
QUALITATIVE PROPERTIES OF α-FAIR POLICIES IN
BANDWIDTH-SHARING NETWORKS

By D. Shah and J. N. Tsitsiklis and Y. Zhong∗

Massachusetts Institute of Technology,
University of California, Berkeley

We consider a flow-level model of a network operating under an
α-fair bandwidth sharing policy (with α > 0) proposed by Roberts
and Massoulié (2000). This is a probabilistic model that captures the
long-term aspects of bandwidth sharing between users or flows in a
communication network.

We study the transient properties as well as the steady-state dis-
tribution of the model. In particular, for α ≥ 1, we obtain bounds
on the maximum number of flows in the network over a given time
horizon, by means of a maximal inequality derived from the standard
Lyapunov drift condition. As a corollary, we establish the full state
space collapse property for all α ≥ 1.

For the steady-state distribution, we obtain explicit exponential
tail bounds on the number of flows, for any α > 0, by relying on a
norm-like Lyapunov function. As a corollary, we establish the validity
of the diffusion approximation developed by Kang et al (2009), in
steady state, for the case where α = 1 and under a local traffic
condtion.

1. Introduction. We consider a flow-level model of a network that op-
erates under an α-fair bandwidth-sharing policy, and establish a variety of
new results on the resulting performance. These results include tail bounds
on the size of a maximal excursion during a finite time interval, finiteness
of expected queue sizes, exponential tail bounds under the steady-state dis-
tribution, and the validity of the heavy-traffic diffusion approximation in
steady state. We note that our results are to a great extent parallel and com-
plementary to our work on packet-switched networks, which was reported
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in [18].
In the remainder of this section, we put our results in perspective by

comparing them with earlier work, and conclude with some more details on
the nature of our contributions.

1.1. Background. The flow-level network model that we consider was
introduced by Roberts and Massoulié [17] to study the dynamic behavior of
Internet flows. It builds on a static version of the model that was proposed
earlier by Kelly, Maulloo, and Tan [15], and subsequently generalized by
Mo and Walrand [16] who introduced a class of “fair” bandwidth-sharing
policies parameterized by α > 0.

The most basic question regarding flow-level models concerns necessary
and sufficient conditions for stability, that is, for the existence of a steady-
state distribution for the associated Markov process. This question was an-
swered by Bonald and Massoulié [4] for the case of α-fair policies with α > 0,
and by de Veciana et al. [6] for the case of max-min fair policies (α → ∞)
and proportionally fair (α = 1) policies. In all cases, the stability conditions
turned out to be the natural deterministic conditions based on mean arrival
and service rates.

Given these stability results, the natural next question is whether the
steady-state expectation of the number of flows in the system is finite and
if so, to identify some nontrivial upper bounds. When α ≥ 1, the finiteness
question can be answered in the affirmative, and explicit bounds can be
obtained, by exploiting the same Lyapunov drift inequality that had been
used in earlier work to establish stability. However, this approach does not
seem to apply to the case where α ∈ (0, 1), which remained an open problem;
this is one of the problems that we settle in this paper.

A more refined analysis of the number of flows present in the system con-
cerns exponentially decaying bounds on the tail of its steady-state distribu-
tion. We provide results of this form, together with explicit bounds for the
associated exponent. While a result of this type was not previously available,
we take note of related recent results by Stolyar [21] and Venkataramanan
and Lin [23] who provide a precise asymptotic characterization of the expo-
nent of the tail probability, in steady state, for the case of switched networks
(as opposed to flow-level network models). (To be precise, their results con-
cern the (1 + α) norm of the vector of flow counts under maximum weight
or pressure policies parameterized by α > 0.) We believe that their meth-
ods extend to the model considered here, without much difficulty. However,
their approach leads to a variational characterization that appears to be
difficult to evaluate (or even bound) explicitly. We also take note of work by
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Subramanian [22], who establishes a large deviations principle for a class of
switched network models under maximum weight or pressure policies with
α = 1.

The analysis of the steady-state distribution for underloaded networks
provides only partial insights about the transient behavior of the associated
Markov process. As an alternative, the heavy-traffic (or diffusion) scaling
of the network can lead to parsimonious approximations for the transient
behavior. A general two-stage program for developing such diffusion approx-
imations has been put forth by Bramson [5] and Williams [24], and has been
carried out in detail for certain particular classes of queueing network mod-
els. To carry out this program, one needs to: (i) provide a detailed analysis of
a related fluid model when the network is critically loaded; and, (ii) identify
a unique distributional limit of the associated diffusion-scaled processes by
studying a related Skorohod problem. The first stage of the program was
carried out by Kelly and Williams [14] who identified the invariant manifold
of the associated critically loaded fluid model. This further led to the proof
by Kang et al. [13] of a multiplicative state space collapse property, simi-
lar to results by Bramson [5]. We note that the above summarized results
hold under α-fair policies with an arbitrary α > 0. The second stage of the
program has been carried out for the proportionally fair policy (α = 1) by
Kang et al. [13], under a technical local traffic condition, and more recently,
by Ye and Yao [25], under a somewhat less restrictive technical condition.
We note however that when α 6= 1, a diffusion approximation has not been
established. In this case, it is of interest to see at least whether properties
that are stronger than multiplicative state space collapse can be derived,
something that is accomplished in the present paper.

The above outlined diffusion approximation results involve rigorous state-
ments on the finite-time behavior of the original process. Kang et al. [13]
further established that for the particular setting that they consider, the
resulting diffusion approximation has an elegant product-form steady-state
distribution; this result gives rise to an intuitively appealing interpretation
of the relation between the congestion control protocol utilized by the flows
(the end-users) and the queues formed inside the network. It is natural to
expect that this product-form steady-state distribution is the limit of the
steady-state distributions in the original model under the diffusion scaling.
Results of this type are known for certain queueing systems such as gen-
eralized Jackson networks; see the work by Gamarnik and Zeevi [10]. On
the other hand, the validity of such a steady-state diffusion approximation
was not known for the model considered in [13]; it will be established in the
present paper.
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1.2. Our contributions. In this paper, we advance the performance anal-
ysis of flow-level models of networks operating under an α-fair policy, in
both the steady-state and the transient regimes.

For the transient regime, we obtain a probabilistic bound on the maximal
(over a finite time horizon) number of flows, when operating under an α-
fair policy with α ≥ 1. This result is obtained by combining a Lyapunov
drift inequality with a natural extension of Doob’s maximal inequality for
non-negative supermartingales. Our probabilistic bound, together with prior
results on multiplicative state space collapse, leads immediately to a stronger
property, namely, full state space collapse, for the case where α ≥ 1.

For the steady-state regime, we obtain non-asymptotic and explicit bounds
on the tail of the distribution of the number of flows, for any α > 0. In the
process, we establish that, for any α > 0, all moments of the steady-state
number of flows are finite. These results are proved by working with a normed
version of the Lyapunov function that was used in prior work. Specifically,
we establish that this normed version is also a Lyapunov function for the
system (i.e., it satisfies a drift inequality). It also happens to be a Lipschitz
continuous function and this helps crucially in establishing exponential tail
bounds, using results of Hajek [12] and Bertsimas et al. [2].

The exponent in the exponential tail bound that we establish for the
distribution of the number of flows is proportional to a suitably defined
distance (“gap”) from critical loading; this gap is of the same type as the
familiar 1 − ρ term, where ρ is the usual load factor in a queueing system.
This particular dependence on the load leads to the tightness of the steady-
state distributions of the model under diffusion scaling. It leads to one of our
main results, namely, the validity of the diffusion approximation, in steady
state, when α = 1 and a local traffic condition holds.

1.3. Organization. The rest of the paper is organized as follows. In Sec-
tion 2, we define the notation and some of the terminology that we will em-
ploy. We also describe the flow-level network model, as well as the weighted
α-fair bandwidth-sharing policies. In Section 3, we provide formal statements
of our main results. The transient analysis is presented in Section 4. We start
with a general lemma, and specialize it to obtain a maximal inequality under
α-fair policies, when α ≥ 1. We then apply the latter inequality to prove full
state space collapse when α ≥ 1.

We then proceed to the steady-state analysis. In Section 5, we establish
a drift inequality for a suitable Lyapunov function, which is central to our
proof of exponential upper bounds on tail probabilities We prove the ex-
ponential upper bound on tail probabilities in Section 6. The validity of
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the heavy-traffic steady-state approximation is established in Section 7. We
conclude the paper with a brief discussion in Section 8.

2. Model and Notation.

2.1. Notation. We introduce here the notation that will be employed
throughout the paper. We denote the real vector space of dimension M by
RM , the set of nonnegative M -tuples by RM+ , and the set of positive M -
tuples by RMp . We write R for R1, R+ for R1

+, and Rp for R1
p. We let Z

be the set of integers, Z+ the set of nonnegative integers, and N the set of
positive integers. Throughout the paper, we reserve bold letters for vectors
and plain letters for scalars.

For any vector x ∈ RM , and any α > 0, we define

‖x‖α =

(
M∑
i=1

|xi|α
)1/α

,

and we define ‖x‖∞ = maxi∈{1,...,M} |xi|. For any two vectors x = (xi)
M
i=1

and y = (yi)
M
i=1 of the same dimensions, we let 〈x,y〉 =

∑M
i=1 xiyi be the

inner product of x and y. We let ei be the i-th unit vector in RM , and 1
the vector of all ones. For a set S, we denote its cardinality by |S|, and its
indicator function by IS . For a matrix A, we let AT denote its transpose.

2.2. Flow-Level Network Model.

The Model. We adopt the model and notation in [14]. As explained in
detail in [14], this model faithfully captures the long-term (or macro level)
behavior of congestion control in the current Internet.

Let time be continuous and indexed by t ∈ R+. Consider a network with
a finite set J of resources and a set I of routes, where a route is identified
with a non-empty subset of the resource set J . Let A be the |J | × |I|
matrix with Aji = 1 if resource j is used by route i, and Aji = 0 otherwise.
Assume that A has rank |J |. Let C = (Cj)j∈J be a capacity vector, where
we assume that each entry Cj is a given positive constant. Let the number
of flows on route i at time t be denoted by Ni(t), and define the flow vector
at time t by N(t) = (Ni(t))i∈I . For each route i, new flows arrive as an
independent Poisson process of rate νi. Each arriving flow brings an amount
of work (data that it wishes to transfer) which is an exponentially distributed
random variable with mean 1/µi, independent of everything else. Each flow
gets service from the network according to a bandwidth-sharing policy. Once
a flow is served, it departs the network.
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The α-Fair Bandwidth-Sharing Policy. A bandwidth sharing policy has to
allocate rates to flows so that capacity constraints are satisfied at each time
instance. Here we discuss the popular α-fair bandwidth-sharing policy, where
α > 0. At any time, the bandwidth allocation depends on the current number
of flows n = (ni)i∈I . Let Λi be the total bandwidth allocated to route i under
the α-fair policy: each flow of type i gets rate Λi/ni if ni > 0, and Λi = 0 if
ni = 0. Under an α-fair policy, the bandwidth vector Λ(n) = (Λi(n))i∈I is
determined as follows.

