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A Structured Multiarmed Bandit
Problem and the Greedy Policy
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Abstract—We consider a multiarmed bandit problem where the
expected reward of each arm is a linear function of an unknown
scalar with a prior distribution. The objective is to choose a se-
quence of arms that maximizes the expected total (or discounted
total) reward. We demonstrate the effectiveness of a greedy policy
that takes advantage of the known statistical correlation structure
among the arms. In the infinite horizon discounted reward setting,
we show that the greedy and optimal policies eventually coincide,
and both settle on the best arm. This is in contrast with the Incom-
plete Learning Theorem for the case of independent arms. In the
total reward setting, we show that the cumulative Bayes risk after

periods under the greedy policy is at most , which is
smaller than the lower bound of established by Lai [1]
for a general, but different, class of bandit problems. We also estab-
lish the tightness of our bounds. Theoretical and numerical results
show that the performance of our policy scales independently of
the number of arms.

Index Terms—Markov decision process (MDP).

I. INTRODUCTION

I N the multiarmed bandit problem, a decision-maker sam-
ples sequentially from a set of arms whose reward char-

acteristics are unknown to the decision-maker. The distribution
of the reward of each arm is learned from accumulated expe-
rience as the decision-maker seeks to maximize the expected
total (or discounted total) reward over a horizon. The problem
has garnered significant attention as a prototypical example of
the so-called exploration versus exploitation dilemma, where a
decision-maker balances the incentive to exploit the arm with
the highest expected payoff with the incentive to explore poorly
understood arms for information-gathering purposes.
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Nearly all previous work on the multiarmed bandit problem
has assumed statistically independent arms. This assumption
simplifies computation and analysis, leading to multiarmed
bandit policies that decompose the problem by arm. The
landmark result of Gittins and Jones [2], assuming an infinite
horizon and discounted rewards, shows that an optimal policy
always pulls the arm with the largest “index,” where indices
can be computed independently for each arm. In their seminal
papers, Lai and Robbins [3] and Lai [1] further show that
index-based approaches achieve asymptotically optimal per-
formance in the finite horizon setting when the objective is to
maximize total expected rewards.

When the number of arms is large, statistical independence
comes at a cost, because it typically leads to policies whose con-
vergence time increases with the number of arms. For instance,
most policies require each arm be sampled at least once. At the
same time, statistical independence among arms is a strong as-
sumption in practice. In many applications, we expect that in-
formation gained by pulling one arm will also impact our under-
standing of other arms. For example, in a target marketing set-
ting, we might expect a priori that similar advertisements will
perform similarly. The default approach in such a situation is to
ignore any knowledge of correlation structure and use a policy
that assumes independence. This seems intuitively inefficient
because we would like to use any known statistical structure to
our advantage.

We study a fairly specific model that exemplifies a broader
class of bandit problems where there is a known prior func-
tional relationship among the arms’ rewards. Our main thesis
is that known statistical structure among arms can be exploited
for higher rewards and faster convergence. Our assumed model
is sufficient to demonstrate this thesis using a simple greedy ap-
proach in two settings: infinite horizon with discounted rewards,
and finite horizon undiscounted rewards. In the discounted re-
ward setting, we show that greedy and optimal policies even-
tually coincide, and both settle on the best arm in finite time.
This differs from the classical multiarmed bandit case, where
the Incomplete Learning Theorem [4]–[6] states that no policy
is guaranteed to find the best arm. In the finite horizon setting,
we show that the cumulative Bayes risk over periods (defined
below) under the greedy policy is bounded above by
and is independent of the number of arms. This is in contrast
with the classical multiarmed bandit case where the risk over

periods is at least (see [1]), and typically scales
linearly with the number of arms. We outline our results and
contributions in more detail in Section I-B.

Our formulation assumes that the mean reward of each arm is
a linear function of an unknown scalar on which we have a prior
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distribution. Assume that we have arms indexed by ,
where the reward for choosing arm in period is given by
a random variable . We assume that for all and for

, is given by

(1)

where and are known for each arm , and and
are random variables. We will assume

throughout the paper that for any given , the random vari-
ables are identically distributed; furthermore, the
random variables are independent
of each other and of .

Our objective is to choose a sequence of arms (one at each
period) so as to maximize either the expected total or discounted
total rewards. Define the history of the process, , as the
finite sequence of arms chosen and rewards observed through
the end of period . For each , let denote the set
of possible histories up until the end of period . A policy

is a sequence of functions such that
selects an arm in period based on the

history up until the end of period . For each policy , the
total discounted reward is given by

where denotes the discount factor, and the random
variables correspond to the sequence of arms chosen
under the policy , that is, . We say that a policy
is optimal if it maximizes the future total discounted reward, at
every time and every possible history.

For every , we define the -period cumulative regret
under given , denoted by , as follows:

and the -period cumulative Bayes risk of the policy by

We note that maximizing the expected total reward over a finite
horizon is equivalent to minimizing Bayes risk.

Although this is not our focus, we point out an application of
our model in the area of dynamic pricing with demand learning.
Assume that we are sequentially selecting from a finite set of
prices with the objective of maximizing revenues over a horizon.
When the price is selected at time , we assume that sales

are given by the linear demand curve

where is a known intercept but the slope is unknown. The
random variable is a noise term with mean zero. The revenue
is then given by which is
a special case of our model. We mention this dynamic pricing
problem as an example application, though our model is more
generally applicable to a range of control situations involving

a linear function to be estimated. Example application domains
include drug dosage optimization (see [7]), natural resource ex-
ploration, and target marketing.

