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Abstract—We consider a consensus algorithm in which every
node in a sequence of undirected, B-connected graphs assigns
equal weight to each of its neighbors. Under the assumption
that the degree of each node is fixed (except for times when
the node has no connections to other nodes), we show that
consensus is achieved within a given accuracy ε on n nodes
in time B+4n3Bln(2n/ε). Because there is a direct relation
between consensus algorithms in time-varying environments and
inhomogeneous random walks, our result also translates into a
general statement on such random walks. Moreover, we give a
simple proof of a result of Cao, Spielman, and Morse that the
worst case convergence time becomes exponentially large in the
number of nodes n under slight relaxation of the degree constancy
assumption.

Index Terms—consensus protocols, distributed control, Markov
chains.

I. INTRODUCTION

Consensus algorithms are a class of iterative update schemes
that are commonly used as building blocks for the design of
distributed control laws. Their main advantage is robustness
in the presence of time-varying environments and unexpected
communication link failures. Consensus algorithms have at-
tracted significant interest in a variety of contexts such as
distributed optimization [22], [19] coverage control [13], and
many other contexts involving networks in which central
control is absent and communication capabilities are time-
varying.

While the convergence properties of consensus algorithms
in time-varying environments are well understood, much less
is known about the corresponding convergence times. An
inspection of the classical convergence proofs ([4], [14]) leads
to convergence time upper bounds that grow exponentially
with the number of nodes. It is then natural to look for
conditions under which the convergence time only grows
polynomially, and this is the subject of this paper.

In our main result, we show that a consensus algorithm
in which every node assigns equal weight to each of its
neighbors in a sequence of undirected graphs has polynomial
convergence time if the degree of any given node is constant
in time (except possibly during the times when the node has
no connections to other nodes).
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A. Model, notation, and background

In this subsection, we define our notation, the model of
interest, and some background on consensus algorithms.

We will consider only undirected graphs in this paper; this
will often be stated explicitly, but when unstated every graph
should be understood to be undirected by default. Given a
graph G, we will use Ni(G) to denote the set of neighbors of
node i, and di(G) to denote the cardinality of Ni(G). Given a
sequence of graphs G(0), G(1), . . . , G(k−1), we will use the
simpler notation Ni(t), di(t) in place of Ni(G(t)), di(G(t)),
and we will make a similar simplification for other variables
of interest.

We are interested in analyzing a consensus algorithm in
which a node assigns equal weight to each one of its
neighbors. We consider n nodes and assume that at each
discrete time t, node i stores a real number xi(t). We let
x(t) = (x1(t), . . . , xn(t))T . For any given sequence of graphs
G(0), G(1), G(2), . . ., all on the node set {1, . . . , n}, and any
initial vector x(0), the algorithm is described by the update
equation

xi(t+ 1) =
1

di(t)

∑
j∈Ni(t)

xj(t), i = 1, . . . , n, (1)

which can also be written in the form

x(t+ 1) = A(t)x(t), (2)

for a suitably defined sequence of matrices A(0), A(1), . . . ,
A(t− 1). The graphs G(t), which appear in the above update
rule through di(t) and Ni(t), correspond to information flow
among the agents; the edge (i, j) is present in G(t) if and only
if agent i uses the value xj(t) of agent j in its update at time
t. To reflect the fact that every agent always has access to its
own information, we assume that every graph G(t) contains
all the self-loops (i, i); as a consequence, di(t) ≥ 1 for all
i, t. Note that we have [A(t)]ij > 0 if and only if (i, j) is an
edge in G(t).

We will say that the graph sequence G(t) is B-connected
if, for every k ≥ 0, the graph obtained by taking the union
of the edge sets of G(kB), G(kB + 1), . . . , G((k+ 1)B − 1)
is connected. It is well known ([22], [14]) that if the graph
sequence is B-connected for some positive integer B, then
every component of x(t) converges to a common value. In
this paper, we focus on the convergence rate of this process in
some natural settings. To quantify the progress of the algorithm
towards consensus, we will use the function S(x) = maxi xi−
mini xi. For any ε > 0, a sequence of stochastic matrices
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A(0), A(1), . . . , A(k − 1) results in ε-consensus if

S(A(k − 1) · · ·A(1)A(0)x(0)) ≤ εS(x(0))

for all initial vectors x(0); alternatively, a sequence of graphs
G(0), G(1), . . . achieves ε-consensus if the sequence of ma-
trices A(t) defined by Equations (1) and (2) achieves ε-
consensus.

