

4.3. The n-consumer model associated with a continuum model

We want the cost functions in a continuum model to approximate the cost functions in an n-

consumer model. Since the continuum of consumers is described by distributions over [0,1], the

demand given in (16) can be regarded as the average demand per consumer. To capture this

correspondence, we assume the following relation between the cost functions in a continuum model

and their counterparts in a corresponding n-consumer model.

Assumption 2. For any n∈N, any s∈ S, and any s in S2, we have

Cn(A,s) = nC̃

(
A

n
,s

)
, Hn

0 (A,s) = nH̃0

(
A

n
,s

)
, Hn(A,A′, s) = nH̃

(
A

n
,
A′

n
, s

)
,

where the superscript n is used to indicate that these are the cost functions associated with an

n-consumer model.
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Assumption 2 implies that

(Cn)′(A,s) = C̃ ′(A/n, s), (Hn
0 )′(A,s) = H̃ ′0(A/n, s), s∈ S,

and

∂Hn(A,A′, s)

∂A
=
∂H̃(A/n,A′/n, s)

∂(A/n)
,

∂Hn(A,A′, s)

∂A′
=
∂H̃(A/n,A′/n, s)

∂(A′/n)
, ∀s∈ S2,

i.e., the prices in the continuum model at the average demand equal the prices in the corresponding

n-consumer model.

5. Approximation in Large Games

In this section, we consider a sequence of dynamic games, and show that as the number of consumers

increases to infinity, a DOE strategy for the corresponding continuum game is asymptotically

optimal for every consumer (i.e., an approximate best response), if the other consumers follow

that same strategy. In the rest of the paper, we often use a superscript n to indicate quantities

associated with an n-consumer model.

Suppose that all consumers except i use a dynamic oblivious strategy ν. Given a history ht and

an empirical distribution fn−i,t, we use v(ht, f
n
−i,t, ν) to denote the empirical distribution, un−i,t, of

the actions taken by consumers excluding i. In an n-consumer model, suppose that consumer i

uses a history-dependent strategy κn = {κnt }Tt=0 of the form

ai,t = κnt (yi,t, ht, f
n
−i,t), (22)

while the other consumers use a dynamic oblivious strategy ν. Let Kn denote the set of all possible

history-dependent strategies κn for the n-consumer model. Note that since all other consumers use

an oblivious strategy ν, fn−i,t is completely determined by ν, fn−i,0, and ht.

The stage payoff received by consumer i at time t is

πni,t(yi,t, ht, f
n
−i,t | κn, ν) = πn

(
yi,t, st, ai,t, f

n
−i,t, v(ht, f

n
−i,t, ν)

)
, (23)
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where ai,t = κnt (yi,t, ht, f
n
−i,t), and the stage payoff function on the right-hand side is given in (14).

Given an initial global state, s0, and consumer i’s initial state, xi,0, consumer i’s expected payoff

under the strategy κn is

V n
i,0 (xi,0, s0 | κn, ν) =E

{
T∑
t=0

πni,t(yi,t, ht, f
n
−i,t | κn, ν)

}
, (24)

where the expectation is over the initial distribution fn−i,0 and over the future global states, {st}Tt=1.

In particular, we use V n
i,0 (xi,0, s0 | ν, ν) to denote the expected payoff obtained by consumer i if all

consumers use the strategy ν.

Definition 2. A dynamic oblivious strategy ν has the asymptotic Markov equilibrium

(AME) property (Adlakha et al. 2011), if for any initial global state s0 ∈ S, any initial consumer

state xi,0 ∈X0, and any sequence of history-dependent strategies {κn}, we have

limsup
n→∞

(
V n
i,0 (xi,0, s0 | κn, ν)−V n

i,0 (xi,0, s0 | ν, ν)
)
≤ 0.

We will show that every DOE has the AME property, under the following assumption, which

strengthens Assumption 1.

Assumption 3. We assume that:

3.1. The following four families of functions, of A, {C̃ ′(A,s) : s ∈ S}, {H̃ ′0(A,s) : s ∈ S},

{∂H̃(A,A′, s)/∂A : (A′, s) ∈ A × S2}, and {∂H̃(A′,A, s)/∂A : (A′, s) ∈ A × S2}, are uniformly

equicontinuous on [0,∞).8

3.2. The marginal costs are bounded from above, i.e.,

|C̃ ′(A,s)| ≤ P, |H̃ ′0(A,s)| ≤ P, ∀(A,s)∈A×S,

and ∣∣∣∣∣∂H̃(A,A′, s)

∂A

∣∣∣∣∣≤ P,
∣∣∣∣∣∂H̃(A′,A, s)

∂A

∣∣∣∣∣≤ P, ∀(A′, s)∈A×S2,

where P is a positive constant.

8 A sufficient condition for this assumption to hold is to require a universal bound on the derivatives of the functions
in each family.
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3.3. The utility functions, {Ut(x, s, a)}Tt=0, are continuous in a and bounded above, i.e.,

Ut(x, s, a)≤Q, t= 0, . . . , T, ∀(x, s, a)∈Xt×S ×A,

where Q is a positive constant.

Combining with Assumption 2, Assumption 3.1 implies that for any ε > 0, there exists a δ > 0

such that for any positive integer n, if |A−A| ≤ nδ, then

∣∣(Cn)′(A,s)− (Cn)′(A,s)
∣∣≤ ε, ∣∣(Hn

0 )′(A,s)− (Hn
0 )′(A,s)

∣∣≤ ε, ∀s∈ S, (25)

and for any (A′, s)∈A×S2,

∣∣∣∣∂Hn(A,A′, s)

∂A
− ∂H

n(A,A′, s)

∂A

∣∣∣∣≤ ε, ∣∣∣∣∂Hn(A′,A, s)

∂A
− ∂H

n(A′,A, s)

∂A

∣∣∣∣≤ ε. (26)

Note that the boundness of the cost function derivatives implies the Lipschitz continuity of the

cost functions. Combining with Assumption 2, for any pair of real numbers (A,A), and any positive

integer n, we have

∣∣Cn(A,s)−Cn(A,s)
∣∣≤ P |A−A|, ∣∣Hn

0 (A,s)−Hn
0 (A,s)

∣∣≤ P |A−A|, ∀s∈ S, (27)

and for any (A′, s)∈A×S2,

∣∣Hn(A,A′, s)−Hn(A,A′, s)
∣∣≤ P |A−A|, ∣∣Hn(A′,A, s)−Hn(A′,A, s)

∣∣≤ P |A−A|. (28)

We argue in the following theorem that a DOE strategy approximately maximizes a consumer’s

expected payoff (among all possible history-dependent strategies) in a dynamic game with a large

but finite number of consumers, if the other consumers also use that strategy.

Theorem 1. Suppose that Assumptions 2-3 hold. Every DOE has the AME property.

Theorem 1 is proved in Appendix C. Various approximation properties of nonatomic equilibrium

concepts in a continuum game have been investigated in previous works. Sufficient conditions

for a stationary equilibrium (an equilibrium concept for a continuum game without aggregate
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uncertainty) to have the AME property are derived in Adlakha et al. (2011). For a continuum

game with both idiosyncratic and aggregate uncertainties, Bodoh-Creed (2010) shows that as the

number agents increases to infinity, the actions taken in an MPE can be well approximated by

some DOE strategy of the nonatomic limit game. Note, however, that in a general n-consumer

game, even if all consumers take an action that is close to the action taken by a DOE strategy of

the nonatomic limit game, the population states and the prices in the n-consumer game can still

be very different from their counterparts in the nonatomic limit game. Therefore, without further

assumptions on the consumers’ state transition kernel (e.g., continuous dependence of consumer

states on their previous actions), the approximation property of a DOE on the action space does

not necessarily imply the AME property of the DOE.

6. Asymptotic Social Optimality

In Section 6.1, we define the social welfare associated with an n-consumer model and with a con-

tinuum model. In Section 6.2, we show that for a continuum model, the social welfare is maximized

(over all symmetric dynamic oblivious strategy profiles) at a DOE, and that for a sequence of

n-consumer models, if all consumers use the DOE strategy of the corresponding continuum model,

then the social welfare is asymptotically maximized, as the number of consumers increases to

infinity.