A. Related Literature

As discussed in Section I, work on the multiarmed bandit
problem has typically focused on the case where the arm re-
wards are assumed to be statistically independent. The literature
can be divided into two streams based on the objective func-
tion: maximizing the expected total discounted reward over an
infinite horizon and minimizing the cumulative regret or Bayes
risk over a finite horizon. Our paper contributes to both streams
of the literature. In the discounted, infinite horizon setting, the
landmark result of Gittins and Jones [2] shows that an index-
based policy is optimal under geometric discounting. Several
alternative proofs of the so-called Gittins Index result exist (for
example, [8]–[11]); see [12] for a summary and review. The
classical Gittins assumptions do not hold in our version of the
problem because statistical dependence among arms does not
allow one to compute indices for each arm in a decomposable
fashion. In the discounted setting, it is known (see [4]–[6]) that
learning is incomplete when arms are independent. That is, an
optimal policy has a positive probability of never settling on the
best arm.

A second stream of literature has sought to maximize the ex-
pected total undiscounted reward or, equivalently, to minimize
regret, defined as expected underperformance of a policy rela-
tive to the policy that knows and always chooses the best arm.
A full characterization of an optimal policy given this objective
appears to be difficult, and most authors have concerned them-
selves with rates of convergence of particular policies. The sem-
inal work of Lai and Robbins [3] gives an asymptotic
lower bound on the regret as a function of time. It also provides a
policy based on "upper confidence bounds" on the arm rewards,
whose performance asymptotically matches the lower bound.
Lai [1] extends these results and shows, among other things, that
in a Bayesian finite horizon setting, and under a fairly general
set of assumptions, the cumulative Bayes risk must grow at least
as fast as . Subsequent papers along this line include
[13]–[15].

Interest in bandit problems under an assumption of dependent
arms has a long history. Thompson [16], in what is widely re-
garded as the original paper on the multiarmed bandit problem,
allows for correlation among arms in his initial formulation,
though he only analyzes a special case involving independent
arms. Robbins [17] formulates a continuum-armed bandit re-
gression problem that subsumes our model, but does not provide
an analysis of regret or risk. The formulation in Chapter 2 of [18]
allows for correlation among arms (though most of the book
concerns cases with independent arms). There has been rela-
tively little analysis, however, of bandit problems with depen-
dent arms. Two-armed bandit problems with two hidden states
are considered in [19], [20]. A formulation with an arbitrary
number of hidden states can be found in [21], along with a de-
tailed analysis of the case with two hidden states. “Response sur-
face bandits,” multiarmed bandit problems whose arm rewards
are linked through an assumed functional model, are formulated
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in [22], and a simple tunable heuristic is proposed. Bandit prob-
lems where arm dependence is represented via a hierarchical
model are studied in [23]. Although our model can be viewed
as a special case of the formulation considered in [24], we obtain
stronger results by exploiting the special structure of our model.
Our regret and risk bounds (Theorems 3.1 and 3.2) are indepen-
dent of the number of arms and apply to settings with infinite
arms. In contrast, the regret bound in [24] scales linearly with
the number of arms, and their model requires a finite number of
arms. Seeking to maximizing average reward in an irreducible
(but unknown) Markov decision process (MDP), [25] includes
a policy that admits logarithmic regret but scales linearly with
the number of actions and states of the underlying MDP.

Our model can be viewed as a special case of an online
convex optimization problem, by considering randomized
decisions. Let denote an

-dimensional simplex, where each can
be interpreted as the probabilities of playing the arms. Given

, the expected reward under a decision is given by
, which is linear in . For a bounded linear

reward function on an -dimensional decision space, [26]
includes a policy whose cumulative regret over periods is at
most (see also [27], [28]). This result has been
generalized to convex cost functions (see [29], [30]), obtaining
policies whose -period regret is . Nearly all of
the work in this area focuses on minimizing regret, and all
known policies have regret that scales with the dimension of
the problem space (corresponding to the number of arms in
our setting). By exploiting the specific structure of our reward
function, however, we can get a stronger result and obtain a
policy whose cumulative regret over periods is only .
Moreover, our regret bound is independent of (Theorem 3.1
in Section III). We also consider the discounted reward and
cumulative Bayes risk criteria.

We presented in Section I an application of our model to dy-
namic pricing with learning. Although this is not a focus of the
current paper, we mention that there is a growing literature on
this specific topic. See [31]–[34] for examples of recent work.
All of these models are distinguished from ours in their objec-
tives and in the specific demand and inventory situations treated.

B. Contributions and Organization

We view our main contributions to be 1) a model of statistical
dependence among the arm rewards, 2) analysis of such a model
under both expected discounted and undiscounted reward objec-
tives, and 3) demonstration that prior knowledge of the statis-
tical dependence of the different arms can improve performance
and scalability. To the best of our knowledge, this is the first
paper to provide detailed theoretical analysis of a multiarmed
bandit model where the arm rewards are correlated through a
continuous random variable with known prior distribution.

Section II includes our analysis of the infinite-horizon set-
ting with geometric discounting. Theorem 2.1 establishes our
main result on “complete learning.” When every arm depends
on the underlying random variable (that is, if for all
), the posterior mean of converges to its true value. We also

show that a greedy decision is optimal when the variance of the
posterior distribution is sufficiently small (Theorem 2.2). These

two results together imply that eventually an optimal policy co-
incides with the greedy policy, and both settle on the best arm
(Theorem 2.3). As mentioned previously, the latter result relies
on the assumed correlation structure among the arms and is in
contrast to the Incomplete Learning Theorem for the classical
multiarmed bandit setting. We conclude Section II by exam-
ining the case where some of the coefficients are allowed
to be zero. We argue that the corresponding arms can be inter-
preted as “retirement options,” and prove that when retirement
options are present, the optimal and greedy policies may never
coincide, and that learning is generally incomplete.