As mentioned previously, we will focus on graph sequences
in which every graph G(t) is undirected. There are a number of
reasons to be especially interested in undirected graphs within
the context of consensus. For example, G(t) is undirected if:
(i) G(t) contains all the edges between agents that are physi-
cally within some distance of each other; (ii) G(t) contains all
the edges between agents that have line-of-sight views of each
other; (iii) G(t) contains the edges corresponding to pairs of
agents that can send messages to each other using a protocol
that relies on acknowledgments.

It is an immediate consequence of existing convergence
proofs ([4], [14]) that any sequence of CnnB ln(1/ε) undi-
rected B-connected graphs, with self-loops at every node,
results in ε-consensus. Here, C is a constant that does not
depend on the problem parameters n, B, and ε. We are
interested in simple conditions on the graph sequence under
which the undesirable O(nnB) scaling becomes polynomial in
n and B.

B. Our results
Our contributions are as follows. First, in Section II, we

prove our main result.

Theorem 1. Consider a sequence G(0), G(1), . . . , G(k−1)
of B-connected undirected graphs with self-loops at each
node. Suppose that for each i there exists some di such that
di(t) ∈ {1, di} for all t (note that di(t) = 1 means node
i has no links to any other node). If the length k of the
graph sequence is at least B+4n3Bln 2n

ε , then ε-consensus
is achieved.

In Section III, we give an interpretation of our results in
terms of Markov chains. Theorem 1 can be interpreted as
providing a sufficient condition for a random walk on a time-
varying graph to forget its initial distribution in polynomial
time.

In Section IV, we capitalize on the Markov chain interpreta-
tion and provide a simple proof that relaxing the assumptions
of Theorem 1 even slightly can lead to a convergence time
which is exponential in n. Specifically, if we replace the
assumption that each di(t) is independent of t with the weaker
assumption that the sorted degree sequence (say, in non-
increasing order) is independent of t (thus allowing nodes
to “swap” degrees), exponential convergence time is possi-
ble. This was proved earlier by Cao, Spielman, and Morse
(although unpublished) [5] and our contribution is to provide
a simple proof.

In summary: for undirected B-connected graphs with self-
loops, unchanging degrees is a sufficient condition for poly-
nomial time convergence, but relaxing it even slightly by
allowing the nodes to “swap” degrees leads to the possibility
of exponential convergence time.

C. Previous work
There is considerable and growing literature on the conver-

gence time of consensus algorithms. The recent paper [14]
amplified the interest in consensus algorithms and spawned
a vast subsequent literature, which is impossible to survey
here. We only mention papers that are closest to our own
work, omitting references to the literature on various aspects
of consensus convergence times that we do not address here.

Worst-case upper bounds on the convergence times of
consensus algorithms have been established in [8], [6], [7],
[1], [2], [10]. The papers [8], [6], [7] considered a setting
slightly more general than ours, and established exponential
upper bounds. The papers [1], [2] addressed the convergence
times of consensus algorithms in terms of spanning trees
that capture the information flow between the nodes. It was
observed that in several cases this approach produces tight
estimates of the convergence times. We mention also [17]
which derives a polynomial-time upper bound on the time
and total communication complexity required by a network
of robotic agents to implement various deployment and coor-
dination schemes. Reference [10] takes a geometric approach,
and considers the convergence time in a somewhat different
model, involving interactions between geographically nearest
neighbors. It finds that the convergence time is quite high
(either singly exponential or iterated exponential, depending
on the model). Random walks on undirected graphs such
as considered here are special cases of reversible agreement
systems considered in the related work [11] (see also [9]). Our
proof techniques are heavily influenced by the classic paper
[15] and share some similarities with those used in the recent
work [21], which used similar ideas to bound the convergence
time of some inhomogenuous Markov chains. There are also
similarities with the recent work [3] on the cover time of time-
varying graphs.