If n = 0, then Λ = 0. If n 6= 0, then let I+(n) = {i ∈ I : ni > 0}. For
i /∈ I+(n), set Λi(n) = 0. Let Λ+(n) = (Λi(n))i∈I+(n). Then, Λ+(n) is the
unique maximizer in the optimization problem

maximize Gn(Λ+) over Λ ∈ R|I|+(1)

subject to
∑

i∈I+(n)

AjiΛi ≤ Cj , ∀ j ∈ J ,(2)

where

Gn(Λ+) =


∑

i∈I+(n)

κin
α
i

Λ1−α
i

1− α
, if α ∈ (0,∞)\{1},∑

i∈I+(n)

κini log Λi, if α = 1.

Here, for each i ∈ I, κi is a positive weight assigned to route i.
Some crucial properties of Λ(n) are as follows (see Appendix A of [14]):

(i) Λi(n) > 0 for every i ∈ I+(n);
(ii) Λ(rn) = Λ(n) for r > 0;
(iii) For every n and every i ∈ I+(n), the function Λi(·) is continuous at

n.

Flow Dynamics. The flow dynamics are described by the evolution of the
flow vector N(t) = (Ni(t))i∈I , a Markov process with infinitesimal transition
rate matrix q given by

(3) q(n,n + m) =


νi, if m = ei,
µiΛi(n), if m = −ei, and ni ≥ 1,
0, otherwise,

where for each i, νi > 0 and µi > 0 are the arrival and service rates defined
earlier, and ei is the i-th unit vector.
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Capacity Region. Flows of type i bring to the system an average of ρi =
νi/µi units of work per unit time. Therefore, in order for the Markov process
N(·) to be positive recurrent, it is necessary that

Aρ < C, componentwise.(4)

We note that under the α-fair bandwidth-sharing policy, Condition (4) is
also sufficient for positive recurrence of the process N(·) [4, 6, 14].

2.3. A note on our use of constants. Our results and proofs involve var-
ious constants; some are absolute constants, some depend only on the struc-
ture of the network, and some depend (smoothly) on the traffic parameters
(the arrival and service rates). It is convenient to distinguish between the
different types of constants, and we define here the terminology that we will
be using.

The term absolute constant will be used to refer to a quantity that does
not depend on any of the model parameters. The term network-dependent
constant will be used to refer to quantities that are completely determined
by the structure of the underlying network and policy, namely, the inci-
dence matrix A, the capacity vector C, the weight vector κ, and the policy
parameter α.

Our analysis also involves certain quantities that depend on the traf-
fic parameters, namely, the arrival and service parameters µ and ν. These
quantities are often given by complicated expressions that would be incon-
venient to carry through the various arguments. It turns out that the only
property of such quantities that is relevant to our purposes is the fact they
change continuously as µ and ν vary over the open positive orthant. (This
still allows these quantities to be undefined or discontinuous on the bound-
ary of the positive orthant.) We abstract this property by introducing, in the
definition that follows, the concept of a (positive) load-dependent constant .

Definition 2.1. Consider a family of bandwidth-sharing networks with
common parameters (A,C,κ, α), but varying traffic parameters (µ,ν). A
quantity K will be called a (positive) load-dependent constant if for networks
in that family it is determined by a relation of the form K = f(µ,ν), where

f : R|I|p × R|I|p → Rp is a continuous function on the open positive orthant

R|I|p × R|I|p .

A key property of a load-dependent constant, which will be used in some
of the subsequent proofs, is that it is by definition positive and further-
more (because of continuity), bounded above and below by positive network-
dependent constants if we restrict µ and ν to a compact subset of the open
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positive orthant. A natural example of a load-dependent constant is the load
factor ρi = νi/µi. (Note that this quantity diverges as µi → 0.)

We also define the gap of a underloaded bandwidth-sharing network.

Definition 2.2. Consider a family of bandwidth-sharing networks with
common parameters (A,C,κ, α) and with varying traffic parameters (µ,ν)
that satisfy Aρ < C. The gap of a network with traffic parameters (µ,ν)
in the family, denoted by ε(ρ), is defined by

ε(ρ) , sup{ε̃ > 0 : (1 + ε̃)Aρ ≤ C}.

We sometimes write ε for ε(ρ) when there is no ambiguity. Note also that
ε(ρ) plays the same role as the term 1−ρ in a queueing system with load ρ.

2.4. Uniformization. Uniformization is a well-known device which allows
us to study a continuous-time Markov process by considering an associated
discrete-time Markov chain with the same stationary distribution. We pro-
vide here some details and the notation that we will be using.

Recall that the Markov process N(·) of interest has dynamics given by
(3). Let Ξ(n) =

∑
ñ q(n, ñ) be the aggregate transition rate at state n. The

embedded jump chain of N(·) is a discrete-time Markov chain with the same

state space Z|I|+ , and with transition probability matrix P given by

P (n, ñ) =
q(n, ñ)

Ξ(n)
.

The so-called uniformized Markov chain is an alternative, more convenient,

discrete-time Markov chain, denoted
(
Ñ(τ)

)
τ∈Z+

, to be defined shortly.

We first introduce some more notation. Consider the aggregate transition
rates Ξ(n) =

∑
ñ q(n, ñ). Since every route uses at least one resource, we

have Λi(n) ≤ maxj∈J Cj , for all i ∈ I. Then, by (3), we have

Ξ(n) =
∑
ñ

q(n, ñ) ≤
∑
i∈I

(νi + µiΛi(n)) ≤
∑
i∈I

(
νi + µi max

j∈J
Cj

)
.

We define Ξ ,
∑

i∈I (νi + µi maxj∈J Cj), and modify the rates of self-
transitions (which were zero in the original model) to

(5) q(n,n) := Ξ− Ξ(n).

Note that Ξ is a positive load-dependent constant. We define a transition
probability matrix P̃ by

P̃ (n, ñ) ,
q(n, ñ)

Ξ
.
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Definition 2.3. The uniformized Markov chain
(
Ñ(τ)

)
τ∈Z+

associated

with the Markov process N(·) is a discrete-time Markov chain with the same

state space Z|I|+ , and with transition matrix P̃ defined as above.

As remarked earlier, the Markov process N(·) that describes a bandwidth-
sharing network operating under an α-fair policy is positive recurrent, as
long as the system is underloaded, i.e., if Aρ < C. It is not hard to ver-
ify that N(·) is also irreducible. Therefore, the Markov process N(·) has
a unique stationary distribution. The chain Ñ(·) is also positive recurrent
and irreducible, because N(·) is, and by suitably increasing Ξ if necessary,
it can be made aperiodic. Thus Ñ(·) has a unique stationary distribution
as well. A crucial property of the uniformized chain Ñ(·) is that this unique
stationary distribution is the same as that of the original Markov process
N(·); see, e.g., [9].

2.5. A Mean Value Theorem. We will be making extensive use of a
second-order mean value theorem [1], which we state below for easy ref-
erence.

Proposition 2.4. Let g : RM → R be twice continuously differentiable
over an open sphere S centered at a vector x. Then, for any y such that
x + y ∈ S, there exists θ ∈ [0, 1] such that

(6) g(x + y) = g(x) + yT∇g(x) +
1

2
yTH(x + θy)y,

where ∇g(x) ,
[
∂g(x)
∂xi

]M
i=1
∈ RM is the gradient of g at x, and H(x) ,[

∂2g(x)
∂xi∂xj

]M
i,j=1

∈ RM×M is the Hessian of the function g at x.

3. Summary of Results. In this section, we summarize our main re-
sults for both the transient and the steady-state regime. The proofs are given
in subsequent sections.

3.1. Transient Regime. Here we provide a simple inequality on the max-
imal excursion of the number of flows over a finite time interval, under an
α-fair policy with α ≥ 1.

Theorem 3.1. Consider a bandwidth-sharing network operating under
an α-fair policy with α ≥ 1, and assume that Aρ < C. Suppose that N(0) =
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0. Let N∗(T ) = supt∈[0,T ],i∈I Ni(t), and let ε be the gap. Then, for any b > 0,

(7) P (N∗(T ) ≥ b) ≤ KT

εα−1bα+1
,

for some positive load-dependent constant K.

As an important application, in Section 4.3, we will use Theorem 3.1
to prove a full state space collapse result, when α ≥ 1. (As discussed in
the introduction, this property is stronger than multiplicative state space
collapse.) The precise statement can be found in Theorem 4.10.

3.2. Stationary Regime. As noted earlier, the Markov process N(·) has
a unique stationary distribution, which we will denote by π. We use Eπ and
Pπ to denote expectations and probabilities under π.

Exponential Bound on Tail Probabilities. For an α-fair policy, and for any
α ∈ (0,∞), we obtain an explicit exponential upper bound on the tail proba-
bilities for the number of flows, in steady state. This will be used to establish
an “interchange of limits” result in Section 7. See Theorem 7.6 for more de-
tails.

Theorem 3.2. Consider a bandwidth-sharing network operating under
an α-fair policy with α > 0, and assume that Aρ < C. Let ε be the gap.
There exist positive constants B, K, and ξ such that for all ` ∈ Z+:

(8) Pπ (‖N‖∞ ≥ B + 2ξ`) ≤
(

ξ

ξ + εK

)`+1

.

Here ξ and K are load-dependent constants, and B takes the form K ′/ε when
α ≥ 1, and K ′/min{ε1/α, ε} when α ∈ (0, 1), with K ′ being a positive load-
dependent constant. In particular, all moments of ‖N‖∞ are finite under the
stationary distribution π, i.e., Eπ[‖N‖k∞] <∞ for every k ∈ N.

Here we note that Theorem 3.2 implies the following. The system load
L(ρ), defined by L(ρ) , 1

1+ε(ρ) , satisfies L(ρ) ≈ 1 − ε(ρ) when ε = ε(ρ)
is small, i.e., when the system approaches criticality. Then, an immediate
consequence of the bound (8) is that

lim sup
γ→∞

1

γ
logPπ(‖N‖∞ ≥ γ) .

1

2ξ
log

(
ξ

ξ + εK

)
≈ −Kε

2ξ2
≈ − K

2ξ2
(1− L(ρ)).
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Note that K
2ξ2

is a load-dependent constant. Thus Theorem 3.2 shows that
the large-deviations exponent of the steady-state number of flows is upper
bounded by −(1− L(ρ)), up to a multiplicative constant.