In Section III, we analyze a similar greedy policy in the finite
horizon setting, under the expected reward, or equivalently, cu-
mulative Bayes risk criterion. We focus first on measuring the
regret of the greedy policy. We show in Theorem 3.1 that the cu-
mulative regret over periods admits an upper bound
and that this bound is tight. Although this leads to an immediate

upper bound on the cumulative Bayes risk, we show that
we can achieve an even smaller, , cumulative Bayes
risk bound, under mild conditions on the prior distribution of

(Theorem 3.2). The risk bound is smaller than the
known lower bound of Lai [1], and we explain why
our framework represents an exception to the assumptions re-
quired in [1]. Theorem 3.2 also shows that Bayes risk scales in-
dependently of the number of arms . This result suggests that
when the number of arms is large, we would expect significant
benefits from exploiting the correlation structure among arms.
Numerical experiments in Section IV support this finding.

II. INFINITE HORIZON WITH DISCOUNTED REWARDS

In this section, we consider the problem of maximizing the
total expected discounted reward. For any policy , the ex-
pected total discounted reward is defined as ,
where denotes the discount factor and denotes
the arm chosen in period under the policy . We make the fol-
lowing assumption on the random variables and .

Assumption 2.1:
a) The random variable is continuous, and .

Furthermore, for every and , we have and
.

b) We have , for every .
c) If , then .

Assumption 2.1(a) places mild moment conditions on the under-
lying random variables, while Assumption 2.1(b) ensures that
the reward of each arm is influenced by the underlying random
variable . In Section II-C, we will explore the consequence of
relaxing this assumption and allow some of the coefficients
to be zero. Finally, since we focus on maximizing the expected
reward, if the coefficient is the same for several arms, then
we should only consider playing one with the largest value of

, because it will give the maximum expected reward. Thus,
Assumption 2.1(c) is introduced primarily to simplify our ex-
position.

In the next section, we show that “complete learning” is pos-
sible, under Assumption 2.1. In Theorem 2.1, we show that
the posterior mean of converges to its true value, under any
policy. This result then motivates us to consider in Section II-B
a greedy policy that makes a myopic decision based only on the
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current posterior mean of . We establish a sufficient condition
for the optimality of the greedy policy (Theorem 2.2), and show
that both the greedy and optimal policies eventually settle on the
best arm, with probability one (Theorem 2.3). In contrast, when
we allow some of the coefficients to be zero, it is possible for
the greedy and optimal policies to disagree forever, with posi-
tive probability (Theorem 2.5 in Section II-C).

A. Complete Learning

Let us fix an arbitrary policy , and for every , let be the
-field generated by the history , under that policy. Let be

the posterior mean of , that is,

and let be the conditional variance, that is

The following result states that, under Assumption 2.1, we have
complete learning, for every policy .

Theorem 2.1 (Complete Learning): Under Assumption 2.1,
for every policy , converges to and converges to zero,
almost surely.

Proof: Let us fix a policy , and let be the se-
quence of arms chosen under . The sequence is a mar-
tingale with respect to the filtration . Furthermore,
since , it is a square integrable martingale. It fol-
lows that converges to a random variable , almost surely,
as well as in the mean-square sense. Furthermore, is equal to

, where is the smallest -field containing for
all (see [35]).

We wish to show that . For this, it suffices to show that
is -measurable. To this effect, we define

Then

It follows that converges to in the mean square. Since
belongs to for every , it follows that its limit, , also be-
longs to . This completes the proof of convergence of to

.
Concerning the conditional variance, the definition of im-

plies that , so that
is a nonnegative supermartingale. Therefore, converges al-
most surely (and thus, in probability) to some random variable

. Since , also converges to zero in prob-
ability. Therefore, with probability one.

In our problem, the rewards of the arms are correlated through
a single random variable to be learned, and thus, we intuitively
have only a “single” arm. Because uncertainty is univariate, we
have complete learning under any policy, in contrast to the In-
complete Learning Theorem for the classical multiarmed bandit
problems. As a consequence of Theorem 2.1, we will show in

Fig. 1. Example of with four arms.

Section II-B (Theorem 2.3) that an optimal policy will settle on
the best arm with probability one.

B. A Greedy Policy

From Theorem 2.1, the posterior mean of , under any
policy, converges to the true value of almost surely. This
suggests that a simple greedy policy—one whose decision
at each period is based solely on the posterior mean—might
perform well. A greedy policy is a policy whose sequence of
decisions is defined by: for each

where denotes the corresponding filtration; for
concreteness, we assume that ties are broken in favor of arms
with lower index. Note that the decision is a myopic one,
based only on the conditional mean of given the past obser-
vations up until the end of period .

Intuitively, the quality of the greedy decision will depend on
the variability of relative to the difference between the ex-
pected reward of the best and second best arms. To make this
concept precise, we introduce the following definition. For any

, let denote that difference between the expected reward
of the best and the second best arms, that is

where . Fig. 1 shows an
example of the function in a setting with 4 arms. Note that

is a continuous and nonnegative function. As seen from
Fig. 1, may be zero for some . However, given our as-
sumption that the coefficients are distinct, one can verify that

has at most zeros.
The next theorem shows that, under any policy, if the poste-

rior standard deviation is small relative to the mean difference
between the best and second best arms, then it is optimal to use
a greedy policy. This result provides a sufficient condition for
optimality of greedy decisions.

Theorem 2.2 (Optimality of Greedy Decisions): Under As-
sumption 2.1, there exists a constant that depends only on
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and the coefficients , with the following property. If we follow
a policy until some time , and if the sample path satisfies

then an optimal policy must make a greedy decision at
time . (Here, is the -field generated by the his-
tory . If denotes the realized history up to
the end of period , then the above ratio is equal
to .)