6.1. Social welfare

In an n-consumer model, let xt = (x1,t, . . . , xn,t) and at = (a1,t, . . . , an,t) be the vectors of consumer

states and actions, respectively, at stage t. Under the current global state st, the social welfare

realized at stage t is

W n
t (xt, st,at) =−Cn(At, st)−Hn(At−1,At, st) +

n∑
i=1

Ut(xi,t, st, ai,t), t= 1, . . . , T, (29)

and at stage 0, the social welfare is

W n
t (x0, s0,a0) =−Cn(A0, s0)−Hn

0 (A0, s0) +
n∑
i=1

U0(xi,0, s0, ai,0). (30)
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Because of the symmetry of the problem, the social welfare at stage t depends on xt and at only

through the empirical distribution of state-action pairs. In particular, under a symmetric history-

dependent strategy profile κn = (κn, . . . , κn) (cf. the definition of a history-dependent strategy in

Eq. (22)), we can write the social welfare at time t (with a slight abuse of notation) as W n
t (fnt , ht |

κn). Given an initial global state s0 and an initial population state fn0 , the expected social welfare

achieved under a symmetric history-dependent strategy profile κn is given by

Wn
0 (fn0 , s0 |κn) =W n

0 (fn0 , s0 |κn) +E

{
T∑
t=1

W n
t (fnt , ht |κn)

}
, (31)

where the expectation is over the future global states {st}Tt=1. In particular, we use Wn
0 (fn0 , s0 | νn)

to denote the expected social welfare achieved by the “symmetric dynamic oblivious strategy

profile”, νn = (ν, . . . , ν).

In a continuum model, suppose that all consumers use a common dynamic oblivious strategy ν.

Given an initial global state s0, the expected social welfare is

W̃0(s0 | ν) = W̃0(s0 | ν) +E

{
T∑
t=1

W̃t(ht | ν)

}
, (32)

where the expectation is over the future global states, {st}Tt=1. Here, W̃t(ht | ν) is the stage social

welfare under history ht:

W̃t(ht | ν) =−C̃(Ãt|ν,ht , st)− H̃(Ãt−1|ν,ht−1
, Ãt|ν,ht , st)

+
∑
x∈X0

ηs0(x)Ut (lν,ht(x), st, νt(x,ht)) , t= 1, . . . , T, (33)

where lν,ht maps a consumer’s initial state into her state at stage t, under the history ht and the

dynamic oblivious strategy ν. The social welfare at stage 0 is given by

W̃0(s0 | ν) =−C̃(Ã0|ν,h0 , s0)− H̃0(Ã0|ν,h0 , s0) +
∑
x∈X0

ηs0(x)U0 (x, s0, ν0(x, s0)) . (34)

6.2. Asymptotic social optimality of a DOE

We now define some notation that will be useful in this subsection. Since there is no idiosyncratic

randomness, given a history ht, the state of consumer i at stage t depends only on her initial state
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xi,0, and her actions taken at τ = 0, . . . , t − 1. At stage t ≥ 1, the history ht and the transition

function zi,t+1 = r(xi,t, ai,t, st+1) define a mapping kht :X0×At→Z:

zi,t = kht(xi,0, ai,0, . . . , ai,t−1), t= 1, . . . , T. (35)

Given an initial state xi,0, consumer i’s total utility under a history ht can be written as a function

of her actions taken at stages τ = 0, . . . , t:

Uht(xi,0, ai,0, . . . , ai,t) =Ut(xi,0, s0, ai,0) +
t∑

τ=1

Ut(xi,0, khτ (xi,0, ai,0, . . . , ai,τ−1), sτ , ai,τ ). (36)

Before proving the main result of this section, we introduce a series of assumptions on the

convexity and differentiability of the cost and the utility functions.

Assumption 4. We assume the following.

4.1. For any s∈ S, C̃(·, s) is convex; for any s∈ S2, H̃(A,A′, s) is convex in (A,A′).

4.2. For any hT ∈HT and any xi,0 ∈X0, the function defined in (36) is concave with respect to

the vector (ai,0, . . . , ai,T ).

4.3. For any t≥ 1, any ht ∈Ht, and any xi,0 ∈X0, the function kht defined in (35) is monotonic

in ai,τ , for τ = 0, . . . , t − 1; further, its left and right derivatives with respect to ai,τ exist, for

τ = 0, . . . , t− 1.

4.4. For t ≥ 1, and for any (x, s, a) ∈ X0 × S × A, the left and right derivatives of the utility

function Ut(x, z, s, a) in z exist.

Assumption 4.1 is standard. If the utility function is concave in a, Assumption 4.2 requires that

the transition function kht preserves concavity (a linear function would be an example). Note that

Assumptions 4.1 and 4.2 guarantee that in both models (a dynamic game with a finite number

of consumers, and the corresponding continuum game), the expected social welfare (consumer

i’s expected payoff) is concave in the vector of actions taken by all consumers (respectively, by

consumer i). Assumptions 4.3 and 4.4 ensure the existence of left and right derivatives of the

expected social welfare given in (32), with respect to the actions taken by consumers. An example

where Assumptions 4.2-4.4 hold is given next.
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Example 2. Consider appliances such as Plug-in Hybrid Electric Vehicles (PHEVs), dish washers,

or clothes washers. For such appliances, a customer usually only cares whether a task is completed

before a certain time.

Given an initial state (type) of consumer i, xi,0, let D(xi,0) and T (xi,0) indicate her total desired

demand and the stage by which the task has to be completed, respectively. Under a given history

ht, the total utility accumulated by consumer i until time t is assumed to be of the form

Uht(xi,0, ai,0, . . . , ai,t) =Z

xi,0,min

D(xi,0),

min{T (xi,0),t}∑
τ=0

ai,τ


 ,

for some function Z. If for every xi,0 ∈X0, Z(xi,0, · ) is nondecreasing and concave, then Assumption

4.2 holds. At stage t= 0, we have

U0(xi,0, s0, ai,0) =Z (xi,0,min{D(xi,0), ai,0}) .

For t= 1, . . . , T (xi,0), we let zi,t =
∑t−1

τ=0 ai,τ , and

Ut(xi,0, zi,t, st, ai,t) =Z (xi,0,min{D(xi,0), ai,t + zi,t})−Z (xi,0,min{D(xi,0), zi,t}) .

For t ≥ T (xi,0) + 1, we let zi,t = D(xi,0), and let Ut(xi,t, st, ai,t) be identically zero. Suppose that

for every xi,0 ∈X0, the right and left derivatives of Z(xi,0, · ) exist. Then, Assumptions 4.3 and 4.4

hold. �

Theorem 2. Suppose that Assumptions 2-4 hold. Let ν be a DOE of the continuum game. Then,

the following hold.

(a) In the continuum game, the social welfare is maximized (over all symmetric dynamic obliv-

ious strategy profiles) at the DOE, i.e., 9

W̃0(s0 | ν) = supϑ∈V W̃0(s0 | ϑ), ∀s0 ∈ S,

where V is the set of all dynamic oblivious strategies.

9 Note that we are only comparing the social welfare under different symmetric dynamic oblivious strategy profiles,
where all consumers are using the same dynamic oblivious strategy (ν or ϑ). This is no loss of generality because
under Assumption 4, the social welfare in a continuum game is a concave function of the collection of consumer
actions taken under the different histories. Hence, it can be shown that the optimal social welfare can be achieved by
a symmetric dynamic oblivious strategy profile.
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(b) For a sequence of n-consumer games, the symmetric DOE strategy profile, νn = (ν, . . . , ν),

approximately maximizes the expected social welfare, as the number of consumers increases to

infinity. That is, for any initial global state s0, and any sequence of symmetric history-dependent

strategy profiles {κn}, we have10

limsup
n→∞

E
{
Wn

0 (fn0 , s0 |κn)−Wn
0 (fn0 , s0 | νn)

n

}
≤ 0,

where the expectation is over the initial population state, fn0 .

The proof of Theorem 2 is given in Appendix D.