Interchange of Limits (α = 1). As discussed in the introduction, when
α = 1, Theorem 3.2 leads to the tightness (Lemma 7.7) of the steady-state
distributions of the model under diffusion scaling. This in turn leads to The-
orem 7.6 and Corollary 7.10, on the validity of the diffusion approximation in
steady state. As the statements of these results require a significant amount
of preliminary notation and background (which is introduced in Section 7),
we give here an informal statement.

Interchange of Limits theorem (informal statement): Consider a
sequence of flow-level networks operating under the proportionally fair policy.
Let Nr(·) be the flow-vector Markov process associated with the rth network,
let εr be the corresponding gap, and let π̂r be the stationary distribution of
εrNr(·). As εr → 0, and under certain technical conditions, π̂r converges
weakly to the stationary distribution of an associated limiting process.

4. Transient Analysis (α ≥ 1). In this section, we present a transient
analysis of the α-fair policies with α ≥ 1. First we present a general maximal
lemma, which we then specialize to our model. In particular, we prove a
refined drift inequality for the Lyapunov function given by

(9) Fα(n) =
1

α+ 1

∑
i∈I

νiκiµ
α−1
i

(
ni
νi

)α+1

.

This Lyapunov function and associated drift inequalities have played an
important role in establishing positive recurrence (cf. [4], [6], [14]) and mul-
tiplicative state space collapse (cf. [13]) for α-fair policies. We combine our
drift inequality with the maximal lemma to obtain a maximal inequality
for bandwidth-sharing networks. We then apply the maximal inequality to
prove full state space collapse when α ≥ 1.

4.1. The Key Lemma. Our analysis relies on the following lemma.

Lemma 4.1. Let (Fn)n∈Z+ be a filtration on a probability space. Let
(Xn)n∈Z+ be a nonnegative Fn-adapted stochastic process that satisfies

(10) E[Xn+1 | Fn] ≤ Xn +Bn

where the Bn are nonnegative random variables (not necessarily Fn-adapted)
with finite means. Let X∗n = max{X0, . . . , Xn} and suppose that X0 = 0.
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Then, for any a > 0 and any T ∈ Z+,

P(X∗T ≥ a) ≤
∑T−1

n=0 E[Bn]

a
.

This lemma is a simple consequence of the following standard maximal
inequality for nonnegative supermartingales (see for example, Exercise 4,
Section 12.4, of [11]).

Theorem 4.2. Let (Fn)n∈Z+ be a filtration on a probability space. Let
(Yn)n∈Z+ be a nonnegative Fn-adapted supermartingale, i.e., for all n,

E[Yn+1 | Fn] ≤ Yn.

Let Y ∗T = max{Y0, . . . , YT }. Then,

P(Y ∗T ≥ a) ≤ E[Y0]

a
.

Proof of Lemma 4.1. First note that if we take the conditional expec-
tation of both sides of (10), given Fn, we have

E[Xn+1 | Fn] ≤ E[Xn | Fn] + E[Bn | Fn] = Xn + E[Bn | Fn].

Fix T ∈ Z+. For any n ≤ T , define

Yn = Xn + E

[
T−1∑
k=n

Bk

∣∣∣ Fn

]
.

Then

E[Yn+1 | Fn] = E[Xn+1 | Fn] + E

[
E

[
T−1∑
k=n+1

Bk

∣∣∣ Fn+1

] ∣∣∣ Fn

]

≤ Xn + E[Bn | Fn] + E

[
T−1∑
k=n+1

Bk

∣∣∣ Fn

]
= Yn.

Thus, Yn is an Fn-adapted supermartingale; furthermore, by definition, Yn
is nonnegative for all n. Therefore, by Theorem 4.2,

P(Y ∗T ≥ a) ≤ E[Y0]

a
=

E
[∑T−1

k=0 Bk

]
a

.
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But Yn ≥ Xn for all n, since the Bk are nonnegative. Thus,

P(X∗T ≥ a) ≤ P(Y ∗T ≥ a) ≤
E
[∑T−1

k=0 Bk

]
a

.

Since we are dealing with continuous-time Markov processes, the following
corollary of Lemma 4.1 will be useful for our analysis.

Corollary 4.3. Let (Ft)t≥0 be a filtration on a probability space. Let
Zt be a nonnegative, right-continuous Ft-adapted stochastic process that sat-
isfies

E[Zs+t|Fs] ≤ Zs +Bt,

for all s, t ≥ 0, where B is a nonnegative constant. Assume that Z0 ≡ 0.
Denote Z∗T , sup0≤t≤T Zt (which can possibly be infinite). Then, for any
a > 0, and for any T ≥ 0,

P(Z∗T ≥ a) ≤ BT

a
.

Proof. The proof is fairly standard. We fix T ≥ 0 and a > 0. Since Zt
is right-continuous, Z∗T = supt∈[0,T ] Zt = supt∈([0,T ]∩Q)∪{T} Zt. Consider an
increasing sequence of finite sets In so that ∪∞n=1In = ([0, T ] ∩ Q) ∪ {T},
and 0, T ∈ In for all n. Define Z

(n)
T = supt∈In Zt. Then

(
Z

(n)
T

)∞
n=1

is a non-

decreasing sequence, and Z
(n)
T → Z∗T as n → ∞, almost surely. For each

Z
(n)
T , we can apply Lemma 4.1, and it is immediate that for any b > 0,

(11) P(Z
(n)
T > b) ≤ BT

b
,

since each In includes both 0 and T . Since Z
(n)
T increases monotonically to

Z∗T , almost surely, we have that P(Z
(n)
T > b) ≤ P(Z

(n+1)
T > b) for all n, and

P(Z
(n)
T > b)→ P(Z∗T > b) as n→∞. The right-hand side of (11) is fixed, so

P(Z∗T > b) ≤ BT

b
.

We now take an increasing sequence bn with limn→∞ bn = a, and obtain

P(Z∗T ≥ a) ≤ BT

a
.
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4.2. A Maximal Inequality for Bandwidth-Sharing Networks. We employ
the Lyapunov function (9) to study α-fair policies. This is the Lyapunov
function that was used in [4], [6] and [14] to establish positive recurrence of
the process N(·) under an α-fair policy. Below we fine-tune the proof in [6]
to obtain a more precise bound on the Lyapunov drift. We note that a “fluid-
model” version of the following lemma appeared in the proof of Theorem
1 in [4]. For notational convenience, we drop the subscript α from Fα and
write F instead.

Lemma 4.4. Consider a bandwidth-sharing network with Aρ < C op-
erating under an α-fair policy with α > 0. Let ε be the gap. Then, for any
non-zero flow vector n,

〈∇F (n),ν − µΛ(n)〉 ≤ −ε 〈∇F (n),ν〉 ,

where 〈·, ·〉 denotes the standard inner product, ∇F (n) denotes the gradient
of F , and µΛ(n) is the vector (µiΛi(n))i∈I .

Proof. We have

〈∇F (n),ν − µΛ(n)〉 =
∑
i∈I

1

µi
κi

(
ni
ρi

)α
(νi − µiΛi(n))

=
∑
i∈I

κi

(
ni
ρi

)α
(ρi − Λi(n))

=
〈
∇Gn(ρ+),ρ+ −Λ+(n)

〉
,

where ρ+ = (ρi)i∈I+(n). Similarly we can get 〈∇F (n),ν〉 =
〈
∇Gn(ρ+),ρ+

〉
.

Now consider the function g : [0, 1]→ R defined by

g(θ) = Gn

(
θ(1 + ε)ρ+ + (1− θ)Λ+(n)

)
.

Since (1 + ε)ρ+ satisfies the constraints in (2), and Λ+(n) maximizes the
strictly concave function Gn subject to the constraints in (2), we have

Gn((1 + ε)ρ+) ≤ Gn(Λ+(n)), i.e., g(1) ≤ g(0).

Furthermore, since Gn is a concave function, g is also concave in θ. Thus,

g(0) ≤ g(1) + (0− 1)g′(1) ≤ g(0) + (0− 1)g′(1).

Hence, g′(1) ≤ 0, i.e.,

(12)
dg

dθ

∣∣∣
θ=1

=
〈
∇Gn((1 + ε)ρ+), (1 + ε)ρ+ −Λ+(n)

〉
≤ 0.
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But it is easy to check that∇Gn((1+ε)ρ+) = (1+ε)−α∇Gn(ρ+), so dividing
(12) by (1 + ε)−α, we have〈

∇Gn(ρ+),ρ+ −Λ+(n)
〉
≤ −ε

〈
∇Gn(ρ+),ρ+

〉
.

This is the same as

〈∇F (n),ν − µΛ(n)〉 ≤ −ε 〈∇F (n),ν〉 .

Our next lemma provides a uniform upper bound on the expected change
of F (Ñ(·)) in one time step, where Ñ(·) is the uniformized chain associated
with the Markov process N(·) (cf. Definition 2.3).

Lemma 4.5. Let α ≥ 1. As above, consider a bandwidth-sharing net-
work with Aρ < C operating under an α-fair policy. Let ε be the gap. Let(
Ñ(τ)

)
τ∈Z+

be the uniformized chain associated with the Markov process

N(·). Then, there exists a positive load-dependent constant K̄, such that for
all τ ∈ Z+,

E
[
F (Ñ(τ + 1))− F (n) | Ñ(τ) = n

]
≤ K̄ε1−α.

Proof. By the mean value theorem (cf. Proposition 2.4), for n,m ∈ Z|I|+ ,
we have

(13) F (n + m)− F (n) = 〈∇F (n),m〉+
1

2
mT∇2F (n + θm)m,

for some θ ∈ [0, 1]. We note that, for m = ±ei, we have

1

2
mT∇2F (n + θm)m ≤ κiα

2µiραi
(ni ± θ)α−1

≤ κiα

2µiραi
(ni + 1)α−1,(14)

since α ≥ 1, and θ ∈ [0, 1].
As in [6], we define

QF (n) ,
∑
m

q(n,n + m)[F (n + m)− F (n)],



16 SHAH & TSITSIKLIS & ZHONG

so that Q is the generator of the Markov process N(·). We now proceed
to derive an upper bound for QF (n). Using Equation (13), we can rewrite
QF (n) as

QF (n) =
∑
m

q(n,n + m)

[
〈∇F (n),m〉+

1

2
mT∇2F (n + θmm)m

]
=

∑
m

q(n,n + m) 〈∇F (n),m〉

+
1

2

∑
m

q(n,n + m)mT∇2F (n + θmm)m,

for some scalars θm ∈ [0, 1], one such scalar for each m. From the definition
of q, we have

∑
m

q(n,n + m) 〈∇F (n),m〉 =

〈
∇F (n),

∑
m

q(n,n + m)m

〉
= 〈∇F (n),ν − µΛ(n)〉 .