Proof: Let us fix a policy and some , and define
, which is the posterior mean of given the

observations until the end of period . Let and denote
the greedy decision and the corresponding expected reward in
period , that is

We will first establish a lower bound on the total expected dis-
counted reward (from time onward) associated with a policy
that uses a greedy decision in period and thereafter. For each

, let denote the conditional mean of
under this policy, where is the -field generated by the his-
tory of the process when policy is followed up to time ,
and the greedy policy is followed thereafter, so that

. Under this policy, the expected reward (conditioned on
) at each time is

where we first used Jensen’s inequality, and then the fact that the
sequence , , forms a martingale. Thus, the present
value at time of the expected discounted reward (conditioned
on ) under a strategy that uses a greedy decision in period

and thereafter is at least .
Now, consider any policy that differs from the greedy

policy at time , and plays some arm . Let
denote the im-

mediate expected reward in period . The future expected
rewards under this policy are upper bounded by the expected
reward under the best arm. Thus, under this policy, the expected
total discounted reward from onward is upper bounded by

Note that

Thus, under this policy the expected total discounted reward
from time onward is upper bounded by

Recall that the total expected discounted reward under the
greedy policy is at least . Moreover, for any arm

where the inequality follows from the definition of . Thus,
comparing the expected discounted rewards of the two policies,
we see that a greedy policy is better than any policy that takes a
non-greedy action if

which is the desired result.
As a consequence of Theorem 2.2, we can show that greedy

and optimal policies both settle on the best arm with probability
one.

Theorem 2.3: Under Assumption 2.1, if a policy is optimal,
then it eventually agrees with the greedy policy, and both settle
on the best arm with probability one.

Proof: Let denote the best arm for each , that is,
. Since is a continuous random variable

and at finitely many points, we can assume that is
unique.

For the greedy policy, since converges to almost
surely by Theorem 2.1, it follows that the greedy policy will
eventually settle on the arm with probability one.

Consider an optimal policy . Let , where
denotes the filtration under . By Theorem 2.1, con-

verges to almost surely, and thus, converges to a pos-
itive number, almost surely. Also, converges to zero
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by Theorem 2.1. Thus, the condition in Theorem 2.2 is even-
tually satisfied, and thus eventually agrees with the greedy
policy, with probability one.

C. Relaxing Assumption 2.1(b) Can Lead to Incomplete
Learning

In this section, we explore the consequences of relaxing As-
sumption 2.1(b), and allow the coefficients to be zero, for
some arms. We will show that, in contrast to Theorem 2.3, there
is a positive probability that the greedy and optimal policies dis-
agree forever. To demonstrate this phenomenon, we will restrict
our attention to a setting where the underlying random variables

and are normally distributed.
When and all are normal, the posterior distribution of
remains normal. We can thus formulate the problem as a

Markov Decision Process (MDP) whose state is characterized
by , where and denote the posterior mean
and the inverse of the posterior variance, respectively. The ac-
tion space is the set of arms. When we choose an arm at state

, the expected reward is given by .
Moreover, the updated posterior mean and the in-
verse of the posterior variance are given by

where denotes the observed reward in period . We note that
these update formulas can also be applied when , yielding

and . The reward function
in our MDP is unbounded because the state space is

unbounded. However, as shown in the following lemma, there
exists an optimal policy that is stationary. The proof of this result
appears in Appendix A.

Lemma 2.4 (Existence of Stationary Optimal Policies): When
the random variables and are normally distributed, then a
deterministic stationary Markov policy is optimal; that is, there
exists an optimal policy that selects
a deterministic arm for each state .

It follows from the above lemma that we can restrict our at-
tention to stationary policies. If for some , then there
is a single such , by Assumption 2.1(c), and we can assume
that it is arm . Since we restrict our attention to stationary
policies, when arm 1 is played, the information state remains
the same, and the policy will keep playing arm 1 forever, for an
expected discounted reward of . Thus, arm 1, with

, can be viewed as a “retirement option.”
Note that in this setting a greedy policy

is defined as follows: for every :

with ties broken arbitrarily. We have the following result.
Theorem 2.5 (Incomplete Learning): If the random variables
and are normally distributed, and if

for some , then the optimal and greedy policies
disagree forever with positive probability. Furthermore, under

either the optimal or the greedy policy, there is positive proba-
bility of retiring even though arm 1 is not the best arm.

Proof: Under the assumption
for some , there is an open interval with
such that whenever , the greedy policy must retire, that is,

for all and . Outside the closure
of , the greedy policy does not retire. Outside the closure of ,
an optimal policy does not retire either because higher expected
rewards are obtained by first pulling arm with .
Without loss of generality, let us assume that for some
. A similar argument applies if we assume for some .

Fix some , and let be an
open interval at the right end of . There exists a combination
of sufficiently small and (thus, large variance) such that
when we consider the set of states , the
expected long-run benefit of continuing exceeds the gain from
retiring, as can be shown with a simple calculation. The set of
states will be reached with positive probability.
When this happens, the greedy policy will retire. On the other
hand, the optimal policy will choose to explore rather than retire.

Let denote the posterior mean in period under the op-
timal policy. We claim that once an optimal policy chooses to
explore (that is, play an arm other than arm 1), there is a pos-
itive probability that all posterior means in future periods will
exceed , in which case the optimal policy never retires. To es-
tablish the claim, assume that for some . Let be
the stopping time defined as the first time after that .
We will show that , so that stays outside
forever, and the optimal policy never retires.

Suppose, on the contrary, that . Since
is a square integrable martingale, it follows from the Optional
Stopping Theorem that , which implies that

, where the last inequality
follows from the definition of . This is a contradiction, which
establishes that , and therefore the greedy
policy differs from the optimal one, with positive probability.