7. Conclusion and Future Directions

In an electric power system, load swings may result in significant ancillary cost to suppliers. Moti-

vated by the observation that marginal cost pricing may not achieve social optimality in electricity

markets, we proposed a new dynamic pricing mechanism that takes into account the externality

conferred by a consumer’s action on future ancillary cost. Besides proposing a suitable game-

theoretic model that incorporates the cost of load fluctuations and a particular pricing mechanism

for electricity markets, a main contribution of this paper was to show that the proposed pric-

ing mechanism achieves social optimality in a dynamic nonatomic game, and approximate social

optimality for the case of finitely many consumers, under certain convexity assumptions.

To compare the proposed pricing mechanism with marginal cost pricing, we presented a numerical

example in which the demand increases sharply at the last stage. In this example, the proposed

pricing mechanism creates a stronger incentive for consumers to shift their peak load than marginal

cost pricing, through an additional negative price charged on off-peak consumer demand. As a

result, compared with marginal cost pricing, the proposed pricing mechanism achieves a higher

social welfare, and at the same time, reduces the peak load, and therefore has the potential to

reduce the need for long-term investments in peaking plants.

10 Under Assumption 4, the social welfare in an n-consumer game is a concave function of the collection of consumer
actions taken under the different histories. Therefore, supκn∈KnW

n
0 (fn0 , s0 | κn) is also the maximum social welfare

that can be achieved by a (possibly non-symmetric) history-dependent strategy profile.
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We believe that the constructed dynamic game-theoretic model, the proposed pricing mechanism,

and more importantly, the insights provided by this work, can be applied to a more general class

of markets with friction. As an extension and future work, one can potentially develop and use

variations of our framework to a market of a perishable product/service where demand fluctuations

incur significant cost to suppliers. Examples include data centers implementing cloud services that

suffer from the switching costs to toggle a server into and out of a power-saving mode (Lin et al.

2011), and large organizations such as hospitals that use on-call staff to meet unexpected demand.
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Electronic Companion

A. Approximation of the supplier cost

In this appendix, we show via simulation that at least in some cases, the supplier cost (including

the cost of ancillary service) can be captured by a simplified cost function of the form in (5). We

consider a (T + 1)-stage dynamic model with two energy resources, a primary energy resource and

an ancillary energy resource. It is assumed that the forecast demand is met by the primary energy

resource (e.g., coal-fired or nuclear power generators), and that at stage t= 1, . . . , T , the deviations

from the forecast demand, {wt}Tt=1, are independent random variables uniformly distributed on

[−ω,ω]. At the initial stage 0, we assume that the forecast error is zero, i.e., w0 = 0.

At stage t, let bt denote the difference between the actual output of the primary energy resource

and the forecast demand, and let dt denote the output of the ancillary energy resource (e.g., oil/gas

combustion turbines). For simplicity, we will assume that the cost of a positive primary energy

resource (respectively, ancillary energy resource) is b2
t (respectively, 10d2

t ).

Let rb be the ramping rate of the primary energy resource, and rd be the ramping rate of the

ancillary energy resource. At the initial stage 0, we assume that b0 =w0 = 0, and d0 = 0. At stage

t≥ 1, if wt < 0, then dt = 0, and we assume that bt = 0, that is, the system operator maintains a

high level of (potential) output in order to be able to deal with a possible unexpected demand surge

in the future; if wt > 0, we assume that bt = min{wt, bt−1 + rb}, where bt−1 + rb is the maximum

possible output of the primary energy resource at stage t, and that dt = min{wt − bt, dt−1 + rd}.

The total supplier cost (excluding the cost to meet the forecast demand) is

C =
T∑
t=1

(
b2
t + 10d2

t

)
. (37)

For notational convenience, we let (·)+ = max{·,0}. We use the following function to approximate

the supplier cost:

C̃ =
T∑
t=1

(
b̃2
t + 10d̃2

t

)
, (38)

where d̃t = min
{
rd,
(
0,wt− (wt−1)+− rb

)+
}

, and b̃t = (wt− d̃t)+.
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Figure 2 A simulation experiment with T = 24, and 500,000 trajectories for each ω/rb on the horizontal axis.

The approximation error is defined by |C − C̃|/C. The average approximation error (vertical axis) is

the mean value of the approximation errors of the 500,000 trajectories.

The function in (38) well approximates the supplier cost in (37), if for an unexpected demand

surge at stage t, the system load at the previous stage, wt−1, is met by the primary energy resource,

and load shedding rarely occurs (so that (wt)
+ typically equals bt +dt). Note that in (38), for each

stage t, the approximated cost depends only on wt−1 and wt. Therefore, the approximated cost in

(38) can be written as

C̃ =
T∑
t=1

(
((wt)

+)2 +H(wt−1,wt)
)
, (39)

where H(wt−1,wt) =
(
b̃2
t + 10d̃2

t − ((wt)
+)2
)+

.

For different values of the parameters, rb, rd, and ω, we evaluate the performance of the approx-

imation via simulation. Fig. 2 depicts some numerical results of a simulation experiment and we

can make the following observations:

1. The main source of approximation error is from the following scenario: at stage t− 1, the

deviation in demand wt−1 is nonpositive, wt > rb, and wt+1 > 2rb. In this scenario, the output of

the primary energy source at stage t is rb, which is less than wt. When ω/rb ≤ 2, this scenario never

occurs and we observe from Fig. 2 that the approximation error is close to zero, regardless of the
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value of rd.

2. Comparing the black curve with the red curve in Fig. 2, we observe that when ω/rb > 3 (when

rb = 0.05 and ω > 0.15), the approximation error for the case where rd = 0.1 is larger than that for

the case where rd = 0.25. This is because for the case with rd = 0.1, as ω/rb increases from 3 to 6

(as ω increases from 0.15 to 0.3), the probability of load shedding increases, which deteriorates the

performance of the approximation.

3. Finally, and perhaps most importantly, when the ramping rate of the ancillary energy resource

is high enough to prevent any load shedding, the approximation error is an increasing function of

the single parameter ω/rb (e.g., the blue curve with circle markers for rb = 0.02, rd = 0.1 and the

red curve for rb = 0.05, rd = 0.25 merge together in Fig. 2); in this case, we observe from Fig. 2 that

the approximation error is less than 10% for a wide range of parameter values.

B. Implementation of the proposed pricing mechanism

To implement a dynamic real-time pricing mechanism, all consumers should be exposed to time-

varying prices associated with ex ante estimates of generation costs that reflect system operating

conditions (p. 81 of Borenstein et al. (2002)) so that they can adjust their demand in accordance

to real-time prices as well as ex ante price estimates. The mechanism proposed in this paper is not

an exception. The ex ante estimates of real-time prices can be developed by evaluating statistical

relationships between historical real-time prices and various factors such as load forecast, weather

predictions, and expected supply/demand balances (Borenstein et al. 2002).

We now provide a brief discussion of the details of a possible implementation of the proposed

pricing mechanism:

Ex ante price estimates. Suppose that the exogenous state st is realized at the beginning of each

stage t; for every possible realization of the trajectory (scenario) of future exogenous states

{sτ}t+Tτ=t+1, consumers receive corresponding price estimates {p̂τ}t+Tτ=t , {ŵτ}t+Tτ=t , and {q̂τ}t+Tτ=t , from

utilities and/or the independent system operator. The consumers also know or receive the prob-

abilities of the different trajectories. With the received price estimates (associated with possible
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trajectories of future exogenous states) and preset utility functions, each consumer’s infrastructure

solves a dynamic programming problem to maximize her expected payoff over the horizon from

t to t + T . (The state at time τ in this dynamic program is comprised of yi,τ , and the history

(st, st+1, . . . , sτ .) The dimension of this state space grows with the time horizon T (because of the

exponentially increasing number of histories). Unfortunately, this is unavoidable for models of this

type, and might require some further approximations, e.g., in the spirit of Weintraub et al. (2010).

Ex post prices. At each stage t, after the realization of the system demands At−1 and At, consumers

pay ex post prices (pt,wt, qt) that are determined according to Eqs. (11) and (12).

Equilibrium. In a market with a large number of price-taking consumers, it is possible to make

ex ante price estimates (contingent on the realized trajectories) that are close to ex post prices.

If every consumer maximizes her own payoff in response to these pretty accurate price estimates,

the resulting outcome should be close to that resulting from a Rational Expectations Equilibrium

(REE). The results derived in this paper show that the expected social welfare can be approximately

maximized, under the proposed mechanism.