Our work differs from these papers in that it studies time-
varying, B-connected graphs and establishes convergence time
bounds that are polynomial in n and B. To the best of our
knowledge, polynomial bounds on the particular consensus
algorithm considered in this paper had previously been derived
earlier only in [15] (under the assumption that the graph
is fixed, undirected, with self-loops at every node), [18] (in
the case when the matrix is doubly stochastic, which in our
setting corresponds to a sequence of regular graphs G(t)).
For the special case of graphs that are connected at every
time step (B = 1), the result has been apparently discovered
independently by Chazelle [12] and the authors [20]. Our
added generality allows for both disconnected graphs in which
the degrees are kept constant, as well as the case where nodes
temporarily disconnect from the network, setting their degree
to one.

II. PROOF OF THEOREM 1
As in the statement of Theorem 1, we assume that we

are given a sequence of undirected B-connected graphs
G(0), G(1), . . ., with self-loops at each node, such that di(t)
equals either di or 1. Observe that di > 1 for all i = 1, . . . , n,
since else the sequence of graphs G(t) could not be B-
connected. We will use the notation G to refer to the class
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of undirected graphs with self-loops at every node such that
the degree of node i either 1 or di. Note that the definition of
G depends on the values d1, . . . , dn.

Given an undirected graph G, we define the update matrix
A(G) by

[A(G)]ij =

{
1/di(G), if j ∈ Ni(G),

0, otherwise.

We use A(t) as a shorthand for A(G(t)), so that Eq. (1) can
be written as

x(t+ 1) = A(t)x(t). (3)

Conversely, given an update matrix A of the above form, we
will use G(A) to denote the graph G whose update matrix
is A. We use A to denote the set of update matrices A(G)
associated with graphs G ∈ G. We define d to be the vector
d = [d1, d2, . . . , dn]T ; a simple calculation shows that dTA =
dT for all A ∈ A. Finally, we use D to denote the matrix
whose ith diagonal element is di.

We begin by identifying a weighted average that is preserved
by the iteration x(t+ 1) = A(t)x(t). For any vector y, we let

ȳ =
dT y

dT1
=

∑n
i=1 diyi∑n
i=1 di

,

where 1 is the vector with entries equal to 1. Observe that for
any A ∈ A,

Ay =
dTAy

dT1
=

dT y

dT 1
= ȳ.

Consequently, if x(t) evolves according to Eq. (3), then x(t) =
x(0), which we will from now on denote simply by x̄.

With these preliminaries in place, we now proceed to the
main part of our analysis, which is based on the pair of
Lyapunov functions

V (x) = xTDx =

n∑
i=1

dix
2
i , and V ′(x) =

n∑
i=1

di(xi − x̄)2.

We will adopt the more convenient notation V (t) for V (x(t))
and similarly V ′(t) for V ′(x(t)).

Our first lemma provides a convenient identity for matrices
in A.

Lemma 2. For any A ∈ A such that G(A) is connected
(and in particular, every node i has degree di),

ATDA = D −
∑
i<j

wij(ei − ej)(ei − ej)
T ,

where wij is the (i, j)-th entry of ATDA.

Remark 3. This was proven in [23] and is a generalized
version of a decomposition from [24], [18]. It may be quickly
verified by checking that both sides of the equation are
symmetric, have identical row sums, and whenever i < j,
the (i, j)-th element of both sides is wij . The equality of the
two sides then immediately follows.

Our next lemma quantifies the decrease of V (·) when a
vector x is multiplied by some matrix A ∈ A associated with
a connected graph G(A).

Lemma 4. Fix x ∈ Rn and let i : {1, . . . , n} → {1, . . . , n}
be a permutation such that xi[1] ≤ xi[2] ≤ · · · ≤ xi[n]. For
any A ∈ A such that G(A) is connected,

V (Ax) ≤ V (x)− 1

2

n−1∑
l=1

(xi[l+1] − xi[l])2.

Proof. We may suppose without loss of generality that x1 ≤
x2 ≤ · · · ≤ xn. Using Lemma 2,

V (Ax) = (Ax)TD(Ax) = xTATDAx = V (x)−
∑
i<j

wij(xi−xj)2.