From (14), for m = ±ei, we also have

1

2
mT∇2F (n + θmm)m ≤ κiα(ni + 1)α−1/2µiρ

α
i .

Thus,

QF (n) ≤ 〈∇F (n),ν − µΛ(n)〉+
∑
i∈I

κiα

2µiραi
(ni + 1)α−1(νi + µiΛi(n))

≤ −ε
∑
i∈I

κi

(
ni
ρi

)α
ρi +

∑
i∈I

κiα

2ραi
(ni + 1)α−1(ρi + Λi(n))

≤ −mε
∑
i∈I

nαi +M
∑
i∈I

(ni + 1)α−1,

where the second inequality follows from Lemma 4.4, and the third by defin-
ing

m , min
i∈I

κiρ
1−α
i , M , max

i∈I

κiα

2ραi

(
ρi + max

j∈J
Cj

)
,

and noting the fact that since Λi(n) ≤ maxj∈J Cj for all i, we have M ≥
maxi∈I

κiα
2ραi

(
ρi + Λi(n)

)
. It is then a simple calculation to see that for every

n ≥ 0, we have

QF (n) ≤ −mε
∑
i∈I

nαi +M
∑
i∈I

(ni + 1)α−1 ≤ K̃ε1−α,
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for some positive load-dependent constant K̃. Now given Ñ(τ) = n,

E
[
F (Ñ(τ + 1))− F (n) | Ñ(τ) = n

]
=

QF (n)

Ξ
≤ K̃ε1−α

Ξ
.

By setting K̄ = K̃/Ξ, we have proved the lemma.

Corollary 4.6. Let α ≥ 1. As before, suppose that Aρ < C, and let ε
be the associated gap. Then, under the α-fair policy, the process N(·) satisfies

E [F (N(s+ t))− F (N(s)) | N(s)] ≤ K̃tε1−α, for all t ≥ 0.

for some positive load-dependent constant K̃.

Proof. The idea of the proof is to show that the expected number of
state transitions of N(·) in the time interval [s, s+ t] is of order O(t).

Consider the uniformized Markov chain Ñ(·) associated with the process
N(·). Denote the number of state transitions in the uniformized version of
the process N(·) in the time interval [s, s+ t] by τ . By the Markov property,
time-homogeneity, and the definition of Ñ(·), we have

E [F (N(s+ t))− F (N(s)) | N(s) = n]

= E
[
F (Ñ(τ))− F (Ñ(0))

∣∣ Ñ(0) = n
]
.

Now, by the definition of the uniformized chain, τ and Ñ(·) are independent.
Thus,

E
[
F (Ñ(τ))− F (Ñ(0))

∣∣ Ñ(0)
]

= E

[
τ−1∑
k=0

(
F (Ñ(k + 1))− F (Ñ(k))

) ∣∣∣ Ñ(0)

]

= E

[
E

[
τ−1∑
k=0

(
F (Ñ(k + 1))− F (Ñ(k))

) ∣∣∣ Ñ(0), τ

] ∣∣∣∣∣ Ñ(0)

]

= E

[
τ−1∑
k=0

E
[
F (Ñ(k + 1))− F (Ñ(k))

∣∣∣ Ñ(0), τ
] ∣∣∣ Ñ(0)

]

= E

[
τ−1∑
k=0

E
[
F (Ñ(k + 1))− F (Ñ(k))

∣∣ Ñ(0)
] ∣∣∣ Ñ(0)

]

≤ E

[
τ−1∑
k=0

K̄ε1−α

]
= K̄ε1−αE[τ ],
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for some load-dependent constant K̄. The fourth equality follows from the
independence of τ and Ñ(·), and the inequality follows from Lemma 4.5.
Since the counting process of the number of state transitions in the uni-
formized version of the process N(·) is a time-homogeneous Poisson process
of rate Ξ, we have E[τ ] = Ξt. This shows that

E [F (N(s+ t))− F (N(s)) | N(s)] ≤ K̄Ξtε1−α.

The proof is concluded by setting K̃ = K̄Ξ.

Proof of Theorem 3.1. Let b > 0. Then

P (N∗(T ) ≥ b) = P
(

1

α+ 1

(
N∗(T )

)α+1 ≥ 1

α+ 1
bα+1

)
≤ P

(
sup
t∈[0,T ]

F (N(t)) ≥
(

min
i∈I

1

α+ 1
κiµ

α−1
i ν−αi

)
bα+1

)

≤ (α+ 1)K ′T(
mini∈I κiµ

α−1
i ν−αi

)
εα−1bα+1

=
KT

εα−1bα+1
,

where the second inequality follows from Corollary 4.3 and Corollary 4.6,

K ′ is as in Corollary 4.6, and K = (α+1)K′

mini∈I κiµ
α−1
i ν−αi

.

4.3. Full State Space Collapse for α ≥ 1. Throughout this section, we
assume that we have fixed α ≥ 1, and correspondingly, the Lyapunov func-
tion (9). To state the full state space collapse result for α ≥ 1, we need some
preliminary definitions and the statement of the multiplicative state space
collapse result.

Consider a sequence of bandwidth-sharing networks indexed by r, where
r is to be thought of as increasing to infinity along a sequence. Suppose that
the incidence matrix A, the capacity vector C and the weights {κi : i ∈ I} do
not vary with r. Write Nr(t) for the flow-vector Markov process associated
with the rth network. Similarly, we write νr, µr, ρr, etc. We assume the
following heavy-traffic condition (cf. [13]):

Assumption 4.7. We assume that Aρr < C for all r. We also assume

that there exist ν,µ ∈ R|I|+ and θ > 0, such that νi > 0 and µi > 0 for all
i ∈ I, νr → ν and µr → µ as r →∞, and r(C−Aρr)→ θ as r →∞.

Note that our assumption differs from that in [13], which allows conver-
gence to the critical load from both overload and underload, whereas here
we only allow convergence to the critical load from underload.
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To state the multiplicative state space collapse result, we also need to
define a workload process W(t) and a lifting map ∆.

Definition 4.8. We first define the workload w : R|I|+ → R|J |+ associ-
ated with a flow-vector n by w = w(n) = AM−1n, where M = diag(µ) is
the |I| × |I| diagonal matrix with µ on its diagonal. The workload process
W(t) is defined to be W(t) , AM−1N(t), for all t ≥ 0. We also define the

lifting map ∆. For each w ∈ R|J |+ , define ∆(w) to be the unique value of

n ∈ R|I|+ that solves the following optimization problem:

minimize F (n)
subject to

∑
i∈I Aji

ni
µi
≥ wj , j ∈ J ,

ni ≥ 0, i ∈ I.

For simplicity, suppose that all networks start with zero flows. We consider
the following diffusion scaling:

(15) N̂r(t) =
Nr(r2t)

r
, and Ŵr(t) =

Wr(r2t)

r
,

where Wr(t) = A(M r)−1Nr(t), and M r = diag(µr).
The following multiplicative state space collapse result is known to hold.

Theorem 4.9 (Multiplicative State Space Collapse [13, Theorem 5.1]).
Fix T > 0 and assume that α ≥ 1. Write ‖x(·)‖ = supt∈[0,T ],i∈I |xi(t)|.
Then, under Assumption 4.7, and for any δ > 0,

lim
r→∞

P

(
‖N̂r(·)−∆(Ŵr(·))‖

‖N̂r(·)‖
> δ

)
= 0.

We can now state and prove a full state space collapse result:

Theorem 4.10 (Full State Space Collapse). Under the same assump-
tions as in Theorem 4.9, and for any δ > 0,

lim
r→∞

P
(
‖N̂r(·)−∆(Ŵr(·))‖ > δ

)
= 0.

Proof. Let εr = ε(ρr) be the gap in the rth system. Then, under As-
sumption 4.7, εr ≥ D/r for some network-dependent constant D > 0, and
for r sufficiently large. By Theorem 3.1, for any b > 0, and for sufficiently
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large r,

P
(
N r,∗(r2T ) ≥ b

)
≤ Krr

2T

εα−1r bα+1

≤ Krr
1+αT

Dα−1bα+1
.

Here, Kr is a load-dependent constant associated with the rth system, as
specified in the proof of Theorem 3.1. From the proof of Theorem 3.1, note
also that Kr = f(µr,νr), for a function f that is continuous on the open

positive orthant R|I|p × R|I|p . Since µr → µ > 0, and νr → ν > 0, Kr →
K , f(µ,ν) ∈ R. In particular, the Kr are bounded, and for all sufficiently
large r,

P
(
N r,∗(r2T ) ≥ b

)
≤ (K + 1)r1+αT

Dα−1bα+1
.

Then, with a = b/r and under the scaling in (15),

(16) P
(
‖N̂r(·)‖ ≥ a

)
≤ K + 1

Dα−1 ·
T

aα+1
,

for any a > 0.
For notational convenience, we write

B(r) = ‖N̂r(·)−∆(Wr(·))‖.

Then, for any a > 1, and for sufficiently large r,

P
(
B(r) > δ

)
≤ P

(
B(r)

‖N̂r(·)‖
>
δ

a
or ‖N̂r(·)‖ ≥ a

)

≤ P

(
B(r)

‖N̂r(·)‖
>
δ

a

)
+ P

(
‖N̂r(·)‖ ≥ a

)
.

Note that by Theorem 4.9, the first term on the right-hand side goes to 0 as
r →∞, for any a > 0. The second term on the right-hand side can be made
smaller than any, arbitrarily small, constant (uniformly, for all r), by taking
a sufficiently large (cf. Equation (16)). Thus, P(B(r) ≥ δ) → 0 as r → ∞.
This concludes the proof.

5. α-Fair Policies: A Useful Drift Inequality. We now shift our
focus to the steady-state regime. The key to many of our results is a drift
inequality that holds for every α > 0 and every ρ > 0 with Aρ < C. In this
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section, we shall state and prove this inequality. It will be used in Section 6
to prove Theorem 3.2.

We define the Lyapunov function that we will employ. For α ≥ 1, it will
be simply the weighted (α+ 1)-norm Lα(n) = α+1

√
(α+ 1)Fα(n) of a vector

n, where Fα was defined in (9). However, when α ∈ (0, 1), this function

has unbounded second derivatives as we approach the boundary of R|I|+ . For
this reason, our Lyapunov function will be a suitably smoothed version of
α+1
√

(α+ 1)Fα(·).