We emphasize here that there remain several challenging implementation issues, e.g., the accu-

racy of future price estimates and the uncertainty of consumer response to ex ante price estimates.

For example, Roozbehani et al. (2010) show that if consumers act myopically to highly inaccurate

price estimates, real-time pricing may result in extreme price volatility. However, we note that

these challenges are generic to almost all kinds of real-time pricing mechanisms.

C. Proof of Theorem 1

We consider a sequence of n-consumer models where n− 1 consumers (all except for consumer

i) use a DOE strategy ν. As the number of consumers increases to infinity, the randomness of

consumer initial states averages out. Thus, in Step 1 we show that the aggregate demand (in an

n-consumer model) at a history ht is close to nÃt|ν,ht (defined in Eq. (16)), with high probability.

As a consequence, we show in Step 2 that as n→∞, consumer i’s expected payoff associated with

any sequence of actions can be approximated by her oblivious value defined in (21). Since the DOE
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strategy ν maximizes consumer i’s oblivious value among all possible strategies, we argue in Step

3 that as n→∞, the maximum expected payoff consumer i can obtain is asymptotically no larger

than the optimal oblivious value. In Step 4, we show that consumer i’s optimal oblivious value

can be approximately achieved if she uses the DOE strategy ν. We finally conclude with the AME

property of the DOE strategy ν (the result in Theorem 1).

In what follows, we will be using the uniform metric over the set of probability distributions on

the finite set X0. Specifically, if f and f ′ are two distributions on X0, we let

d(f, f ′)
∆
= ‖f − f ′‖∞ = max

x∈X0
|f(x)− f ′(x)| . (40)

Step 1: With high probability, the aggregate demand under a history ht is close to nÃt|ν,ht.

Given an initial distribution fn−i,0, and if all consumers (excluding i) use a dynamic oblivious

strategy ν, we write their aggregate demand at a history ht as

An−i,t = (n− 1)
∑
x∈X0

fn−i,0(x)νt(x,ht).

Recall that (cf. (16))

Ãt|ν,ht =
∑
x∈X0

ηs0(x) · νt(x,ht).

We observe that if d(fn−i,0, ηs0)≤ δ/(XB), then at any history ht we have

∣∣∣An−i,t− (n− 1)Ãt|ν,ht

∣∣∣≤ δ(n− 1), (41)

with probability at least 1−O(e−n). More precisely, since the consumers’ initial states are inde-

pendently drawn according to ηs0 , Hoeffding’s inequality (Hoeffding (1963)) yields,

P
(
d(F n−1

s0
, ηs0)≥ δ/(XB)

)
≤ 2X exp

{
−2(n− 1)δ2/(X2B2)

}
, ∀s0 ∈ S, ∀δ > 0, ∀n∈N+, (42)

where X is the cardinality of the set X0 and F n−1
s0

is an X-dimensional random vector denoting

the distribution of the initial states of the n− 1 consumers (excluding i).

Step 2: Under a given history hT , consumer i’s expected payoff can be approximated by a cor-

responding oblivious value, defined in (45).
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In an n-consumer model, suppose that all consumers other than i use a dynamic oblivious

strategy ν. Given a complete history hT = (s0, . . . , sT ), and consumer i’s initial state xi,0, we define

her expected payoff under a history-dependent strategy κn by

V n
i,0(xi,0, hT | κn, ν) =E

{
V n
i,0(xi,0, hT , f

n
−i,0 | κn, ν)

}
,

where the expectation is over the initial distribution, fn−i,0, and V n
i,0(xi,0, hT , f

n
−i,0 | κn, ν) is consumer

i’s payoff under the given initial distribution fn−i,0,

V n
i,0(xi,0, hT , f

n
−i,0 | κn, ν) =

T∑
t=0

πni,t(yi,t, ht, f
n
−i,t | κn, ν), (43)

and where the stage payoff function, πni,t(·), has been defined in (23). Note that given fn−i,0, and since

all consumers other than i use a dynamic oblivious strategy, the distribution of their augmented

states, fn−i,t, is completely determined by the history ht. Therefore, given fn−i,0, consumer i’s history-

dependent strategy κn is equivalent to a dynamic oblivious strategy: the action it takes at stage t

depends only on xi,0 and ht. We can therefore define an oblivious strategy ν̃n(κn, fn−i,0) such that

ν̃t(κ
n, fn−i,0)(xi,0, ht) = κnt (yi,t, ht, f

n
−i,t),

where fn−i,t is the distribution of the n − 1 consumers’ augmented states under the history ht,

induced from the initial distribution fn−i,0 by the symmetric oblivious strategy profile (ν, . . . , ν),

and yi,t is consumer i’s augmented state under the history ht, induced from her initial state xi,0

by the strategy κn.

In the corresponding continuum model, suppose that all consumers other than i use a dynamic

oblivious strategy ν. For a given complete history hT , we define consumer i’s oblivious value under

an initial distribution fn−i,0, her initial state xi,0, and the history-dependent strategy κn:

Ṽi,0(xi,0, hT , f
n
−i,0 | κn, ν) =

T∑
t=0

π̃i,t(yi,t, ht | ν̃(κn, fn−i,0), ν), (44)

where the oblivious stage value function π̃i,t(·) is given in (20). We define the expected oblivious

value for consumer i under the history-dependent strategy κn, as11

11 This is actually the oblivious value achieved by a mixed strategy under the complete history hT . In the continuum
model, under a history ht, the mixed strategy takes an action ν̃t(κ

n, fn−i,0)(xi,0, ht), if the distribution of the n− 1
consumers’ (excluding i’s) initial states in the corresponding n-consumer model is realized as fn−i,0.
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Ṽi,0(xi,0, hT | κn, ν) =E
{
Ṽi,0(xi,0, hT , f

n
−i,0 | κn, ν)

}
, (45)

where the expectation is over the initial distribution, fn−i,0. For any ε > 0, in this step we aim

to show that there exists a positive integer N such that for any sequence of history-dependent

strategies {κn},

∣∣∣Ṽi,0(xi,0, hT | κn, ν)−V n
i,0(xi,0, hT | κn, ν)

∣∣∣≤ ε, ∀n≥N, ∀hT ∈HT , ∀xi,0 ∈X0. (46)

For a given s0, let Fn−1
s0

(δ) be the set of fn−i,0 such that d(fn−i,0, ηs0)≤ δ. To verify (46), we first

argue that for any ε > 0, there exists an positive integer N1 and some δ > 0 such that for any

fn−i,0 ∈ Fn−1
s0

(δ/(XB)) and any n≥N1,

∣∣∣Ṽi,0(xi,0, hT , f
n
−i,0 | κn, ν)−V n

i,0(xi,0, hT , f
n
−i,0 | κn, ν)

∣∣∣≤ ε/2, ∀hT ∈HT , ∀xi,0 ∈X0. (47)

Under the uniform equicontinuity assumption for the derivatives of the cost functions (see Eqs.

(25) and (26)), we know that a small deviation of the aggregate demand from Ãt|ν,ht will result in

prices that are only slightly different from the prices in the continuum model. We also note that

consumer i cannot take an action larger than B, and her payoff is influenced by other consumers

only through the prices. For any ε > 0, we can find some δ > 0 and a positive integer N1 such that

for any given (xi,0, ht), if fn−i,0 ∈ Fn−1
s0

(δ/(XB)), then the inequality in (41) holds for any history

hτ , which implies that

∣∣π̃i,t(yi,t, ht, κnt (yi,t, ht, f
n
−i,t) | ν)−πni,t(yi,t, ht, fn−i,t | κn, ν)

∣∣≤ ε/(2T + 2), ∀n≥N1, ∀ht, (48)

i.e., consumer i’s stage payoff (under the action κnt (yi,t, ht, f
n
−i,t)) in the n-consumer model is close

to her oblivious stage value (under the same action κnt (yi,t, ht, f
n
−i,t)) in the continuum model, if the

initial distribution in the n-consumer model, fn−i,0, is close to its expectation. The result in (47)

follows from Eq. (48) and the definitions in (43) and (44). Note that Q+ 2BP is an upper bound

on the stage payoff that consumer i could obtain, and −2BP is a lower bound on consumer i’s

stage payoff, under Assumption 3. The desired result in (46) follows from (47), and the fact that

the probability that fn−i,0 /∈ Fn−1
s0

(δ/(XB)) decays exponentially with n (cf. Eq. (42)).