For the last part of the theorem, we wish to show that under
either the optimal or the greedy policy, there is positive proba-
bility of retiring even though arm 1 is not the best arm. To estab-
lish this result, consider the interval

, representing the middle third of the interval
. There exists sufficiently large (thus, small variance) such

that when we consider the states , the ex-
pected future gain from exploration is outweighed by the de-
crease in immediate rewards. These states are reached with pos-
itive probability, and at such states, the optimal policy will retire.
The greedy policy also retires at such states because . At
the time of retirement, however, there is positive probability that
arm 1 is not the best one.

We note that when for all ,
one can verify that, as long as ties are never broken in favor of
retirement, neither the greedy or the optimal policy will ever
retire, so we can ignore the retirement option.

III. FINITE HORIZON WITH TOTAL UNDISCOUNTED REWARDS

We now consider a finite horizon version of the problem,
under the expected total reward criterion, and focus on iden-
tifying a policy with small cumulative Bayes risk. As in Sec-
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tion II, a simple greedy policy performs well in this setting. Be-
fore we proceed to the statement of the policy and its analysis,
we introduce the following assumption on the coefficients
associated with the arms and on the error random variables .

Assumption 3.1:
a) There exist positive constants and such that for every

and

b) There exist positive constants and such that
for every .

We view , , and as absolute constants, which are the same
for all instances of the problem under consideration. Our subse-
quent bounds will depend on these constants, although this de-
pendence will not be made explicit. The first part of Assumption
3.1 simply states that the tails of the random variables decay
exponentially. It is equivalent to an assumption that all are
stochastically dominated by a shifted exponential random vari-
able.

The second part of the Assumption 3.1 requires, in particular,
the coefficients to be nonzero. It is imposed because if some

is zero, then, the situation is similar to the one encountered in
Section II-C: a greedy policy may settle on a non-optimal arm,
with positive probability, resulting in a cumulative regret that
grows linearly with time. More sophisticated policies, with ac-
tive experimentation, are needed in order to guarantee sublinear
growth of the cumulative regret, but this topic lies outside the
scope of this paper.

We will study the following variant of a greedy policy. It
makes use of suboptimal (in the mean squared error sense) but
simple estimators of , whose tail behavior is amenable to
analysis. Indeed, it is not clear how to establish favorable regret
bounds if we were to define as the posterior mean of .

GREEDY POLICY FOR FINITE HORIZON TOTAL UNDISCOUNTED

REWARDS

Initialization: Set , representing our initial estimate of
the value of .

Description: For periods
1) Sample arm , where

, with ties broken arbitrarily.
2) Let denote the observed reward from arm .
3) Update the estimate by letting

Output: A sequence of arms played in each period
.

The two main results of this section are stated in the fol-
lowing theorems. The first provides an upper bound on the regret

under the GREEDY policy. The proof is
given in Section III-B.

Theorem 3.1: Under Assumption 3.1, there exist positive
constants and that depend only on the parameters , , ,
and , such that for every and

Furthermore, the above bound is tight in the sense that there ex-
ists a problem instance involving two arms and a positive con-
stant such that, for every policy and , there exists

with

On the other hand, for every problem instance that sat-
isfies Assumption 3.1, and every , the infinite
horizon regret under the GREEDY policy is bounded; that
is, .

Let us comment on the relation and differences between the
various claims in the statement of Theorem 3.1. The first claim
gives an upper bound on the regret that holds for all and .
The third claim states that for any fixed , the cumulative regret
is finite, but the finite asymptotic value of the regret can still
depend on . By choosing unfavorably the possible values of
(e.g., by letting or , as in the proof in
Section III-B), the regret can be made to grow as for

, before it stabilizes to a finite asymptotic value, and this is
the content of the second claim. We therefore see that the three
claims characterize the cumulative regret in our problem under
different regimes.

It is interesting to quantify the difference between the regret
achieved by our greedy policy, which exploits the problem struc-
ture, and the regret under a classical bandit algorithm that as-
sumes independent arms (see [36] and [37] for notions of rela-
tive or “external” regret). Theorem 3.1 shows that the cumula-
tive regret of the greedy policy, for fixed , is bounded. Lai and
Robbins [3] establish a lower bound on the cumulative regret of
any policy that assumes independent arms, showing that the re-
gret grows as . Thus, accounting for the problem struc-
ture in our setting results in a benefit. Similarly, the re-
gret of our greedy policy scales independently of , while typ-
ical independent-arm policies, such as UCB1 [15] or the policy
of [1], sample each arm once. The difference in cumulative re-
gret between the two policies thus grows linearly with .

From the regret bound of Theorem 3.1, and by taking expec-
tation with respect to , we obtain an easy upper bound on the
cumulative Bayes risk, namely, .
Furthermore, the tightness results suggest that this bound may
be the best possible. Surprisingly, as established by the next the-
orem, if is continuous and its prior distribution has a bounded
density function, the resulting cumulative Bayes risk only grows
at the rate of , independent of the number of arms. The
proof is given in Section III-C.

Theorem 3.2: Under Assumption 3.1, if is a continuous
random variable whose density function is bounded above by ,
then there exist positive constants and that depend only on

and the parameters , , , and , such that for every
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Furthermore, this bound is tight in the sense that there exists a
problem instance with two arms and a positive constant such
that for every , and every policy

The above risk bound is smaller than the lower bound of
established by Lai [1]. To understand why this is not

a contradiction, let denote the mean reward associated with
arm , that is, , for all . Then, for any ,
and are perfectly correlated, and the conditional distribution

of given is degenerate, with
all of its mass at a single point. In contrast, the lower
bound of [1] assumes that the cumulative distribution function
of , conditioned on , has a continuous and bounded deriva-
tive over an open interval, which is not the case in our model.