Definition 5.1. Define hα : R+ → R+ to be hα(r) = rα, when α ≥ 1,
and

hα(r) =

{
rα, if r ≥ 1,
(α− 1)r3 + (1− α)r2 + r, if r < 1,

when α ∈ (0, 1). Let Hα : R+ → R+ be the antiderivative of hα, so that

Hα(r) =
∫ r
0 hα(s) ds. The Lyapunov function Lα : R|I|+ → R+ is defined to

be

Lα(n) =

[
(α+ 1)

∑
i∈I

κiµ
α−1
i ν−αi Hα(ni)

] 1
α+1

.

For notational convenience, define

(17) wi = κiµ
α−1
i ν−αi for each i ∈ I,

so that more compactly, we have

Fα(n) =
1

α+ 1

∑
i∈I

win
α+1
i , and Lα(n) =

[
(α+ 1)

∑
i∈I

wiHα(ni)

]1/(α+1)

.

We will make heavy use of various properties of the functions hα, Hα, and
Lα, which we summarize in the following lemma. The proof is elementary
and is omitted.

Lemma 5.2. Let α ∈ (0, 1). The function hα has the following properties:

(i) it is continuously differentiable with hα(0) = 0, hα(1) = 1, h′α(0) = 1,
and h′α(1) = α;

(ii) it is increasing and, in particular, hα(r) ≥ 0 for all r ≥ 0;
(iii) we have rα − 1 ≤ hα(r) ≤ rα + 1, for all r ∈ [0, 1];
(iv) h′α(r) ≤ 2, for all r ≥ 0.

Furthermore, from (iii), we also have the following property of Hα:
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(iii’) rα+1 − 2 ≤ (α+ 1)Hα(r) ≤ rα+1 + 2 for all r ≥ 0.

We are now ready to state the drift inequality. Here we consider the

uniformized chain
(
Ñ(τ)

)
τ∈Z+

associated with N(·), and the corresponding

drift.

Theorem 5.3. Consider a bandwidth-sharing network operating under
an α-fair policy with α > 0, and assume that Aρ < C. Let ε be the gap.
Then, there exists a positive constant B and a positive load-dependent con-
stant K, such that if Lα(Ñ(τ)) > B, then

(18) E[Lα(Ñ(τ + 1))− Lα(Ñ(τ)) | Ñ(τ)] ≤ −εK.

Furthermore, B takes the form K ′/ε when α ≥ 1, and K ′/min{ε1/α, ε} when
α ∈ (0, 1), with K ′ being a positive load-dependent constant.

As there is a marked difference between the form of Lα for the two cases
α ≥ 1 and α ∈ (0, 1), the proof of the drift inequality is split into two parts.
We first prove the drift inequality when α ≥ 1, in which case Lα takes a
nicer form, and we can apply results on Fα from previous sections. The
proof for the case α ∈ (0, 1) is similar but more tedious. We note that such
a qualitative difference between the two cases, α < 1 and α ≥ 1, has also
been observed in other works, such as, for example, [20].

We wish to draw attention here to the main difference from related drift
inequalities in the literature. The usual proof of stability involves the Lya-
punov function (9); for instance, for the α-fair policy with α = 1 (the pro-
portionally fair policy), it involves a weighted quadratic Lyapunov function.
In contrast, we use Lα, a weighted norm function (or its smoothed version),
which scales linearly along radial directions. In this sense, our approach is
similar in spirit to [2], which employed piecewise linear Lyapunov functions
to derive drift inequalities and then moment and tail bounds. The use of
normed Lyapunov functions to establish stability and performance bounds
has also been considered in other works; see, for example, [23] and [7].

5.1. Proof of Theorem 5.3: α ≥ 1. We wish to decompose the drift term
in (18) into the sum of a first-order term and a second-order term, and we
accomplish this by using the second-order mean value theorem (cf. Proposi-
tion 2.4). Throughout this proof, we drop the subscript α from Lα and Fα,
and write L and F , respectively.

Consider the function L(n) =
(∑

i∈I win
α+1
i

) 1
α+1 = [(α+ 1)F (n)]

1
α+1 .

The first derivative of L with respect to n is ∇L(n) = ∇F (n)/Lα(n) by the
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chain rule and the definition of L. The second derivative is

∇2L(n) =
∇2F (n)

Lα(n)
− ∇F (n)∇Lα(n)T

L2α(n)

=
∇2F (n)

Lα(n)
− α∇F (n)∇F (n)T

L2α+1(n)
,

by the quotient rule and the chain rule.
Write n for Ñ(τ) and n + m for Ñ(τ + 1), so that m = Ñ(τ + 1)− Ñ(τ).

By Proposition 2.4, for some θ ∈ [0, 1], we have

L(n + m)− L(n) = mT∇L(n) +
1

2
mT∇2L(n + θm)m(19)

=
mT∇F (n)

Lα(n)
+

1

2

mT∇2F (n + θm)m

Lα(n + θm)
(20)

−α
2

mT∇F (n + θm)∇F (n + θm)Tm

L2α+1(n + θm)
(21)

≤ mT∇F (n)

Lα(n)
+

1

2
mT ∇2F (n + θm)

Lα(n + θm)
m,(22)

since the term mT∇F (n + θm)∇F (n + θm)Tm is nonnegative. We now
consider the two terms in (22) separately. Recall from the proof of Lemma
4.5 that

E
[
mT∇F (n) | n

]
=
〈∇F (n),ν − µΛ(n)〉

Ξ
≤ −ε〈∇F (n),ν〉

Ξ
.

But 〈∇F (n),ν〉 =
∑

i∈I wiνin
α
i , so

(23) E
[
mT∇F (n) | n

]
≤ −ε

∑
i∈I wiνin

α
i

Ξ
,
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and so

E
[
mT∇F (n)

Lα(n)

∣∣∣ n

]
≤ −ε

∑
i∈I wiνin

α
i

Ξ
(∑

i∈I win
α+1
i

) α
α+1

= −ε
∑

i∈I wiνin
α
i

Ξ

(∑
i∈I
(
w

1
α+1

i ni
)α+1

) α
α+1

≤ −ε
∑

i∈I wiνin
α
i

Ξ ·
∑

i∈I w
α
α+1

i nαi

≤ −ε
maxi∈I w

1
α+1

i νi
Ξ

= −ε
maxi∈I κ

1
α+1µ

α−1
α+1

i ν
1

α+1

i

Ξ
= −εK,(24)

where

(25) K = K(α,κ,µ,ν) ,
maxi∈I κ

1
α+1µ

α−1
α+1

i ν
1

α+1

i

Ξ

is a positive load-dependent constant. The second inequality follows from
the fact that for any vector x, and for any α > 0, ‖x‖α+1 ≤ ‖x‖α. The
second to last equality follows from the definition of the wi (cf. Equation
(17)).

For the second term in (22), we wish to show that if L(n) is sufficiently
large, then

1

2
mT ∇2F (n + θm)

Lα(n + θm)
m ≤ ε

2
K.

Note that with probability 1, either m = 0 or m = ±ei for some i ∈ I.
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Thus

1

2
mT ∇2F (n + θm)

Lα(n + θm)
m ≤ 1

2

maxi∈I
[
∇2F (n + θm)

]
ii

Lα(n + θm)

=
α

2

maxi∈I wi(ni + θmi)
α−1[∑

i∈I wi(ni + θmi)α+1
] α
α+1

≤ α

2

maxi∈I wi(ni + θmi)
α−1

w
α
α+1

i0
(ni0 + θmi0)α

≤ α

2
w

1
α+1

i0
(ni0 + θmi0)−1

≤ α

2
max
i∈I

w
1

α+1

i (ni0 + θmi0)−1,

where i0 ∈ I is such that wi0(ni0 + θmi0)α−1 = maxi∈I wi(ni + θmi)
α−1.

Now note that

α

2
max
i∈I

w
1

α+1

i (ni0 + θmi0)−1 ≤ ε

2
K

(where K is defined in (25)) if and only if

ni0 + θmi0 ≥
αmaxi∈I w

1
α+1

i

K
· 1

ε
,

which holds if L(n) ≥ K ′/ε for some appropriately defined load-dependent
constant K ′. Thus, if L(n) ≥ K ′/ε, then

(26)
1

2
mT ∇2F (n + θm)

Lα(n + θm)
m ≤ ε

2
K.

By adding (24) and (26), we conclude that

E [L(n + m)− L(n) | n] ≤ −ε
2
K,

when L(n) ≥ K ′/ε.

5.2. Proof of Theorem 5.3: α ∈ (0, 1). The proof in this section is similar
to that for the case α ≥ 1. We invoke Proposition 2.4 to write the drift term
as a sum of terms, which we bound separately. As in the previous section,
we drop the subscript α from Lα, Fα, Hα, and hα, and write instead L, F ,
H, and h, respectively. Note that to use Proposition 2.4, we need L to be
twice continuously differentiable. Indeed, by Lemma 5.2 (i), h is continuously
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differentiable, so its antiderivative H is twice continuously differentiable,
and so is L. Thus, by the second order mean value theorem, we obtain an
equation similar to Equation (22):

L(n + m)− L(n) = mT∇L(n) +
1

2
mT∇2L(n + θm)m(27)

≤
∑

i∈I miwih(ni)

Lα(n)
+

1

2

∑
i∈Im

2
iwih

′(ni + θmi)

Lα(n + θm)
(28)

≤
∑

i∈I miwih(ni)

Lα(n)
+

1

2

maxi∈I wih
′(ni + θmi)

Lα(n + θm)
(29)

for some constant θ ∈ [0, 1], and where, as before, Ñ(τ) = n and Ñ(τ +1) =
n + m, and the last inequality follows from the fact that with probability 1,
either m = 0, or m = ±ei, for some i ∈ I, and that h′ is nonnegative.

We now bound the two terms in (29) separately. Let us first concentrate
on the term ∑

i∈I miwih(ni)

Lα(n)
.

By Lemma 5.2 (iii),∑
i∈I

miwih(ni) ≤
∑
i∈I

miwi(n
α
i + 1) ≤

∑
i∈I

miwin
α
i +

∑
i∈I

miwi,

so ∑
i∈I miwih(ni)

Lα(n)
≤
∑

i∈I miwin
α
i

Lα(n)
+

∑
i∈I miwi

Lα(n)
.

First consider the term
∑
i∈I miwin

α
i

Lα(n) . Note that
∑

i∈I miwin
α
i = mT∇F (n).

We also recall from the proof of Lemma 4.4 that

E
[
mT∇F (n) | n

]
=
〈∇F (n),ν − µΛ(n)〉

Ξ
≤ −ε〈∇F (n),ν〉

Ξ
.