Tsitsiklis and Xu: Pricing of Fluctuations in Electricity Markets
37

Step 3: The maximum expected payoff consumer i can obtain is asymptotically no larger than

the optimal oblivious value.

In this step, we consider the case where all consumers in an n-consumer model except for i use

a DOE strategy ν, and argue that for any sequence of history-dependent strategies {κn},

limsup
n→∞

(
V n
i,0 (xi,0, s0 | κn, ν)− Ṽi,0(xi,0, s0 | ν, ν)

)
≤ 0, ∀s0 ∈ S, ∀xi,0 ∈X0, (49)

where consumer i’s expected payoff, V n
i,0 (x, s | κn, ν), is given in (24), and Ṽi,0(x, s | ν, ν) is the

oblivious value function in (21). We first observe that

V n
i,0 (xi,0, s0 | κn, ν) =

∑
hT∈HT (s0)

P(hT | s0) ·V n
i,0 (xi,0, hT | κn, ν) , (50)

where HT (s0) is the set of complete histories commencing at state s0, and P(hT | s0) is the proba-

bility that the history hT is realized, conditional on the initial global state being s0. We define

Ṽi,0(xi,0, s0 | κn, ν) =
∑

hT∈HT (s0)

P(hT | s0) · Ṽi,0(xi,0, hT | κn, ν). (51)

Note that if κn happens to be a dynamic oblivious strategy, this definition is consistent with the

definition of oblivious value function in (21).

For any ε > 0, let N be the integer defined in Eq. (46); for any sequence of history-dependent

strategies {κn}, we argue that

Ṽi,0(xi,0, s0 | ν, ν)≥
∑

hT∈HT (s0)
P(hT | s0) · Ṽi,0 (xi,0, hT | κn, ν)

≥
∑

hT∈HT (s0)
P(hT | s0) · (V n

i,0(xi,0, hT | κn, ν)− ε)
= V n

i,0 (xi,0, s0 | κn, ν)− ε, ∀n≥N, ∀xi,0 ∈X0.

(52)

The DOE strategy ν, by definition, maximizes consumer i’s oblivious value function among all pos-

sible dynamic oblivious strategies. The first inequality in (52) follows from the fact that Ṽi,0(xi,0, s0 |

κn, ν) is a weighted sum of the oblivious values achieved by a family of dynamic oblivious strate-

gies12. The second inequality in (52) is due to (46), and the last equality in (52) follows from (50).

The desired result, (49), follows.

12 Note that for a given fn−i,0, the action taken by κn depends only on xi,0 and ht, and that Ṽi,0 (xi,0, hT | κn, ν) is
the oblivious value achieved by a mixed strategy; cf. the footnote associated with (45).
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Step 4: Consumer i’s optimal oblivious value can be asymptotically achieved at an n-consumer

game under a DOE strategy.

In this step, we consider the case where all consumers in an n-consumer model use a DOE

strategy ν, and show that

lim
n→∞

(
Ṽi,0(xi,0, s0 | ν, ν)−V n

i,0 (xi,0, s0, | ν, ν)
)

= 0, ∀s0 ∈ S, ∀xi,0 ∈X0. (53)

According to (46), with κn = ν, for any ε > 0, we can find some N such that

∣∣∣Ṽi,0(xi,0, hT | ν, ν)−V n
i,0(xi,0, hT | ν, ν)

∣∣∣≤ ε, ∀n≥N, ∀hT ∈HT , ∀xi,0 ∈X0.

The desired result in (53) follows from (50) and (51). Theorem 1 follows from (49) and (53).

D. Proof of Theorem 2

D.1. Proof of Part (a)

We will show that in a continuum model, a DOE strategy maximizes the expected social welfare

among all possible symmetric dynamic oblivious strategy profiles (part (a) of the theorem), i.e.,

that if ν is DOE, then

W̃0(s0 | ν) = supϑ∈V W̃0(s0 | ϑ), ∀s0 ∈ S. (54)

Let S and X be the cardinality of S and X0, respectively. Given the initial global state s0, the

number of possible histories of length t + 1 is St. Hence, the number of all possible histories

commencing at state s0 is
∑T

t=0S
t. Given an initial global state s0, the expected social welfare

defined in (32) is a deterministic function of the following (X
∑T

t=0S
t)-dimensional action vector:

{νt (x,ht)}x∈X0, ht∈H(s0) , (55)

where H(s0) is the set of positive probability histories commencing at state s0. Under Assumption

4, the expected social welfare defined in (32) is a concave function of the vector in (55). Therefore,

the following conditions are necessary and sufficient for the action vector (in the form of (55))
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associated with the DOE strategy ν to maximize the expected social welfare, among all possible

dynamic oblivious strategies13:
∂+Ut(lν,ht(xi,0), st, νt(xi,0, ht))

∂+νt(xi,0, ht)
≤ p̃t|ν,ht + w̃t|ν,ht + 1τ<T · g+

t|ν,ht(xi,0),

if νt(xi,0, ht)<B,
∂−Ut(lν,ht(xi,0), st, νt(xi,0, ht))

∂−νt(xi,0, ht)
≥ p̃t|ν,ht + w̃t|ν,ht + 1τ<T · g−t|ν,ht(xi,0),

if νt(xi,0, ht)> 0,

(56)

where lν,ht(xi,0) is consumer i’s state, xi,t, under a (positive probability) history ht and the strategy

ν (cf. p.15), the prices, p̃t|ν,ht and w̃t|ν,ht are given in (17) and (18), and where, if khτ (·) (cf. the

definition in (35)) is nondecreasing in ai,t for any t < τ ≤ T , then g+
t|ν,ht(xi,0) is given by14

g+
t|ν,ht(xi,0) =E

{
q̃t+1|ν,ht+1

−
T∑

τ=t+1

∂+Uτ (xi,0, zi,τ , sτ , ai,τ )

∂+zi,τ
· ∂+zi,τ
∂+ai,t

}
, ∀xi,0 ∈X0, (57)

where the price, q̃t+1|ν,ht+1
, is defined in (18), the expectation is over the future global states,

{sτ}Tt+1, zi,τ = khτ (xi,0, ai,0, . . . , ai,τ−1) for τ > t, and ai,τ = ντ (xi,τ , hτ ) for τ ≥ t. The expression (57)

is the part of the right derivative of the expected social welfare (32) with respect to the action ai,t,

which reflects the influence of consumer i’s action at stage t on the ancillary cost H̃(Ãt, Ãt+1, st+1)

at the next stage, and on her future utility (due to the influence of the action ai,t on the future

state zi,τ , through the functions khτ (·)). In (56), g−t|ν,ht(xi,0) can be defined by replacing the right

(left) partial derivatives in (57) with left (respectively, right) partial derivatives.

Given an initial global state s0, and the initial state of consumer i, xi,0, her oblivious value,

defined in (21), is a deterministic, concave function of the vector

{νt (xi,0, ht)}ht∈H(s0)
(58)

of actions that she would take at any given stage and for any given history. Since the DOE strategy

ν maximizes consumer i’s oblivious value, it is easily checked that the vector in (58) must satisfy

the conditions (56). Since this is true for any xi,0 ∈ X0, we conclude that the action vector (55)

13 We use the notations ∂+f and ∂−f to denote the right and left, respectively, derivatives of a function f .

14 If for some τ > t, khτ (·) is decreasing in ai,t, then the right partial derivative of Uτ (xi,τ , sτ , ai,τ ) with respect to
zi,τ in (57) should be replaced by its left partial derivative.
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(which is comprised by putting together the vectors in (58), for different types in the set X0)

satisfies the conditions (56). Thus, the DOE ν satisfies the sufficient condition for optimality and

the result (54) follows.

D.2. Proof of Part (b)

For a given initial global state s0, let us fix some initial distribution fn0 with d(fn0 , ηs0)≤ δ, where

δ is small. In Step 1, we compare the social welfare achieved by various strategy profiles and show

that

1

n
Wn

0 (fn0 , s0 |κn)≤ 1

n
Wn

0 (s0 |ϑn,f
n
0 )≈ W̃0(s0 | ϑn,f

n
0 ).