We finally note that our formulation and most of the analysis
easily extends to a setting involving an infinite number of arms,
as will be discussed in Section III-D.

A. Discussion of Assumption 3.1(a) and Implications on the
Estimator

In this section, we reinterpret Assumption 3.1(a), and record
its consequences on the tails of the estimators . Let be
such that . Then, Assumption 3.1(a) can be rewritten
in the form

Let be an exponentially distributed random variable, with pa-
rameter , so that

Thus

which implies that each random variable is stochastically
dominated by the shifted exponential random variable ;
see [38] for the definition and properties of stochastic domi-
nance.

We use the above observations to derive an upper bound on
the moment generating function of , and then a lower bound
on the corresponding large deviations rate function, ultimately
resulting in tail bounds for the estimators . The proof is given
in Appendix B.

Theorem 3.3: Under Assumption 3.1, there exist positive
constants and depending only on the parameters , , ,
and , such that for every , , and

B. Regret Bounds: Proof of Theorem 3.1

In this section, we will establish an upper bound on the regret,
conditioned on any particular value of , and the tightness

of our regret bound. Consider a typical time period. Let be
the true value of the parameter, and let be an estimate of .
The best arm is such that

Given the estimate , a greedy policy selects an arm such
that . In particular,

, which implies that
. Therefore, the instantaneous regret, due to choosing arm

instead of the best arm , which we denote by , can be
bounded as follows:

(2)

where the last inequality follows from Assumption 3.1.
At the end of period , we have an estimate of . Then, the

instantaneous regret in period is given by

for some constant , where the last inequality follows from
Theorem 3.3. It follows that the cumulative regret until time
is bounded above by

where the last inequality follows from the fact
. We also used the fact that the instantaneous regret in-

curred in period 1 is bounded above by , because .
This proves the upper bound on the regret given in Theorem 3.1.

To establish the first tightness result, we consider a problem
instance with two arms, and parameters and

, as illustrated in Fig. 2. For this problem in-
stance, we assume that the random variables have a standard
normal distribution. Fix a policy and . Let .
By our construction

(3)

where the inequality follows from the fact that the maximum of
two numbers is lower bounded by their average. We recognize
the right-hand side in (3) as the Bayes risk in a finite horizon
Bayesian variant of our problem, where is equally likely to
be or . This can be formulated as a (partially observable)
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Fig. 2. Two-arm instance, with and ,
used to prove the tightness result in Theorem 3.1.

dynamic programming problem whose information state is
(because is a sufficient statistic, given past observations). 1

Since we assume that the random variables have a stan-
dard normal distribution, the distribution of , given either
value of , is always normal, with mean and variance ,
independent of the sequence of actions taken. Thus, we are
dealing with a problem in which actions do not affect the distri-
bution of future information states; under these circumstances,
a greedy policy that myopically maximizes the expected in-
stantaneous reward at each step is optimal. Hence, it suffices
to prove a lower bound for the right-hand side of (3) under the
greedy policy.

Indeed, under the greedy policy, and using the symmetry of
the problem, we have

Since , we have, for

1The standard definition of the information state in this context is the posterior
distribution of the “hidden” state , or, equivalently, the posterior probability

, where denotes the history of the process until the
end of period . Let denote the density function of the standard normal
random variable. The posterior probability depends on only through the
likelihood ratio , which is equal to

where the first equality follows from the fact that for all .
Thus, is completely determined by , so that can serve as an alternative
information state.

where is a standard normal random variable. It follows that
. This implies that for any

policy , there exists a value of (either or ), for which
.

We finally prove the last statement in Theorem 3.1. Fix some
, and let be an optimal arm. There is a minimum dis-

tance such that the greedy policy will pick an inferior
arm in period only when our estimate differs
from by at least (that is, ). By Theorem 3.3,
the expected number of times that we play an inferior arm is
bounded above by

Thus, the expected number of times that we select suboptimal
arms is finite.

C. Bayes Risk Bounds: Proof of Theorem 3.2

We assume that the random variable is continuous, with
a probability density function , which is bounded above
by . Let us first introduce some notation. We define a reward
function , as follows: for every , we let

Note that is convex. Let and be the right-
derivative and left-derivative of at , respectively. These
directional derivatives exist at every , and by Assumption 3.1,

for all . Both left and right deriva-
tives are nondecreasing with

and

Define a measure on as follows: for any , let

(4)

It is easy to check that if ,
Note that this measure is finite with .

Consider a typical time period. Let be the true value of
the parameter, and let be an estimate of . The greedy policy
chooses the arm such that , while the true best
arm is such that . We know from (2) that
the instantaneous regret , due to choosing arm instead
of the best arm , is bounded above by

where the second inequality follows from the fact that
and . The final equality

follows from the definition of the measure in (4).
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Consider an arbitrary time at which we make a decision
based on the estimate computed at the end of period . It
follows from the above bound on the instantaneous regret that
the instantaneous Bayes risk at time is bounded above by

We will derive a bound just on the term
. The same bound is obtained

for the other term, through an identical argument. Since
whenever , we have

The interchange of the integration and the expectation is justi-
fied by Fubini’s Theorem, because .
We will show that for any

for some constant that depends only on the parameters ,
, , and of Assumption 3.1. Since , it

follows that the instantaneous Bayes risk incurred in period
is at most . Then, the cumulative Bayes risk is bounded
above by

where the last inequality follows from the fact that
.