We then proceed along the same lines as in the case α ≥ 1, and obtain that
if L(n) ≥ K2/ε for some positive load-dependent constant K2, then

E
[∑

i∈I miwin
α
i

Lα(n)

∣∣∣ n

]
≤ −3

4
ε

maxi∈I w
1

α+1

i νi
Ξ

= −3

4
ε

maxi∈I κ
1

α+1µ
α−1
α+1

i ν
1

α+1

i

Ξ

= −3

4
εK,(30)
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Here as in the proof for the case α ≥ 1,K = K(α,κ,µ,ν) ,
maxi∈I κ

1
α+1 µ

α−1
α+1
i ν

1
α+1
i∑

i∈I νi

is a positive load-dependent constant.

Now consider the term
∑
i∈I miwi
Lα(n) . With probability 1, either m = 0 or

m = ±ei for some i ∈ I, and therefore
∑

i∈Imiwi ≤ maxi∈I wi. Thus,

E
[∑

i∈I miwih(ni)

Lα(n)

∣∣∣ n

]
≤ −3

4
εK +

maxi∈I wi
Lα(n)

.

For the second term in (29), note that with α ∈ (0, 1), Lemma 5.2(iv)
implies that h′ ≤ 2, and therefore,

1

2

maxi∈I wih
′(ni + θmi)

Lα(n + θm)
≤ maxi∈I wi
Lα(n + θm)

.

Note that Lα(n + θm) and Lα(n) differ only by a load-dependent constant,
since with probability 1, either m = 0 or m = ±ei for some i ∈ I. Thus, if
Lα(n) ≥ K3/ε for some positive load-dependent constant K3, then

(31)
maxi∈I wi
Lα(n)

+
maxi∈I wi
Lα(n + θm)

≤ 1

4
εK.

Putting (30) and (31) together, we get that if L(n) ≥ K ′/min{ε1/α, ε},
where K ′ = max{K1/α

3 ,K2}, then

E [L(n + m)− L(n) | n] ≤ −ε
2
K.

6. Exponential Tail Bound under α-Fair Policies. In this section,
we derive an exponential upper bound on the tail probability of the station-
ary distribution of the flow sizes, under an α-fair policy with α > 0. We will
use the following theorem, a modification of Theorem 1 from [2].

Theorem 6.1. Let X(·) be an irreducible and aperiodic discrete-time
Markov chain with a countable state space X . Suppose that there exists a
Lyapunov function Φ : X → R+ with the following properties:

(a) Φ has bounded increments: there exists ξ > 0 such that for all τ ,
we have

|Φ(X(τ + 1))− Φ(X(τ))| ≤ ξ, almost surely ;
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(b) Negative drift: there exist B > 0 and γ > 0 such that whenever
Φ(X(τ)) > B,

E[Φ(X(τ + 1))− Φ(X(τ)) | X(τ)] ≤ −γ.

Then, a stationary probability distribution π exists, and we have an expo-
nential upper bound on the tail probability of Φ under π: for any ` ∈ Z+,

(32) Pπ(Φ(X) > B + 2ξ`) ≤
(

ξ

ξ + γ

)`+1

.

In particular, in steady state, all moments of Φ are finite, i.e., for every
k ∈ N,

Eπ[Φk(X)] <∞.

Theorem 6.1 is identical to Theorem 1 in [2] except that [2] imposed
the additional condition Eπ[Φ(X)] < ∞. However, the latter condition is
redundant. Indeed, using Foster-Lyapunov criteria (see [8], for example),
conditions (a) and (b) in Theorem 6.1 imply that the Markov chain X has
a unique stationary distribution π. Furthermore, Theorem 2.3 in [12] estab-
lishes that under conditions (a) and (b), all moments of Φ(X) are finite in
steady state. We note that Theorem 2.3 in [12] and Theorem 1 of [2] provide
the same qualitative information (exponential tail bounds for Φ(X)). How-
ever, [2] contains the more precise bound (32), which we will use to prove
Theorem 7.6 in Section 7.

Proof of Theorem 3.2. The finiteness of the moments follows imme-
diately from the bound in (32), so we only prove the exponential bound (32).
We apply Theorem 6.1 to the Lyapunov function Lα and the uniformized
chain Ñ(·). Again, denote the stationary distribution of Ñ(·) by π, and
note that this is also the unique stationary distribution of N(·). The proof
consists of verifying conditions (a) and (b).

(a) Bounded Increments. We wish to show that with probability 1, there
exists ξ such that

|Lα(Ñ(τ + 1))− Lα(Ñ(τ))| ≤ ξ.

As usual, write n = Ñ(τ) and n + m = Ñ(τ + 1), then m = 0 or m = ±ei
for some i ∈ I with probability 1. For α ≥ 1,

Lα(n) =

[∑
i∈I

win
α+1
i

] 1
α+1

,
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and for α ∈ (0, 1), by Lemma 5.2 (iii’), we have∑
i∈I

win
α+1
i − 2

∑
i∈I

wi ≤ (α+ 1)
∑
i∈I

wiHα(ni) ≤
∑
i∈I

win
α+1
i + 2

∑
i∈I

wi.

In general, for r, s ≥ 0 and β ∈ [0, 1],

(r + s)β ≤ rβ + sβ.(33)

Thus, by inequality (33),[∑
i∈I

win
α+1
i

] 1
α+1

−

[
2
∑
i∈I

wi

] 1
α+1

≤ Lα(n) ≤

[∑
i∈I

win
α+1
i

] 1
α+1

+

[
2
∑
i∈I

wi

] 1
α+1

.

Hence, for any α > 0,

|Lα(n + m)− Lα(n)| ≤

∣∣∣∣∣
[∑
i∈I

wi(ni +mi)
α+1

] 1
α+1

−

[∑
i∈I

win
α+1
i

] 1
α+1

∣∣∣∣∣
+2

[
2
∑
i∈I

wi

] 1
α+1

≤

[∑
i∈I

wi|mi|α+1

] 1
α+1

+ 2

[
2
∑
i∈I

wi

] 1
α+1

≤ max
i∈I

w
1

α+1

i + 2

[
2
∑
i∈I

wi

] 1
α+1

,

where the second last inequality follows from the triangle inequality. Thus

we can take ξ = maxi∈I w
1

α+1

i +2
[
2
∑

i∈I wi
] 1
α+1 , which is a load-dependent

constant.

(b) Negative Drift. The negative drift condition is established in Theorem
5.3, with γ = εK, for some positive load-dependent constant K.

Note that we have verified conditions (a) and (b) for the Lyapunov func-
tion Lα. To show the actual exponential probability tail bound for ‖N‖∞,
note that Lα(N) ≥ K ′′‖N‖∞, for some load-dependent constant K ′′. By
suitably redefining the constants B, ξ, and K, the same form of exponential
probability tail bound is established for ‖N‖∞.
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7. An Important Application: Interchange of Limits (α = 1).
In this section, we assume throughout that α = 1 (the proportionally-fair
policy), and establish the validity of the heavy-traffic approximation for
networks in steady state. We first provide the necessary preliminaries to state
our main theorem, Theorem 7.6. In Section 7.2, we state and prove Theorem
7.6, which is a consequence of Lemmas 7.7 and 7.8. Further definitions and
background are provided in Section 7.3, along with the proofs of Lemmas
7.7 and 7.8. All definitions and background stated in this section are taken
from [14] and [13].

7.1. Preliminaries. We give a preview of the preliminaries that we will
introduce before stating Theorem 7.6. The goal of this subsection is to pro-
vide just enough background to be able to state Theorem 7.5, the diffusion
approximation result from [13]. To do this, we need a precise description of
the process obtained in the limit, under the diffusion scaling. This limiting
process is a diffusion process, called Semimartingale Reflecting Brownian
Motion (SRBM) (Definition 7.3), with support on a polyhedral cone. This
polyhedral cone is defined through the concept of an invariant manifold
(Definition 7.2).

As in Section 4.3, we consider a sequence of networks indexed by r, where
r is to be thought of as increasing to infinity along a sequence. The incidence
matrix A, the capacity vector C, and the weight vector κ do not vary with
r. Recall the heavy-traffic condition — Assumption 4.7, and the definitions
of the workload w, the workload process W, and the lifting map ∆ from
Definition 4.8. We carry the notation from Section 4.3, so that θ > 0, and
νr → ν > 0, µr → µ > 0 and r(C − Aρr) → θ as r → ∞. Recall that
Aρ = C. Let N̂r and Ŵr be as in (15).

The continuity of the lifting map ∆ will be useful in the sequel.

Proposition 7.1 (Proposition 4.1 in [13]). The function ∆ : R|J |+ →
R|I|+ is continuous. Furthermore, for each w ∈ R|J |+ and c > 0,

(34) ∆(cw) = c∆(w).

Definition 7.2 (Invariant manifold). A state n ∈ R|I|+ is called invari-
ant if n = ∆(w), where w = AM−1n is the workload, and ∆ the lifting
map defined in Definition 4.8. The set of all invariant states is called the
invariant manifold, and we denote it by M . We also define the workload
cone W by W = AM−1M , where M = diag(µ) is as defined in Definition
4.8.
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The invariant manifold M is a polyhedral cone and admits an explicit
characterization: we can write it as

M =

{
n ∈ R|I|+ : ni =

ρi(q
TA)i
κi

for all i ∈ I, for some q ∈ R|J |+

}
.

Denote the j-th face of M by M j , which can be written as

M j ,

{
n ∈ R|I|+ : ni =

ρi(q
TA)i
κi

for all i ∈ I,

for some q ∈ R|J |+ satisfying qj = 0

}
.

Similarly, denote the j-th face of W by W j , which can be written as

W j , AM−1M j .

Semimartingale Reflecting Brownian Motion (SRBM).

Definition 7.3. Define the covariance matrix

Γ = 2AM−1diag(ν)M−1AT .

An SRBM that lives in the cone W , has direction of reflection ej (the jth
unit vector) on the boundary W j for each j ∈ J , has drift θ and covari-
ance Γ, and has initial distribution η0 on W is an adapted, |J |-dimensional
process Ŵ(·) defined on some filtered probability space (Ω,F , {Ft},P) such
that:

(i) P-a.s., Ŵ(t) = Ŵ(0) + X̂(t) + Û(t) for all t ≥ 0;
(ii) P-a.s., Ŵ(·) has continuous sample paths, Ŵ(t) ∈ W for all t ≥ 0,

and Ŵ(0) has initial distribution η0;
(iii) under P, X̂(·) is a |J |-dimensional Brownian motion starting at the

origin with drift θ and covariance matrix Γ;
(iv) for each j ∈ J , Ûj(·) is an adapted, one-dimensional process such that

P-a.s.,

(a) Ûj(0) = 0;

(b) Ûj is continuous and non-decreasing;

(c) Ûj(t) =
∫ t
0 I{Ŵ(s)∈W j}dÛj(s) for all t ≥ 0.