Here, κn is a general history-dependent strategy profile for the n-consumer model (cf. (22)). The

symmetric strategy profile ϑn,f
n
0 = (ϑn,f

n
0 , . . . , ϑn,f

n
0 ) is one that maximizes expected social welfare

given the initial population state fn0 . In Step 1, we will argue that ϑn,f
n
0 can be identified with

a dynamic oblivious strategy. In the approximate equality we are comparing the expected (over

future global states, {st}Tt=1) social welfare under the same oblivious strategy ϑn,f
n
0 (hence the same

sequence of actions for each consumer type x ∈ X0) under two different initial population states

(initial distributions of consumer types), fn0 and ηs0 .

Since ν is a DOE, part (a) of the theorem implies that

W̃0(s0 | ϑn,f
n
0 )≤ W̃0(s0 | ν).

Note that as the number of consumer grows large, with high probability the initial population state

fn0 is close to its expectation, ηs0 . In Step 2, we complete the proof of part (b) by showing that

W̃0(s0 | ν)≈ 1

n
E{Wn

0 (fn0 , s0 | νn)},

where the expectation is over the initial population state fn0 .

Step 1: If the initial population state is close to its expectation, the optimal social welfare in

an n-consumer model can be approximated by the social welfare achieved by a dynamic oblivious

strategy in the corresponding continuum model.
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In this step, we aim to show that in an n-consumer model, for any given initial global state s0

and any ε > 0, there exists some δ > 0 such that for any initial distribution fn0 with d(fn0 , ηs0)≤ δ,

we can find a dynamic oblivious strategy ϑn,f
n
0 that satisfies

Wn
0 (fn0 , s0 |κn)≤ nW̃0(s0 | ϑn,f

n
0 ) + εn, (59)

for all symmetric history-dependent strategy profiles, κn = (κn, . . . , κn). Given an initial global

state s0 and an initial population state fn0 , we observe that the social welfare, Wn
0 (fn0 , s0 | κn),

is a deterministic, concave function of the following vector of consumers’ actions under different

histories, {
κnt
(
mi,κn,ht(xi,0), ht, f

n
−i,t
)}

ht∈H(s0), xi,0∈X0, i=1,...,n
, (60)

where mi,κn,ht :X0→Yt maps consumer i’s initial state into her augmented state at the history ht,

under the strategy profile κn, and fn−i,t is the distribution of other consumers’ augmented states at

the history ht, under the strategy profile κn. Note that given the initial population state fn0 , the

strategy profile κn, and a history ht, the augmented state of consumer i at stage t depends only

on her initial state xi,0.

Since the social welfare Wn
0 (fn0 , s0 | κn) is concave in the action vector in (60), there exists a

symmetric solution, ϑn,f
n
0 = {ϑn,f

n
0

t }Tt=0, such that if at any history ht ∈H(s0), all consumers with

the same initial state take the same action according to

ai,t = ϑ
n,fn0
t (xi,0, ht), i= 1, . . . , n, (61)

then the expected social welfare, Wn
0 (fn0 , s0 | κn), is maximized among all possible symmetric

history-dependent strategy profiles15. In (61) we have defined a dynamic oblivious strategy ϑn,f
n
0

that maximizes the expected social welfare in the n-consumer model, conditional on the initial

global state being s0, and the initial population state being fn0 . That is, in an n-consumer model,

for any given s0 and fn0 , there exists a dynamic oblivious strategy ϑn,f
n
0 such that

supκnWn
0 (fn0 , s0 |κn) =Wn

0 (fn0 , s0 |ϑn,f
n
0 ), (62)

15 The fact that the supremum is attained is a consequence of our continuity assumption and the fact that the various
variables of interest can be restricted to be in a compact set.
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where ϑn,f
n
0 = (ϑn,f

n
0 , . . . , ϑn,f

n
0 ) is the corresponding symmetric dynamic oblivious strategy profile.

To verify (59), it suffices to show that for any ε > 0, there exists some δ > 0 such that for any fn0

with d(fn0 , ηs0)≤ δ, ∣∣∣Wn
0 (fn0 , s0 |ϑn,f

n
0 )−nW̃0(s0 | ϑn,f

n
0 )
∣∣∣≤ εn, (63)

i.e., if all consumers use the strategy ϑn,f
n
0 , the difference between the optimal social welfare

achieved in an n-consumer model and the social welfare achieved in the corresponding continuum

model can be made arbitrarily small, if the initial population state is close enough to its expectation,

ηs0 . We next argue that the result in (63) holds for any dynamic oblivious strategy ϑ.

To prove (63), we first upper bound the difference between the supplier cost in an n-consumer

model and that in the corresponding continuum model. Since all cost functions are Lipschitz

continuous (see Eqs. (27) and (28)), for any ε > 0, there exists some δ1 > 0 such that if

∣∣∣Ant −nÃt|ϑ,ht∣∣∣≤Xδ1Bn, t= 0, . . . , T, ∀ht ∈H(s0), (64)

then ∣∣∣Cn(Ant , st)−Cn(nÃt|ϑ,ht , st)
∣∣∣≤ nε/(3T + 3), t= 0, . . . , T, ∀ht ∈Ht(s0), (65)

∣∣∣Hn
0 (An0 , s0)−Hn

0 (nÃ0|ϑ,h0 , s0)
∣∣∣≤ nε/(3T + 3), (66)

and for t= 1, . . . , T ,

∣∣∣Hn(Ant−1,A
n
t , st)−Hn(nÃt−1|ϑ,ht−1

, nÃt|ϑ,ht , st)
∣∣∣≤ nε/(3T + 3), ∀ht ∈Ht(s0), (67)

where Ht(s0) is the set of all histories of length t+ 1 commencing at state s0. Given an initial

population state fn0 , if all consumers use the strategy ϑ, the aggregate demand under a history ht

is

Ant = n
∑
x∈X0

fn0 (x)ϑt(x,ht).

From (16) we observe that if d(fn0 , ηs0)≤ δ1, the condition in (64) holds, and then Eqs. (65)-(67)

are verified.
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We now show that if the initial population state is close to its expectation, the total utility

obtained by all consumers is close to its counterpart in the corresponding continuum model. Given

an initial population state fn0 , we write the total utility obtained by all consumers under a history

ht as
n∑
i=1

Ut(xi,t, st, ai,t) = n
∑
x∈X0

fn0 (x)Ut (lϑ,ht(x), ϑt(x,ht), st) .

On the other hand, the utility achieved in the corresponding continuum model is given by

Ũt|ϑ,ht
∆
=
∑
x∈X0

ηs0(x)Ut (lϑ,ht(x), ϑt(x,ht), st) .

We have that if d(fn0 , ηs0)≤ ε/(3XQ(T + 1)), then

∣∣∣∑n

i=1
Ut(xi,t, st, ai,t)−nŨt|ϑ,ht

∣∣∣≤ nε/(3T + 3), t= 0, . . . , T, ∀ht ∈Ht(s0), ∀n∈N+, (68)

Let δ= min{δ1, ε/(3XQ(T + 1))}. If d(fn0 , ηs0)≤ δ, from (65)-(68) we have

∣∣∣W̃t(ht | ϑ)−W n
t (fnt , ht |ϑ

n)
∣∣∣≤ nε/(T + 1), t= 0, . . . , T, ∀ht ∈Ht(s0).

Eq. (63) follows from the definition of expected social welfare in an n-consumer model (31), and

in a continuum model (32). The desired result in (59) follows.

Step 2: Asymptotic social optimality of a DOE.

In this step, we complete the proof of part (b) of the theorem, using the fact that as the number of

consumers grows large, with high probability the initial population state is close to its expectation.