From the definitions of wij , A, and D, we have that

wij =
∑

k∈N(i)∩N(j)

1

d(k)
,

and so

V (Ax) = V (x)−
∑
i<j

(xi − xj)2
∑

k∈N(i)∩N(j)

1

d(k)
. (4)

Observe that if l < k, then

(xk−xl)2 ≥ (xl+1−xl)2+(xl+2−xl+1)2+· · ·+(xk−xk−1)2

Applying this to each term of Eq. (4), we have that

V (Ax) ≤ V (x)−
n−1∑
i=1

Wi(xi − xi+1)2,

where
Wi =

∑
k≤i, l≥i+1

∑
m∈N(k)∩N(l)

1

d(m)
(5)

We finish the proof by arguing that Wi ≥ 1/2 for all i ≤
n − 1. Indeed, by the connectivity of G(A), there is some
node j in {1, . . . , i} such that j is connected to a node in
{i+ 1, . . . , n}. Let d+ be the number of neighbors of node j
in {i+ 1, . . . , n} and d− be the number of neighbors of node
j in {1, . . . , i}; naturally, dj = d+ + d− and both d+, d− are
at least 1: the former by the definition of j, and the latter
because node j has a self-loop. Observe that the contribution
to Wi in Eq. (5), by running k over all the d− neighbors of
j in {1, . . . , i} and running l over all d+ neighbors of j in
{i+ 1, . . . , n}, is at least

d+d−
1

dj
≥ dj − 1

dj
≥ 1

2
,

where the final inequality is justified because the connectivity
of G(A) implies that dj ≥ 2. This concludes the proof.

Remark 5. We note that V (Ax) ≤ V (x), even if G(A)
is not connected; this follows by applying Eq. (4) to each
connected component of G(A).

Lemma 6. Suppose that x(t) evolves according to Eq. (3),
where G(A(t)) is a sequence of B-connected graphs from G.
Let i : {1, . . . , n} → {1, . . . , n} be a permutation such that
xi[1](kB) ≤ xi[2](kB) ≤ · · · ≤ xi[n](kB). Then,

V (x((k+1)B)) ≤ V (x(kB))−1

2

n∑
l=1

(xi[l+1](kB)−xi[l](kB))2.
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Proof. It suffices to prove this under the assumption that
x1(kB) < x2(kB) < · · · < xn(kB); the general case then
follows by a continuity argument. We apply the bound of
Lemma 4 at each time t = kB, . . . , (k + 1)B − 1 to each
connected component of G(t). This yields that

V ((k+1)B) ≤ V (kB)− 1

2

(k+1)B−1∑
t=kB

∑
(q,l)∈C(t)

(xq(t)−xl(t))2

(6)
Here, C(t) contains all the pairs (q, l) such that there is
some component of G(t) containing both q and l, and xq(t)
immediately follows xl(t) when the nodes in that component
are ordered according to increasing values of x.

We then observe that for every i = 1, . . . , n − 1 there is a
first time t between kB and (k+1)B−1 when there is a link
between a node in {1, . . . , i} and a node in {i + 1, . . . , n}.
Note that because there have been no links between {1, . . . , i}
and {i+ 1, . . . , n} from time kB to time t− 1, we have that

max
j=1,...,i

xj(t) ≤ xi(kB) < xi+1(kB) ≤ min
j=i+1,...,n

xj(t).

Moreover, at time t, the sum on the right-hand side of Eq.
(6) will contain the term (xi′(t) − xi′′(t))

2 where i′ ∈
arg maxj=1,...,i xj(t) and i′′ ∈ arg minj=i+1,...,n xj(t). We
conclude that it is possible to associate with every i some
triplet i′, i′′, t such that t ∈ [kB, (k+1)B−1], (i′, i′′) ∈ C(t)
and (xi(kB)− xi+1(kB))2 ≤ (xi′(t)− xi′′(t))2.