Thus, it remains to establish an upper bound on
. Without loss of generality (only

to simplify notation and make the argument a little more
readable), let us consider the case . Using Theorem 3.3
and the fact that, for , in the
inequality below, we have

We will now bound each one of the four terms, denoted by
, in the right-hand side of the above inequality. We

have

Furthermore

For the third term, we have

Finally

Since all of these bounds are proportional to , our claim has
been established, and the upper bound in Theorem 3.2 has been
proved.

To complete the proof of Theorem 3.2, it remains to estab-
lish the tightness of our logarithmic cumulative risk bound. We
consider again the two-arm example of Fig. 2(a), and also as-
sume that is uniformly distributed on . Consider an ar-
bitrary time and suppose that , so that arm 1 is
the best one. Under our assumptions, the estimate is normal
with mean and standard deviation . Thus,

, where is
a standard normal random variable. Whenever , the in-
ferior arm 2 is chosen, resulting in an instantaneous regret of

. Thus, the expected instantaneous regret in period
is at least . A simple modification of the above ar-

gument shows that for any between and , the ex-
pected instantaneous regret in period is at least , where

is a positive number (easily determined from the normal ta-
bles). Since , we see that
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the instantaneous Bayes risk at time is at least . Con-
sequently, the cumulative Bayes risk satisfies

for some new numerical constant .
For the particular example that we studied, it is not hard to

show that the greedy policy is actually optimal: since the choice
of arm does not affect the quality of the information to be ob-
tained, there is no value in exploration, and therefore, the seem-
ingly (on the basis of the available estimate) best arm should
always be chosen. It follows that that the lower bound we have
established actually applies to all policies.

D. The Case of Infinitely Many Arms

Our formulation generalizes to the case where we have infin-
itely many arms. Suppose that ranges over an infinite set, and
define, as before, . We assume that the
supremum is attained for every . With this model, it is possible
for the function to be smooth. If it is twice differentiable, the
measure is absolutely continuous and

where is the second derivative of . The proofs of the
and upper bounds in Theorems 3.1 and 3.2

apply without change, and lead to the same upper bounds on
the cumulative regret and Bayes risk.

Recall that the lower bounds in Theorem 3.1 involve a choice
of that depends on the time of interest. However, when infin-
itely many arms are present, a stronger tightness result is pos-
sible involving a fixed value of for which the regret is “large”
for all times. The proof is given in Appendix C.

Proposition 3.4: For every , there exists a
problem instance, involving an infinite number of arms, and a
value such that for all

for some function .

IV. NUMERICAL RESULTS

We have explored the theoretical behavior of the regret and
risk, under our proposed greedy policy, in Section III. We
now summarize a numerical study intended to quantify its
performance, compared with a policy that assumes independent
arms. For the purposes of this comparison, we have chosen
the well-known independent-arm multiarmed bandit policy of
[1], to be referred to as “Lai87”. We note that [1] provides
performance guarantees for a wide range of priors, including
priors that allow for dependence between the arm rewards.
Lai87, however, tracks separate statistics for each arm, and thus
does not take advantage of the known values of the coefficients

and . We view Lai87 as an example of a policy that
does not account for our assumed problem structure. We also
implemented and tested a variant of the UCB1 policy of [15],
modified slightly to account for the known arm variance in our

problem. We found the performance of this UCB1-based policy
to be substantially similar to Lai87. Our implementation of
Lai87 is the same as the one in the original paper. In particular,
Lai87 requires a scalar function satisfying certain technical
properties; we use the same that was used in the original
paper’s numerical results.

We consider two sets of problem instances. In the first, all
of the coefficients and are generated randomly and inde-
pendently, according to a uniform distribution on . We
assume that the random variables are normally distributed,
with mean zero and variance . For , we
generate 5000 such problem instances. For each instance, we
sample a value from the standard normal distribution and com-
pute arm rewards according to (1) for time periods. In
addition to the greedy policy and Lai87, we also compare with
an optimistic benchmark, namely an oracle policy that knows
the true value of and always chooses the best arm. In Fig. 3,
we plot for the case , instantaneous rewards and
per-period average cumulative regret

both averaged over the 5000 paths. We include average cumula-
tive regret plots for randomly-generated 3- and 10-arm problems
in Fig. 4.

We observe that the greedy policy appears to converge faster
than Lai87 in all three problem sets, with the difference being
greater for larger . This supports the insight from Theorem
3.2, that Bayes risk under our greedy policy is independent of

.
One practical advantage of the greedy policy over Lai87 can

be seen in the left-hand plot of Fig. 5, which illustrates a ran-
domly generated 5-arm problem instance included in our simu-
lation. Each line in the graph represents the expected reward of
an arm as a function of the unknown random variable . Thus
the optimal arm for a given value of is the maximum among
these line segments. We observe that when arms are randomly
generated according to our procedure, several arms can often be
eliminated from consideration a priori because they will never
achieve the maximum for any realization of . The greedy policy
will never choose such arms, though Lai87 may. On the other
hand, recall that the greedy policy’s performance is expected
to depend on the constants and in Assumption 3.1, which
measure the magnitude and relative sizes of the slopes . (For
example, the proof of Theorem 3.1 indicates that the constants
involved in the upper bound are proportional to .) For ran-
domly selected problems, there will be instances in which the
worst-case ratio is large so that is also large,
resulting in less favorable performance bounds.

The second set of problem instances is inspired by the dy-
namic pricing problem formulated in Section I. We assume that
the sales at time under the price are of the form

, where is normally distributed with mean
and standard deviation . Thus, the revenue is

, where is a
standard normal random variable. We also assume that the errors
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Fig. 3. Instantaneous rewards and per-period average cumulative regret for ran-
domly generated problem instances with , averaged over 5000 paths.
Differences between the policies in the right-hand plot are all significant at the
95% level.

are normally distributed with mean zero and variance 0.1. We
set , corresponding to five prices: 0.75, 0.875, 1.0, 1.125,
1.25. The expected revenue as a function of for each of the
five arms/prices is shown in the right-hand side plot of Fig. 5.
We see that in this instance, in contrast to the randomly gener-
ated instance in the left-hand side plot, every arm is the optimal
arm for some realization of .