Note that the action space is [0,B], so that |At| ≤ nB. Using Assumption 3, Cn(·)/n is therefore

bounded. A similar argument holds for Hn
0 (·)/n and Hn(·)/n. Furthermore, the total utility per

consumer is also bounded. Thus, there exists some constant D that upper bounds |Wn
0 /n|. We

define Fns0(δ) as the set of initial population states such that d(fn0 , ηs0) ≤ δ. By the law of large

numbers, for any pair of positive real numbers, ε and δ, we can find an integer N such that

∑
fn0 /∈F

n
s0

(δ)

P
(
F n
s0

= fn0

)
· sup
κn
|Wn

0 (fn0 , s0 |κn)| ≤DP(d(fn0 , ηs0)> δ)≤ εn, ∀n≥N. (69)
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For any ε > 0, let δ be the positive real number defined in (59), and let N be the positive integer

given in (69); for any n≥N and any symmetric history-dependent strategy profile κn, we have

E{Wn
0 (fn0 , s0 |κn)}

≤
∑

fn0 ∈F
n
s0

(δ)
P
(
F n
s0

= fn0
)
·Wn

0 (fn0 , s0 |κn) + εn

≤
∑

fn0 ∈F
n
s0

(δ)
P
(
F n
s0

= fn0
)
·
(
nW̃0(s0 | ϑn,f

n
0 ) + εn

)
+ εn

≤
∑

fn0 ∈F
n
s0

(δ)
P
(
F n
s0

= fn0
)
·
(
nW̃0(s0 | ν) + εn

)
+ εn

≤
∑

fn0 ∈F
n
s0

(δ)
P
(
F n
s0

= fn0
)
· (Wn

0 (fn0 , s0 | νn) + 2εn) + εn

≤E{Wn
0 (fn0 , s0 | νn)}+ 4εn,

where the first inequality follows from (69), the second inequality is due to (59), the third inequality

follows from the optimality property of the DOE ν (part (a) of the theorem), the fourth inequality

follows similar to (63) (the proof of Eq. (63) remains valid for any dynamic oblivious strategy),

and the last inequality follows from (69).

E. Numerical Results

In this section we give a numerical example to compare the proposed pricing mechanism with

marginal cost pricing. The comparison is carried out in terms of DOEs and the resulting social

welfare under the corresponding continuum model. Towards this purpose, we first define the DOE

for a continuum model under the marginal cost pricing mechanism, in Section E.1. In Section

E.2, we consider a two-stage dynamic model in which the consumers’ marginal utility and demand

increase at the second stage. We calculate the equilibria resulting from the two pricing mechanisms,

and compare the potential of the two pricing mechanisms to improve social welfare and reduce

peak load.

E.1. Equilibrium under Marginal Cost Pricing

In an n-consumer model, at stage t≥ 1, the supplier’s marginal cost is

(Cn)′(Ant , st) +
∂Hn(Ant−1,A

n
t , st)

∂Ant
= pnt +wnt , t= 1, . . . , T. (70)

At stage 0, the supplier’s marginal cost is

(Cn)′(An0 , s0) + (Hn
0 )′(An0 , s0) = pn0 +wn0 . (71)
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Under marginal cost pricing, each consumer’s stage payoff is

π(yi,t, st, ai,t, f
n
−i,t, u

n
−i,t) =U(xi,t, st, ai,t)− (pnt +wnt ) · ai,t, (72)

where the stage marginal cost, pnt +wnt , is given in (70) and (71), and yi,t = (xi,t, ai,t−1).

For marginal cost pricing, we now define the nonatomic equilibrium concept in the corresponding

continuum model. Suppose that all consumers other than i use a dynamic oblivious strategy ν.

Consumer i’s oblivious stage value under marginal cost pricing is given by

π̃i,t(yi,t, st, ft|ν,ht , ai,t | ν) =Ut(xi,t, st, ai,t)− (p̃t|ν,ht + w̃t|ν,ht) · ai,t, (73)

where p̃t|ν,ht and w̃t|ν,ht are defined in (17) and (18). Replacing the oblivious stage value function

in (19) with that given in (73), we can define an equilibrium concept for the marginal cost pricing

mechanism in a similar way as for the DOE in Section 4.

E.2. Numerical Example

In current wholesale electricity markets, we observe that the highest daily wholesale price usually

occurs when the system load increases quickly (cf. Fig. 1 in Section 1). Inspired by the above

observation, we construct a two-stage dynamic model, in which the aggregate demand increases

quickly at the second stage, to compare the performance of the proposed mechanism with marginal

cost pricing. For simplicity, we assume that there is a continuum of identical consumers indexed by

i∈ [0,1]. Each consumer would like to consume 1+x and 1.2−x at the two stages, where x∈ [0,E].

Here, E ∈ [0,0.1] (a given constant) is the amount of electricity demand that can be shifted from

the second stage to the first stage. The value of E will be called demand substitutability16.

Formally, consumer i’s state at each stage denotes the maximum amount of electricity she could

use at the stage17. For a given consumer i, we have xi,0 = 1 + E, and her state at stage 1 is

determined as follows:

16 There are two types of elasticity of consumers’ demand: (i) consumers may curtail their demand at a high price,
and (ii) they may shift their demand to a less expensive time. The first type of demand response is a price elasticity,
and the second type is an elasticity of substitution across time. The first type of elasticity is incorporated in our
model through the utility functions, and the second type of elasticity is incorporated through E.

17 Since all consumers are of the same type, the consumer state space in this example is a subset of [0,∞).
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1. if ai,0 ≤ 1, the maximum amount of electricity she could use at stage 1 is 1.2−E +E, i.e.,

xi,1 = 1.2;

2. if 1 < ai,0 ≤ xi,0, the maximum amount of electricity she could use at stage 1 is xi,1 =1.2−

E+ (xi,0− ai,0) = 2.2− ai,0;

3. if xi,0 <ai,0, the maximum amount of electricity she could use at stage 1 is xi,1 =1.2−E.

To summarize, we have

xi,1 = 1.2−E+ max{0, xi,0−max{ai,0,1}}.

For each stage t, the utility functions are given by

Ut(xi,t, st, ai,t) =

{
dtai,t, if 0≤ ai,t ≤ xi,t,
dtxi,t, if ai,t >xi,t,

where the slopes are d0 = 10 and d1 = 12. Here, we assumed that the consumers place a larger

value on electricity during peak hours, and that shifting peak load to off-peak hours hurts con-

sumer utility. For example, rescheduling kitchen and laundry activities may cause inconvenience

for residential consumers; similarly, industrial consumers may face higher labor cost premiums for

off-peak production.

The primary cost function (cf. Section 2) is C̃(A,s) =A2, for any s. We assume that the capacity

available at each stage is proportional to the system load, i.e.,

Gt = btAt, t= 0,1,

and that the ancillary cost depends only on the difference between the capacity available at two

consecutive stages. At the second stage (peak hour), we assume that the system operator maintains

a reserve margin of 10%, i.e., b1 = 1.1. We will consider two different system operator policies: (i)

the system operator does not forecast the load jump at the second stage, and uses a conservative

policy under which b0 = 1.12, and (ii) the system operator predicts the load jump at the second

stage, and ramps up the system capacity in advance, by letting b0 = 1.2.
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For simplicity, we use a quadratic function to approximate the ancillary cost associated with

load fluctuations:

H̃0(A0, s0) = 10(max{b0A0− 1.12,0})2, H̃(A0,A1, s1) = 20(max{b1A1− b0A0,0})2,

where 1.12 represents the capacity available at the stage before the initial stage18. We assumed a

higher coefficient, 20, for the ancillary cost at the second stage, due to the increase of the system

load.

For different levels of demand substitutability E, and two different system operator policies (b0

equal to 1.12 or b0 = 1.2), we compare the social welfare (in Section E.2.1) and the peak load (in

Section E.2.2) resulting from the equilibria of the two pricing mechanisms.

E.2.1. Social welfare gain. For various levels of demand substitutability (E ∈ [0,0.1]), and

the two different system operator policies, we calculate the equilibria resulting from the two pricing

mechanisms. Fig. 3 compares the social welfare achieved by the proposed mechanism and the

marginal cost pricing mechanism. We observe from Fig. 3 the following.