The process Ŵ(·) is called an SRBM with the data (W ,θ,Γ, {ej : j ∈
J },η0).
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Diffusion Approximation for α = 1.

Assumption 7.4 (Local traffic). For each j ∈ J , there exists at least
one i ∈ I such that Aji > 0 and Aki = 0 for all k 6= j.

Under the local traffic condition, a diffusion approximation holds.

Theorem 7.5 (Theorem 5.2 in [13]). Assume that α = 1 and that the
local traffic condition, Assumption 7.4, holds. Suppose that the limit distri-
bution of Ŵr(0) as r →∞ is η0 (a probability measure on W ) and that

(35) ‖N̂r(0)−∆(Ŵr(0))‖∞ → 0, in probability, as r →∞.

Then, the distribution of (Ŵr(·), N̂r(·)) converges weakly (on compact time
intervals) as r →∞ to a continuous process (Ŵ(·), N̂(·)), where Ŵ(·) is an
SRBM with data (W ,θ,Γ, {ej , j ∈ J },η0) and N̂(t) = ∆(Ŵ(t)) for all t.

7.2. Interchange of Limits. We now know that for α = 1, under the
local traffic condition, the diffusion approximation holds. That is, the scaled
process (Ŵr(·), N̂r(·)) converges in distribution to (Ŵ(·), N̂(·)), with Ŵ(·)
being an SRBM. For any r, the scaled processes N̂r(·) also have stationary
distributions πr, since they are all positive recurrent. These results can be
summarized in the diagram that follows.

N̂r(·)
∣∣
[0,T ]

r →∞
Theorem 7.5

- N̂(·)
∣∣
[0,T ]

πr

T →∞

?
.......................................................

r →∞

?
- π̂

T →∞ ?

?

As can be seen from the diagram, two natural questions to ask are:

1. Does the diffusion process N̂(·) have a stationary probability distribu-
tion, π̂?

2. If π̂ exists and is unique, do the distributions πr converge to π̂?

Our contribution here is a positive answer to question 2. More specifically,
if N̂(·) has a unique stationary probability distribution π̂, then πr converges
in distribution to π̂.
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Theorem 7.6. Suppose that α = 1 and that the local traffic condition,
Assumption 7.4, holds. Suppose further that N̂(·) has a unique stationary
probability distribution π̂. For each r, let πr be the unique stationary prob-
ability distribution of N̂r. Then,

πr → π̂, in distribution, as r →∞.

The line of proof of Theorem 7.6 is fairly standard. We first establish
tightness of the set of distributions {πr} in Lemma 7.7. Letting the pro-
cesses N̂r(·) be initially distributed as {πr}, we translate this tightness con-
dition into an initial condition similar to (35), in Lemma 7.8. We then apply
Theorem 7.5 to deduce the convergence of the processes N̂r(·), which by sta-
tionarity, leads to the convergence of the distributions πr. We state Lemmas
7.7 and 7.8 below, and defer their proofs to the next section.

Lemma 7.7. Suppose that α = 1. The set of probability distributions
{πr} is tight.

Lemma 7.8. Consider the stationary probability distributions πr of N̂r(·),
and let {πrk} be any convergent subsequence of {πr}. Let N̂r(0) be dis-
tributed as πr for each r. Then there exists a subsequence r` of rk such
that

(36)
∥∥∥N̂r`(0)−∆

(
Ŵr`(0)

)∥∥∥
∞
→ 0

in probability as ` → ∞, i.e., such that condition (35) holds for the subse-
quence {(Ŵr`(·), N̂r`(·))}.

Proof of Theorem 7.6. Since {πr} is tight by Lemma 7.7, Prohorov’s theo-
rem implies that {πr} is relatively compact in the weak topology. Let {πrk}
be a convergent subsequence of the set of probability distributions {πr},
and suppose that πrk → π as k →∞, in distribution.

Let N̂r(0) be distributed as πr for each r. Then by Lemma 7.8, there
exists a subsequence r` of rk such that∥∥∥N̂r`(0)−∆

(
Ŵr`(0)

)∥∥∥
∞
→ 0

in probability as ` → ∞. Denote the distribution of Ŵr(0) by ηr. Since
πrk → π as k →∞, πr` → π as `→∞ as well, and ηr` → η as `→∞, for
some probability distribution η.

We now wish to apply Theorem 7.5 to the sequence {N̂r`(·)}. The only
condition that needs to be verified is that η has support on W . This can be
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argued as follows. Let N̂(0) have distribution π, and let Ŵ(0) = AM−1N̂(0)
be the corresponding workload. Then Ŵr`(0) → Ŵ(0) in distribution as
r → ∞, and Ŵ(0) has distribution η. The lifting map ∆ is continuous by

Proposition 7.1, so ∆
(
Ŵr`(0)

)
→ ∆

(
Ŵ(0)

)
in distribution as r → ∞.

This convergence, together with (36) and the fact that N̂r`(0) → N̂(0) in

distribution, implies that N̂(0) and ∆
(
Ŵ(0)

)
are identically distributed.

Now ∆
(
Ŵ(0)

)
has support on M , so N̂(0) is supported on M as well, and

so Ŵ(0), hence η, is supported on W .
By Theorem 7.5, (Ŵr`(·), N̂r`(·)) converges in distribution to a continuous

process (Ŵ(·), N̂(·)). Suppose that Ŵ(·) and N̂(·) have unique stationary
distributions η̂ and π̂, respectively. The processes (Ŵr`(·), N̂r`(·)) are sta-
tionary, so (Ŵ(·), N̂(·)) is stationary as well. Therefore, Ŵ(0) and N̂(0) are
distributed as η̂ and π̂, respectively. Since (Ŵr`(0), N̂r`(0))→ (Ŵ(0), N̂(0))
in distribution, we have that ηr` → η̂ and πr` → π̂ weakly as `→∞. This
shows that π = π̂ and η = η̂. Since {πrk} is an arbitrary convergent sub-
sequence, π̂ is the unique weak limit point of {πr}, and this shows that
πr → π̂ in distribution.

For Theorem 7.6 to apply, we need to verify that N̂(·) (or equivalently,
Ŵ(·)) has a unique stationary distribution. The following theorem states
that when κi = 1 for all i ∈ I, this condition holds; more specifically, the
SRBM Ŵ(·) has a unique stationary distribution, which turns out to have
a product form.

Theorem 7.9 (Theorem 5.3 in [13]). Suppose that α = 1 and κi = 1
for all i ∈ I. Let η̂ be the measure on W that is absolutely continuous with
respect to Lebesgue measure with density given by

(37) p(w) = exp(〈v,w〉), w ∈ W ,

where

(38) v = 2Γ−1θ.

The product measure η̂ is an invariant measure for the SRBM with state
space W , directions of reflection {ej , j ∈ J }, drift θ, and covariance matrix
Γ. After normalization, it defines the unique stationary distribution for the
SRBM.

By Theorems 7.6 and 7.9, the following corollary is immediate.
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Corollary 7.10. Suppose that α = 1 and κi = 1 for all i ∈ I. Suppose
further that the local traffic condition, Assumption 7.4, holds. Let π̂ be the
unique stationary probability distribution of N̂(·). For each r, let πr be the
unique stationary probability distribution of N̂r. Then,

πr → π̂, in distribution, as r →∞.

7.3. Proof of Lemmas 7.7 and 7.8.

Proof of Lemma 7.7. To establish tightness, it suffices to show that for

every y > 0 there exists a compact set Ky ⊂ R|I|+ such that

(39) lim sup
r→∞

πr
(
R|I|+ \Ky

)
≤ e−y.

We now proceed to define the compact sets Ky. As in the proof of Theorem
4.10, let εr = ε(ρr) be the gap in the rth system. Then, under Assumption
4.7, for sufficiently large r, εr ≥ D/r for some network-dependent constant
D > 0. Since α = 1, Theorem 3.2 implies that for the rth system, there exist
load-dependent constants Kr > 0 and ξr > 0 such that for every ` ∈ Z+,

(40) Pπr

(
‖Nr‖∞ ≥

Kr

εr
+ 2ξr`

)
≤
(

ξr
ξr + εr

)`+1

.

By the definition of a positive load-dependent constant, there exist contin-
uous functions f1 and f2 on the open positive orthant such that for all r,
Kr = f1(µ

r,νr) and ξr = f2(µ
r,νr). Since µr → µ > 0 and νr → ν > 0,

we have Kr → K , f1(µ,ν) > 0 and ξr → ξ , f2(µ,ν) > 0. Define

Ky ,

{
v ∈ R|I|+ : ‖v‖∞ ≤

(K + 1) + 4(ξ + 1)2 · y
D

}
.

We now show that (39) holds, or equivalently, by the definition of Ky, we
show that for every y > 0,

(41) lim sup
r→∞

Pπr

(
1

r
‖Nr‖∞ >

(K + 1) + 4(ξ + 1)2y

D

)
≤ e−y.

Let `r , b2ξry/εrc, where for z ∈ R, bzc is the largest integer not exceeding
z. By (40), we have

Pπr

(
1

r
‖Nr‖∞ ≥

Kr

rεr
+

2ξr`r
r

)
≤

(
1

1 + εr
ξr

)`r+1

.
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Taking logarithms on both sides, we have

logPπr

(
1

r
‖Nr‖∞ ≥

Kr

rεr
+

2ξr`r
r

)
≤ −(`r + 1) log

(
1 +

εr
ξr

)
.

Since εr → 0 and ξr → ξ > 0 as r →∞, εrξr < 1 for sufficiently large r. Since
log(1 + t) ≥ t/2 for t ∈ [0, 1], we have

−(`r + 1) log

(
1 +

εr
ξr

)
≤ −(`r + 1)

εr
2ξr

,

when r is sufficiently large. By definition, `r = b2ξry/εrc, so `r+1 ≥ 2ξrx/εr,
or equivalently, −(`r + 1) εr2ξr ≤ −y. Thus, when r is sufficiently large,

logPπr

(
1

r
‖Nr‖∞ ≥

Kr

rεr
+

2ξr`r
r

)
≤ −y.

Consider the term Kr
rεr

+ 2ξr`r
r . When r is sufficiently large, rεr ≥ D, Kr ≤

K + 1, and ξr ≤ ξ + 1, and so

Kr

rεr
+

2ξr`r
r
≤ Kr

rεr
+

2ξr(2ξry)

rεr
≤ K + 1

D
+

4(ξ + 1)2y

D
.