We simulate 5000 runs, each involving a different value ,
sampled from the standard normal distribution, and we apply
each one of our three policies: greedy, Lai87, and oracle. Fig. 6
gives the instantaneous rewards and per-period average cumu-
lative regret, both averaged over the 5000 runs. Inspection of
Fig. 6 suggests that the greedy policy performs even better rel-
ative to Lai87 in the dynamic pricing example than in the ran-
domly generated instances. Our greedy policy is clearly better
able to take advantage of the inherent structure in this problem.

V. DISCUSSION AND FUTURE RESEARCH

We conclude by highlighting our main findings. We have re-
moved the typical assumption made when studying multiarmed
bandit problems, that the arms are statistically independent, by
considering a specific statistical structure underlying the mean
rewards of the different arms. This setting has allowed us to
demonstrate our main conjecture, namely, that one can take ad-
vantage of known correlation structure and obtain better perfor-
mance than if independence were assumed. At the same time,

Fig. 4. Per-period average cumulative regret for randomly generated problem
instances for and . Differences between the policies in both
plots are significant at the 95% level.

we have specific results on the particular problem, with uni-
variate uncertainty, that we have considered. Within this setting,
simple greedy policies perform well, independent of the number
of arms, for both discounted and undiscounted objectives.

We believe that our paper opens the door to development of a
comprehensive set of policies that account for correlation struc-
tures in multiarmed bandit and other learning problems. While
correlated bandit arms are plausible in a variety of practical set-
tings, many such settings require a more general problem setup
than we have considered here. Of particular interest are corre-
lated bandit policies for problems with multivariate uncertainty
and with more general correlation structures.

APPENDIX A
PROOF OF LEMMA 2.4

Proof: We will show that there exists a dominating func-
tion such that

and for each

The desired result then follows immediately from Theorem 1 in
[39].
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Fig. 5. Mean reward of each arm as a function of for a randomly generated
problem (left) and a dynamic pricing problem (right).

Fig. 6. Per-period average cumulative regret for the dynamic pricing problem
with 5 candidate prices. Differences between the policies are significant at the
95% level.

Let and . For each
, let

The first condition is clearly satisfied because for each state
and arm

To verify the second condition, note that if , then
and , with probability one and

the inequality is trivially satisfied. So, suppose that . It
follows from the definition of that

To establish the desired result, it thus suffices to show that
.

Since , , and
, it follows that has the same distribu-

tion as , where is an independent
standard normal random variable. It follows from the definition
of that

where the second equality follows from the fact that

and the inequality follows from the facts that
and

APPENDIX B
PROOF OF THEOREM 3.3

Proof: Fix some , and let be a random variable with
the same distribution as . For any , let .
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Note that . Because of the exponential tails assump-
tion on , the function is finite, and in fact infinitely dif-
ferentiable, whenever . Furthermore, its first derivative

satisfies . Finally, its second derivative sat-
isfies

(This step involves an interchange of differentiation and inte-
gration, which is known to be legitimate in this context.)

It is well known that when a random variable is stochas-
tically dominated by another random variable , we have

, for any nonnegative nondecreasing
function . In our context, this implies that

The function on the right-hand side above is completely deter-
mined by and . It is finite, continuous, and bounded on the
interval by some constant which only de-
pends on and . It then follows that:

for , for all .
We use the definition of and the relation ,

to express in the form

Let . We will now use the standard Chernoff
bound method to characterize the tails of the distribution of the
sum .

Let be the -field generated by and ,
and note that is -measurable. Let also

. We observe that

(5)

for , where the last equality is taken as the
definition of .

Now, note that

Since , it follows from the tower
property that:

Repeated applications of the above argument show that

Using the bound from (5), we obtain

for .
Fix some , , and . We have, for any

(6)

Suppose first that satisfies . By applying inequality
(6) with , we obtain

Suppose next that satisfies . By applying inequality
(6) with , we obtain

Since for every positive value of one of the above two bounds
applies, we have

where . The expression
can be bounded by a symmetrical argument, and

the proof of the tail bounds is complete.
The bounds on the moments of follow by applying the

formula
, which implies that

and it follows from the Jensen Inequality that:

which is the desired result.
APPENDIX C

PROOF OF PROPOSITION 3.4

Proof: We fix some . Recall that the maximum ex-
pected reward function is defined by ,
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where the maximization ranges over all arms in our collection.
Consider a problem with an infinite number of arms where the
function is given by

if
if
if

Note that the function is convex and continuous, and its deriva-
tive is given by

if
if
if

In particular, and . We assume that for each ,
the error associated with arm is normally distributed
with mean zero and variance ; then Assumption 3.1 is
satisfied. We will consider the case where and show that
the cumulative regret over periods is .

Consider our estimate of at the end of period , which
is normal with zero mean and variance . In particular,
is a standard normal random variable. If , then the arm
chosen in period is the best one, and the instantaneous
regret in that period is zero. On the other hand, if ,
then the arm chosen in period will be for which the line

is the tangent of the function at , given by

where the choice of the intercept is chosen so that
. If , the instantaneous regret can only be worse

than if . This implies that the instantaneous regret
incurred in period satisfies

where the equality follows from the fact that . Therefore,
the instantaneous regret incurred in period is lower bounded
by

where is a standard normal random variable. Therefore, the
cumulative regret over periods can be lower bounded as

where the last inequality follows, for example, by approxi-
mating the sum by an integral.
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