1. System operator’s policy: When the consumers have a low level of demand substitutability,

the policy with b0 = 1.2 achieves a much higher social welfare than the conservative policy (b0 =

1.12), under both the proposed and the marginal cost pricing mechanisms. (This is to be expected,

because when b0 = 1.12, and with the demand at stage 1 more or less fixed, the difference b1A1−b0A0

is necessarily large.) For consumers with a high level of demand substitutability, the policy with

b0 = 1.2 achieves a slightly smaller social welfare than the conservative policy (b0 = 1.12), because

the policy with b0 = 1.2 results in a lower price at the second stage than the conservative one, and

therefore does not provide enough encouragement to the consumers to shift their peak load (cf.

the discussion in Section E.2.2).

2. Social welfare gain at a low level of demand substitutability: At a low level of

demand substitutability, e.g., when E ≤ 0.02, and under the system operator’s conservative policy

18 Suppose that the load at stage “−1” is 1, and that the capacity available at stage −1 is 1.12, under an average
reserve margin of 12%.
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Figure 3 The social welfare achieved by the proposed pricing mechanism, the marginal cost pricing mechanism

and the flat rate pricing mechanism, as a function of the demand substitutability, E.

(b0 = 1.12), we observe that the proposed pricing mechanism achieves significantly more social

welfare gain (the social welfare achieved by flat rate pricing19 is used a reference) than marginal

cost pricing; if the system operator ramps up the capacity in advance (b0 = 1.2), both pricing

mechanisms achieve approximately the same social welfare as flat rate pricing.

3. Social welfare gain at a high level of demand substitutability: If the consumers have

a high demand substitutability, e.g., when E ≥ 0.08, the proposed pricing mechanism achieves

approximately 5% more social welfare gain than marginal cost pricing under the system operator’s

conservative policy (b0 = 1.12); if the system operator ramps up the capacity in advance (b0 =

1.2), the proposed pricing mechanism achieves approximately 50% more social welfare gain than

marginal cost pricing.

Let us now derive some insights by considering the special case of zero demand substitutability

(E = 0) and b0 = 1.12. The one-stage aggregate demand and the social welfare resulting from the

19 Under flat rate pricing, consumers pay a fixed (time-invariant) retail price for the electricity they consume. Since
the average retail price is less than the consumers’ marginal utility (see Tables 2 and 4), the payoff-maximizing
consumer demand at the two stages is 1 and 1.2, respectively. Since all consumers are identical, the aggregate demand
at the two stages is 1 and 1.2.
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Table 1 Demand and social welfare (per consumer) at E = 0 and b0 = 1.12

a0 a1 Social welfare

Flat rate 1 1.2 21.16
Marginal cost 1 1.2 21.16

Proposed 1.0901 1.2 21.4735

Table 2 Price fluctuation at E = 0 and b0 = 1.12. The price pt +wt equals the marginal cost at stage t.

p0 +w0 p1 +w1 q1 Average (retail) price

Flat rate 2 11.2 - 7.0182
Marginal cost 2 11.2 - 7.0182

Proposed 4.4401 6.7609 -4.4401 5.6562

three pricing mechanisms are given in Table 1. The prices faced by consumers are given in Table

2, where the average retail price is the ratio of the total money a consumer pays at an equilibrium

to her total demand during the two stages.20 Note that under the proposed pricing mechanism, a

consumer pays

(p0 +w0 + q1)ai,0 + (p1 +w1)ai,1,

while she would pay (p0 +w0)ai,0 + (p1 +w1)ai,1 under marginal cost pricing. In general, the price

q1 will be negative and will be even smaller if we were to increase the aggregate demand at the

second stage. That is, a higher peak load results in a lower price at the first stage, which encourages

consumers to increase their demand at the off-peak hour, even if they do not derive any additional

utility from such an increase. In fact, from Table 2 we observe that at the DOE, the proposed pricing

mechanism offers each consumer a zero total price on a0. This may appear illogical at first sight.

The reason is that due to the conservative reserve policy, with b0 = 1.12, a demand of a0 = 1 results

in a large increase from b0a0 to b1a1 and hence a large ancillary cost. The increase of the demand

a0 beyond 1 does not provide any utility to the consumer, but reduces the ancillary cost. Thus,

the counterintuitive choice of a0 = 1.0901 serves to mitigate a conservative and somewhat deficient

reserve policy. This suggests that further research is needed that will include an intertemporal

optimization of the reserve policy as well.

20 Note that only consumers under flat rate pricing pay this price. We list the average prices for the two real-time
pricing mechanisms to compare the consumers’ expense under different pricing mechanisms.
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Table 3 Demand and social welfare (per consumer) at E = 0.08 and b0 = 1.2

a0 a1 Social welfare

Flat rate 1 1.2 21.608
Marginal cost 1.0131 1.1869 21.6857

Proposed 1.0308 1.1692 21.7237

Table 4 Price fluctuation at E = 0.08 and b0 = 1.2. The price pt +wt equals the marginal cost at stage t.

p0 +w0 p1 +w1 q1 Average (retail) price

Flat rate 3.92 7.68 - 5.971
Marginal cost 4.324 6.324 - 5.403

Proposed 4.868 4.505 -2.363 3.568

For the case where the system operator ramps up the capacity in advance (b0 = 1.2), and con-

sumers have a high level of demand substitutability (E = 0.08), the one-stage aggregate demand

and the social welfare resulting from the three pricing mechanisms are given in Table 3. The prices

faced by consumers are given in Table 4. From Table 3 we observe that under the proposed pric-

ing mechanism, consumers would like to shift 0.031 peak load to off-peak hours, while under the

marginal cost pricing mechanism, consumers are willing to shift less than 0.014 peak load to off-

peak hours. Compared to marginal cost pricing, the more flattened load curve resulting from the

proposed pricing mechanism leads to 50% more social welfare gain.

For a given load curve, the proposed pricing mechanism results in a larger price difference between

stage 1 and stage 0 than marginal cost pricing, because of the negative price q1. The negative price

q1 creates an additional incentive for consumers to shift their load from stage 1 to stage 0. In this

way, the proposed pricing mechanism results in a more flattened load curve and a higher social

welfare than marginal cost pricing (cf. Table 3).

E.2.2. Peak load reduction. Under flat rate pricing, the peak load (the aggregate demand

at the second stage) is 1.2, because consumers do not have an incentive to shift their load to off-peak

hours. Given a pricing mechanism and a system operator’s policy (b0), consumers are willing to

substitute across time only up to a certain level. Even with a high level of demand substitutability,

consumers prefer not to shift much of their peak load, to avoid the utility loss caused by peak load

shifting. For example, with b0 = 1.2 and E = 0.08, consumers under marginal cost pricing choose
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Figure 4 Comparison of the percentage of peak load reduction (the peak load under flat rate pricing, 1.2, is used

a reference) resulting from the proposed pricing mechanism and the marginal cost pricing mechanism,

as a function b0.
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Figure 5 Real-time prices and actual system loads on August 01, 2011, ISO New England Inc. Blue bars represent

the real-time system loads and the dots connected by a black line represent the hourly prices.

to shift at most 0.013 peak load (cf. Table 3). In Fig. 4, for different values of b0, we compare the

maximum amount of peak load consumers choose to shift under the proposed pricing mechanism

and the marginal cost pricing mechanism.

We observe from Fig. 4 that the amount of peak load consumers will shift decreases with b0.
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This is because a larger reserve at the first stage lowers the price at the second stage, which in

turn discourages consumers from shifting their peak load. The proposed pricing mechanism results

in a peak load which is approximately 1.5 percent lower than that resulting from marginal cost

pricing, regardless of the value of b0. If the system operator ramps up the system capacity in

advance (b0 = 1.2), marginal cost pricing reduces the system peak load resulting from flat rate

pricing by approximately one percent. Compared to marginal cost pricing, the negative price q1 in

the proposed mechanism encourages consumers to make a larger shift of their peak load (cf. the

discussion at the end of Section E.2.1).

Fig. 5 plots the real-time system loads and prices on August 1, 2011, a typical hot summer day

in New England21. If consumers are able to shift some of their load to the morning (possibly at

the expense of losing some utility), the proposed pricing mechanism encourages consumers to shift

more of their peak load than marginal cost pricing. Since the highest peak load determines the

generation capacity necessary for system reliability, the proposed pricing mechanism has a greater

potential to reduce the long-term capacity investment.

21 www.ferc.gov/market-oversight/mkt-electric/new-england/2011/08-2011-elec-isone-dly.pdf