To complete the proof, we argue that distinct i are associated
with distinct triplets i′, i′′, t. Indeed, we associate i with i′, i′′, t
only if xi′(t) = maxj=1,...,i xj(t) and there have been no links
between {1, . . . , i} and {i+ 1, . . . , n} from time kB to time
t − 1. Consequently if two indices i1 < i2 are associated
with the same triplet, it follows that arg maxj=1,...,i1 xj(t)∩
arg maxj=1,...,i2 xj(t) 6= ∅ which cannot be: at time kB,
xi2(kB) ≥ xi1+1(kB) > maxj=1,...,i1 xj(kB) and no link
between a node in {1, . . . , i1} and a node {i1 + 1, . . . , n}
occured from time kB to time t− 1.

The following lemma may be verified through a direct
calculation.

Lemma 7. Suppose u1, . . . , un and w1, . . . , wn are num-
bers satisfying

n∑
i=1

diui =

n∑
i=1

diwi.

Then
n∑
i=1

di(ui − z)2 −
n∑
i=1

di(wi − z)2

is a constant independent of the number z.

Corollary 8. Suppose x(t) evolves according to Eq. (3)
where G(A(t)) is a sequence of B-connected graphs from G.
Let i : {1, . . . , n} → {1, . . . , n} be a permutation such that
xi[1](kB) ≤ xi[2](kB) ≤ · · · ≤ xi[n](kB). Then,

V ′(x((k+1)B)) ≤ V ′(x(kB))−1

2

n∑
k=1

(xi[l+1](kB)−xi[l](kB))2.

Proof. Lemma 6 may be restated as
n∑
i=1

di(xi(kB)− 0)2

−
n∑
i=1

di(xi((k + 1)B)− 0)2 ≤ 1

2

n∑
k=1

(xi[l+1](kB)− xi[l](kB))2

But since dTx((k+ 1)B) = dTx(kB), we can apply Lemma
7 to obtain

n∑
i=1

di(xi(kB)− x̄)2

−
n∑
i=1

di(xi((k + 1)B)− x̄)2 ≤ 1

2

n∑
k=1

(xi[l+1](kB)− xi[l](kB))2,

which is a restatement of the current corollary.

Remark 9. An additional consequence of Lemma 7 is that
V ′(Ax) ≤ V ′(x) for all A ∈ A. Remark 5 had established
this property for V (·) and Lemma 7 implies now the same
property holds for V ′(·).

Lemma 10. For any x,∑n−1
l=1 (xi[l+1] − xi[l])2

V ′(x)
≥ 1

n2dmax
,

where dmax is the largest of the degrees di.

Proof. We employ a variation of an argument first used in
[15]. We first argue that we can make three assumptions
without loss of generality: 1) that the components of x are
sorted in nondecreasing order, i.e., x1 ≤ x2 ≤ · · · ≤ xn; 2)∑
i dixi = 0, since both the numerator and denominator on

the left-hand side are invariant under the addition of a constant
to each component of x, and in particular, V (x) = V ′(x); 3)
V ′(x) =

∑
i dix

2
i = 1, since the expression on the left-hand

side remains invariant under multiplication of each component
of x by a nonzero constant.

Let l be such that dlx2l = maxi dix
2
i . Without loss of

generality, we can assume that xl > 0; else, we replace
x by −x. The condition that

∑
i dix

2
i = 1 implies that

xl ≥ 1/
√
ndmax while the condition that

∑
i dixi = 0 implies

x1 < 0. Consequently, xl−x1 ≥ 1/
√
ndmax.We can write this

as

(x2 − x1) + (x3 − x2) + · · ·+ (xl − xl−1) ≥ 1√
ndmax

.

Applying the Cauchy-Schwarz inequality, we get

(l − 1)

l−1∑
i=1

(xi+1 − xi)2 ≥
1

ndmax
.

We then use the fact that l − 1 ≤ n to complete the proof.

We can now complete the proof of Theorem 1.

Proof of Theorem 1. From Corollary 8 and Lemma 10, we
have that for all integer k ≥ 0,

V ′((k + 1)B) ≤ (1− 1

2n3
)V ′(kB).



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. ??, NO. ??, ?? 5

Because the definition of ε-consensus is in terms of S(x)
rather than V ′(x), we need to relate these two quantities. On
the one hand, for every x, we have

V ′(x) =

n∑
i=1

di(xi − x̄)2 ≤ n
n∑
i=1

(xi − x̄)2 ≤ n2S2(x).