Thus, for sufficiently large r,

logPπr

(
1

r
‖Nr‖∞ >

(K + 1) + 4(ξ + 1)2y

D

)
≤ logPπr

(
1

r
‖Nr‖∞ ≥

Kr

rεr
+

2ξr`r
r

)
≤ −y.

This establishes (41), and also the tightness of {πr}.

Next, we prove Lemma 7.8. To this end, we need some definitions and
background. In particular, we need the concept and properties of fluid model
solutions.

Definition 7.11. A fluid model solution (FMS) is an absolutely con-

tinuous function n : [0,∞)→ R|I|+ such that at each regular point 1 t > 0 of
n(·), we have, for each i ∈ I,

(42)
d

dt
ni(t) =

{
νi − µiΛi(n(t)), if ni(t) > 0,
0, if ni(t) = 0,

1A point t ∈ (0,∞) is a regular point of an absolutely continuous function f : [0,∞)→
R|I|+ if each component of f is differentiable at t. Since n is absolutely continuous, almost
every time t ∈ (0,∞) is a regular point for n.
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and for each j ∈ J ,

(43)
∑

i∈I+(n(t))

AjiΛi(n(t)) +
∑

i∈I0(n(t))

Ajiρi ≤ Cj ,

where I+(n(t)) = {i ∈ I : ni(t) > 0} and I0(n(t)) = {i ∈ I : ni(t) = 0}.
Note that here Aρ = C.

We now collect some properties of a FMS. The following proposition states
that the invariant manifold M consists exactly of the stationary points of a
FMS.

Proposition 7.12 (Theorem 4.1 in [13]). A vector n0 is an invariant
state, that is, n0 ∈M , if and only if for every fluid model solution n(·) with
n(0) = n0, we have n(t) = n0 for all t > 0.

The following theorem states that starting from any initial condition, a
FMS will eventually be close to the invariant manifold M .

Theorem 7.13 (Theorem 5.2 in [14]). Fix R ∈ (0,∞) and δ > 0. There
is a constant TR,δ <∞ such that for every fluid model solution n(·) satisfying
‖n(0)‖∞ ≤ R we have

d(n(t),M ) < δ, for all t > TR,δ,

where d(n(t),M ) , infn∈M ‖n − n(t)‖∞ is the distance from n(t) to the
manifold M .

Proposition 7.14 states that the value of the Lyapunov function F1 defined
in (9) decreases along the path of any FMS.

Proposition 7.14 (Corollary 6.1 in [14]). At any regular point t of a
fluid model solution n(·), we have

d

dt
F1(n(t)) ≤ 0,

and the inequality is strict if n(t) /∈M .

Using Proposition 7.14, and the continuity of the lifting map ∆, we can
translate Theorem 7.13 into the following version, which will be used to
prove Lemma 7.8.
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Lemma 7.15. Fix R ∈ (0,∞) and δ > 0. There is a constant TR,δ <∞
such that for every fluid model solution n(·) satisfying ‖n(0)‖∞ ≤ R we have

‖n(t)−∆(w(t))‖∞ < δ, for all t > TR,δ,

where w(t) = w(n(t)) is the workload corresponding to n(t) (see Definition
4.8).

Proof. Fix R > 0 and δ > 0. Let ‖n(0)‖∞ ≤ R. Then,

F1(n(0)) =
1

2

∑
i∈I

ν−1i κin
2
i (0) ≤ R′,

where R′ depends on R and the system parameters. Since n(·) is absolutely
continuous, by Proposition 7.14 and the fundamental theorem of calculus,
we have that F1(n(t)) ≤ R′ for all t ≥ 0. Define the set

S , {n ∈ R|I|+ : F1(n) ≤ R′},

and its δ-fattening

Sδ , {n ∈ R|I|+ : ‖n− n′‖ ≤ δ for some n′ ∈ S}.

Note that both S and Sδ are compact sets, and n(t) ∈ S ⊂ Sδ for all t ≥ 0.
Now consider the workload w defined in Definition 4.8. Define the set

w(Sδ) = {v ∈ R|J |+ : v = w(n) for some n ∈ Sδ}. Since w is a linear map,
there exists a load-dependent constant H such that

‖w(n)−w(n′)‖∞ ≤ H‖n− n′‖∞,

for any n,n′ ∈ R|I|+ . Thus w(Sδ) is also a compact set. Since n(t) ∈ Sδ for
all t ≥ 0, w(t) ∈ w(Sδ) for all t ≥ 0. By Proposition 7.1, ∆ is a continuous
map, so ∆ is uniformly continuous when restricted to w(Sδ). Therefore,
there exists δ′ > 0 such that for any w′,w ∈ w(Sδ) with ‖w′ −w‖∞ < δ′,
‖∆(w′)−∆(w)‖∞ < δ

2 . Thus for any n,n′ ∈ Sδ with ‖n−n′‖∞ < δ′/H, we
have ‖w(n)−w(n′)‖ ≤ δ′, and

‖∆(w(n))−∆(w(n′))‖∞ <
δ

2
.

Let δ′′ = min{δ/2, δ′/H}. By Theorem 7.13, there exists TR,δ′′ such that for
all t ≥ TR,δ′′ ,

d(M ,n(t)) < δ′′.
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In particular, there exists n ∈ M (which may depend on n(t)) such that
‖n− n(t)‖∞ < δ′′ < δ′/H. Since n(t) ∈ S and δ′′ < δ, n ∈ Sδ as well. Thus

‖∆(w(n))−∆(w(n(t)))‖∞ <
δ

2
.

By Proposition 7.12, since n ∈M , we have n = ∆(w(n)), and hence

‖n−∆(w(n(t)))‖∞ <
δ

2
.

Thus for all t ≥ TR,δ′′ ,

‖n(t)−∆(w(t))‖∞ ≤ ‖n− n(t)‖∞ + ‖n−∆(w(t))‖∞

< δ′′ +
δ

2
≤ δ

2
+
δ

2
= δ.

Note that δ′′ depends on R, δ, and the system parameters. Thus, we can
rewrite TR,δ′′ as TR,δ. This concludes the proof of the lemma.

The last property of a FMS that we need is the tightness of the fluid-scaled
processes N̄r and W̄r, defined by

(44) N̄r(t) = Nr(rt)/r, and W̄r(t) = Wr(rt)/r.

Theorem 7.16 (Theorem B.1 in [14]). Suppose that {N̄r(0)} converges

in distribution as r →∞ to a random variable taking values in R|I|+ . Then,
the sequence {N̄r(·)} is C-tight 2, and any weak limit point N̄(·) of this
sequence, almost surely satisfies the fluid model equations (42) and (43).

Proof of Lemma 7.8. Consider the unique stationary distributions πr of
N̂r(·), and ηr of Ŵr(·). Let πrk be a convergent subsequence, and suppose
that πrk → π in distribution, as k →∞. Suppose that at time 0, 1

rk
Nrk(0)

is distributed as πrk . Then 1
rk

Wrk(0) is distributed as ηrk, which converges
in distribution as well, say to η.

We now use the earlier stated FMS properties to prove the lemma. Note
that for all r,

1

r
Nr(0) = N̄r(0) = N̂r(0) and

1

r
Wr(0) = W̄r(0) = Ŵr(0),

2Consider the space D|I| of functions f : [0,∞) → R|I| that are right-continuous on
[0,∞) and have finite limits from the left on (0,∞). Let this space be endowed with
the usual Skorohod topology (cf. Section 12 of [3]). The sequence {N̄r(·)} is tight if the
probability measures induced on D|I| are tight. The sequence is C-tight if it is tight and
any weak limit point is a measure supported on the set of continuous sample paths.
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and consider the fluid-scaled processes N̄rk(·) and W̄rk(·). Since
{
N̄rk(0)

}
converges in distribution to π, Theorem 7.16 implies that the sequence
{N̄rk(·)} is C-tight, and any weak limit N̄(·) almost surely satisfies the fluid
model equations. Let N̄(·) be a weak limit point of

{
N̄rk(·)

}
, and suppose

that the subsequence {N̄r`(·)} of {N̄rk(·)} converges weakly to N̄(·).
Let δ > 0. We will show that we can find r(δ) such that for r` > r(δ),

P
(
‖N̄r`(0)−∆(W̄r`(0))‖∞ > δ

)
< δ.

Since N̄(0) is a well-defined random variable, there exists Rδ > 0 such that

P
(
‖N̄(0)‖∞ > Rδ

)
<
δ

2
.

Now, for all sample paths ω such that ‖N̄(0)(ω)‖∞ ≤ Rδ, and such that
N̄(·)(ω) satisfies the fluid model equations, Lemma 7.15 implies that there
exists T , TRδ,δ such that

‖N̄(T )(ω)−∆(W̄(T ))(ω)‖∞ < δ.

Since N̄(·) satisfies the fluid model equations almost surely, we have

P(‖N̄(T )−∆(W̄(T ))‖∞ < δ) > 1− δ

2
.

Now for each r, N̄r(0) is distributed according to the stationary distribution
πr, so N̄r(·) is a stationary process. Since N̄r`(·)→ N̄(·) weakly as `→∞,
N̄ is also a stationary process. Thus, N̄(T ) and N̄(0) are both distributed
according to π. This implies that

P(‖N̄(0)−∆(W̄(0))‖∞ < δ) > 1− δ

2
.

Furthermore, since N̄r`(0)→ N̄(0) in distribution,

P(‖N̄r`(0)−∆(W̄r`(0))‖∞ < δ)→ P(‖N̄(0)−∆(W̄(0))‖∞ < δ)

as `→∞. Thus there exists r(δ) such that for all r` > r(δ),

P(‖N̄r`(0)−∆(W̄r`(0))‖∞ < δ) > 1− δ.

Since δ > 0 is arbitrary,

‖N̂r`(0)−∆(Ŵr`(0))‖∞ = ‖N̄r`(0)−∆(W̄r`(0))‖∞ → 0,

in probability.
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8. Conclusion. The results in this paper can be viewed from two dif-
ferent perspectives. On the one hand, they provide much new information
on the qualitative behavior (e.g., finiteness of the expected number of flows,
bounds on steady-state tail probabilities and finite-horizon maximum excur-
sion probabilities, etc.) of the α-fair policies for bandwidth-sharing network
models. At an abstract level, our results highlight the importance of re-
lying on a suitable Lyapunov function. Even if a network is shown to be
stable by using a particular Lyapunov function, different choices and more
detailed analysis may lead to more powerful bounds. At a more concrete
level, we presented a generic method for deriving full state space collapse
from multiplicative state space collapse, and another for deriving steady-
state exponential tail bounds. The methods and results in this paper can be
extended to general switched network models. Parallel results for a packet
level model are detailed in [18].
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