On the other hand, for every x, we have

V ′(x) ≥ max
i

(xi − x̄)2 ≥ 1

4
(max

i
xi −min

i
xi)

2 =
1

4
S2(x).

Suppose that t ≥ B + 4Bn3 ln(2n/ε). Then at least
d4n3 ln 2n/εe time periods1 of length B have passed, and
therefore

S(x(t)) ≤
√

4V ′(x(t))

≤ 2
(

1− 1

2n3

)4n3 ln(2n/ε)(1/2)√
V ′(x(0))

≤ 2ne− ln(2n/ε)S(x(0))

= εS(x(0)).

(We have used here the inequality (1−1/x)x ≤ e−1, for x ≥ 1
as well as the fact that V ′(·) is nonincreasing.)

III. MARKOV CHAIN INTERPRETATION

In this section, we give an alternative interpretation of
the convergence time of a consensus algorithm in terms of
inhomogeneous Markov chains; this interpretation will be
used in the next section. We refer the reader to the recent
monograph [16] for the requisite background on Markov
chains and random walks.

We consider an inhomogeneous Markov chain whose tran-
sition probability matrix at time k is A(k). We fix t and define

P = A(0)A(1) · · ·A(t− 1).

This is the associated t-step transition probability matrix: the
(i, j)-th entry of P , denoted by pij , is the probability that the
state at time t is j, given that the initial state is i. Let pi be
the vector whose kth component is pik; thus pTi is the ith row
of P .

We address a question which is generic in the study of
Markov chains, namely, whether the chain eventually “forgets”
its initial state, i.e., whether for all i, j, pi − pj converges to
zero as t increases, and if so, at what rate. We will say that the
sequence of matrices A(0), A(1), . . . , A(t − 1) is ε-forgetful
if for all i, j, we have

1

2

∑
k

|pik − pjk| ≤ ε.

The above quantity, 1
2 maxi,j ‖pi − pj‖1 is known as the

coefficient of ergodicity of the matrix P , and appears often
in the study of consensus algorithms (see, for example, [8]).
The result that follows relates the times to achieve ε-consensus
or ε-forgetfulness, and is essentially the same as Proposition
4.5 of [16].

Proposition 11. The sequence of matrices A(0), A(1), . . . ,
A(t− 1) is ε-forgetful if and only if the sequence of matrices

1The notation dxe means the smallest integer which is at least x.

Fig. 1. The top-left figure shows graph G(0); top-right shows G(1);
bottom-left shows G((n/2)− 2); bottom-right shows G((n/2)− 1). As
these figures illustrate, G(t + 1) is obtained by applying a circular shift
to each half of G(t). Every node has a self-loop which is not shown. For
aesthetic reasons, instead of labeling the nodes as 1, . . . , n, we label them
with 1, . . . , n/2 and 1′, . . . , (n/2)′.

A(t − 1), A(t − 2), . . . , A(0) results in ε-consensus (i.e.,
S(Px) ≤ εS(x), for every vector fx.)

Proof. Suppose that the matrix sequence A(0), A(1), . . . ,
A(t − 1) is ε-forgetful, i.e., that 1

2

∑
k |pik − pjk| ≤ ε, for

all i and j. Given a vector x, let c = (maxk xk+mink xk)/2.
Note that ‖x − c1‖∞ = (maxk xk − mink xk)/2 = S(x)/2.
We then have

|[Px]i − [Px]j | =
∣∣∣∑
k

(pik − pjk)(xk − c)
∣∣∣

≤ ‖pi − pj‖1 · ‖x− c1‖∞
≤ εS(x).

Since this is true for every i and j, we obtain S(Px) ≤ εS(x),
and the sequence A(t − 1), A(t − 2), . . . , A(0) results in ε-
consensus.

Conversely, suppose that the sequence of matrices A(t −
1), A(t− 2), . . . , A(0) results in ε-consensus. Fix some i and
j. Let x be a vector whose kth component is 1/2 if pik ≥ pjk
and −1/2 otherwise. Note that S(x) = 1. We have

1

2
‖pi − pj‖1 = (pTi − pTj )x = [Px]i − [Px]j ≤ εS(x) = ε,

where the last inequality made use of the ε-consensus assump-
tion. Thus, the sequence of matrices A(0), A(1), . . . , A(t−1)
is ε-forgetful.

We will use Proposition 11 for the special case of Markov
chains that are random walks. Given an undirected graph
sequence sequence G(0), G(1), . . ., we consider the random
walk on the state-space {1, . . . , n} which, at time t, jumps
to a uniformly chosen random neighbor of its current state
in G(t). Proposition 11 allows us to reinterpret Theorem
1 as follows: random walks on time-varying undirected B-
connected graphs with self-loops and degree constancy forget
their initial distribution in a polynomial number of steps.

IV. A COUNTEREXAMPLE

In this subsection, we show that it is impossible to omit the
condition of unchanging degrees in Theorem 1. In particular,
if we only impose the slightly weaker condition that the sorted
degree sequence (the non-increasing list of node degrees) does
not change with time, the time to achieve ε-consensus can
grow exponentially with n. This is an unpublished result of
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Cao, Spielman, and Morse [5]; we provide here a simple proof.
We note that the graph sequence used in the proof (see Figure
1) is similar to the sequence used in [3] to prove an exponential
lower bound on the cover time of time-varying graphs.

Proposition 12. Let n be even and let t be an integer
multiple of n/2. Consider the graph sequence of length
t = kn/2, consisting of periodic repetitions of the reversal2

of the length-n/2 sequence described in Figure 1. For this
graph sequence to result in (1/4)-consensus, we must have
t ≥ 2(n/2)/8.

Proof. Suppose that this graph sequence of length t results
in (1/4)-consensus. Then Proposition 11 implies that the se-
quence G′ of length t consisting of periodic repetitions3 of the
length n/2 sequence described in Figure 1 is (1/4)-forgetful.
Let pij be the associated t-step transition probabilities.

Let T be the time that it takes for a random walk that starts
at state n/2 at time 0 to cross into the right-hand side of the
graph, let δ be the probability that T is less than or equal to
t, and define R to be the set of nodes on the right side of the
graph, i.e., R = {1′ . . . (n/2)′}. Clearly,∑

j′∈R
p(n/2),j′ ≤ P (T ≤ t) = δ,

since a walk located in R at time t has obviously transitioned
to the right-hand side of the graph by t. Next, symmetry
yields

∑
j′∈R p(n/2)′,j′ ≥ 1− δ. Using the fact that the graph

sequence is (1/4)-forgetful in the first inequality below, we
have

1

2
≥

∑
j′∈R
|p(n/2)′,j′ − p((n/2),j′ |

≥
∑
j′∈R

p(n/2)′,j′ −
∑
j′∈R

p(n/2),j′

≥ (1− δ)− δ
= 1− 2δ,

which yields that δ ≥ 1/4. By viewing periods of length t as
a single attempt to get to the right half of the graph, with each
attempt having probability at least 1/4 to succeed, we obtain
E[T ] ≤ 4t.

Next, let us say that node i has emerged at time t if node i
was the center of the left-star in G′(t− 1); for example, node
1 has emerged at time 1, node 2 has emerged at time 2, and so
on. By symmetry, T is the expected time until a random walk
starting at an emerged node crosses to the right-hand side of
the graph. Observe that, starting from an emerged node, the
random walk will transition to the right-hand side of the graph
if it takes the self-loop n/2 − 1 consecutive times and then,
once it is at the center, takes the link across; however, if it
fails to take the self-loop during the first n/2 − 1 times, it
then transitions to a newly emerged node. This implies that
the expected time to transition to the right hand side from an

2That is, we are considering the sequence G(n/2 −
1), . . . , G(1), G(0), G(n/2− 1), . . . , G(1), G(0), G(n/2)− 1, . . ..

3That is, G′(t) is the sequence G(0), G(1) . . . , G(n/2 −
1), G(0), G(1), . . . , G(n/2− 1), G(0), G(1), . . ..

emerged node is at least the expected time until the walk takes
n/2− 1 self-loops consecutively: 2(n/2)−1 ≤ E[T ].

Putting this together with the previous inequality E[T ] ≤ 4t,
we immediately have the desired result.
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