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Abstract—We consider the problem of decentralized detection
in failure-prone tree networks with bounded height. Specifically,
we study and contrast the impact on the detection performance
of either node failures (modeled by a Galton–Watson branching
process) or unreliable communications (modeled by binary sym-
metric channels). In both cases, we focus on “dense” networks, in
which we let the degree of every node (other than the leaves) be-
come large, and we characterize the asymptotically optimal detec-
tion performance. We develop simple strategies that nearly achieve
the optimal performance, and compare the performance of the two
types of networks.

Index Terms—Decentralized detection, error exponent, sensor
networks.

I. INTRODUCTION

WE STUDY the performance of sensor networks in the
context of decentralized detection. In a typical parallel

configuration, every sensor makes an observation, summarizes it
(e.g., by quantizing it), and sends it to a fusion center, which de-
cides between two or more hypotheses (see, e.g., [1]–[6]). How-
ever, in a large scale sensor network, having every sensor send
a message directly to the fusion center can be inefficient. Nodes
located far away from the fusion center have to expend more
energy to transmit their messages reliably, resulting in a shorter
lifetime, compared to nodes close to the fusion center. For this
reason, there has been considerable interest in more energy ef-
ficient configurations such as tree architectures [7]–[14].

In earlier work [15], we studied the detection performance
of bounded height tree networks, as the number of nodes
increases. For a Neyman–Pearson binary hypothesis testing
problem, in which nodes make independent and identically
distributed (i.i.d.) observations, we have shown that, under
certain mild conditions, the asymptotically optimal detection
performance (in terms of the error exponent) is the same as
for the parallel configuration. However, in [15], we have not
accounted for the possibility of node failures and we have
assumed that all messages are received reliably. In this paper,
we address these two issues, in the context of “dense” sensor
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networks. We also aim to obtain qualitative insights into the
management of sensor networks.

We model the case of node failures by allowing the number of
nodes that transmit messages to a particular node be a random
variable with a known distribution. Then, we let the mean of this
distribution become asymptotically large, to model a dense net-
work. Parallel configurations with a random number of nodes
have been studied by [16]–[18]. In [16] and [17], the authors
consider spatially correlated signals and analyzed the perfor-
mance of a simple but suboptimal strategy. In [18], nodes are
assumed to make i.i.d. observations under either hypothesis,
quantize their observations using the same quantizer, and use a
multiple access protocol that combines the sensor messages in
an additive fashion. This paper differs from the previous works
in several ways, including the following: 1) we are interested
in evaluating the asymptotically optimal detection performance,
and in designing asymptotically optimal transmission strategies
and 2) we focus on trees with height greater than one. Our re-
sults show that for a dense network whose expected number of
leaves is , and under a particular assumption on the distribu-
tion of the degree of each node, the asymptotic performance is
the same as for a parallel configuration with leaves, thus es-
tablishing that the randomness in the network topology does not
lead to performance deterioration.

For the case of unreliable communications, we assume that all
nodes are constrained to sending one-bit messages over a binary
symmetric channel (BSC) with known crossover probability. To
model a dense network, we let the degree of each nonleaf node
grow asymptotically large. The case of the parallel configuration
is covered by results in [19]. Parallel configurations with a fixed
number of nodes and with non-ideal channels between the nodes
and the fusion center, have also been studied in [20]–[23]. In this
work, we study the effect of unreliable communications on the
detection performance of a tree network of height greater than
one, and characterize the optimal error exponent. In particular,
we show that it is no longer possible to achieve the performance
of a parallel configuration, in contrast to the results in [15]. We
also consider a scheme that allows a tree network to achieve the
same performance as that of a network with reliable communi-
cations, but at the expense of increased transmission power. We
compare the energy efficiency of such a scheme with that of a
parallel configuration and establish that a tree network is prefer-
able.

Finally, we consider the Bayesian version of the problems
we have described above, under some additional simplifying
assumptions, and characterize the optimal error exponent.

The rest of this paper is organized as follows. In Section II,
we state some of the required assumptions and notation. We
consider the case of node failures in Section III and the case
of unreliable communications in Section IV, both under a
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Neyman–Pearson formulation. In Section V, we consider the
impact of node failures and unreliable communications in a
Bayesian setting. In Section VI, we conclude and summarize
this paper.

II. PRELIMINARIES

In this section, we describe the basic model and introduce
some notation and assumptions. Most elements of the basic
model are borrowed from [15], which we reproduce in sum-
mary form as follows.

A. Tree Architectures

We consider a tree network, modeled by a directed tree
, where is the set of nodes and the set of directed

arcs. One of the nodes (the “root” of the tree), denoted by ,
is designated as the fusion center and we assume that all arcs
are oriented so that they point towards the fusion center. We say
that node is a predecessor of node if there exists a directed
path from to . We also say that is a successor of . An
immediate predecessor of node is a node such that

. An immediate successor is similarly defined. Let the set of
immediate predecessors of be . Let be the number
of leaves in the sub-tree rooted at node . With this definition,

is the total number of leaves.
The length of a path is the number of arcs in the path. The

height of a tree is the length of a longest path from a leaf to the
root. Suppose that has height . If a node is hops away from
the fusion center, it is said to be at level . Hence, the fusion
center is at level and its immediate predecessors (nodes in the
set ) are at level . Furthermore, any node at level 0 is
a leaf.

B. Strategies

We are given a probability space and two probability mea-
sures and on this space, which correspond to two hy-
potheses and . We will use and to denote ex-
pectation and variance with respect to . Under hypothesis
( 0, 1), every leaf observes an i.i.d. random variable ,
which takes values in a set and has distribution . It then
summarizes its observation using a transmission function

and transmits a message to its immediate suc-
cessor. For simplicity, we constrain the messages to be symbols
in a fixed transmission alphabet , so that maps to . In
general, the transmission alphabet has a smaller cardinality
than , e.g., could be the set of real numbers , while
could be a finite set. In Sections IV and V, we will explicitly
assume that . Let be a given set of transmission
functions that a leaf can choose from.

A nonleaf node uses a transmission function to encode
and transmit a summary of its
received messages to its immediate successor. Suppose that the
number of immediate predecessors of is . Then,
the transmission function maps to .1 Similarly, the root

1In a variant of the model, we could let each nonleaf node � obtain an addi-
tional independent observation� . However, we will be focusing on the asymp-
totic regime where nonleaf nodes typically have a large number of predecessors.
In this regime, such additional observations will not improve the asymptotic de-
tection performance, and it can be shown that there is no loss of generality if
these observations are omitted from the model.

uses a fusion rule , which depends on the received messages
to make a decision. (The fusion rule can be regarded as a
“transmission function” for the node .) Let be a binary value
random variable indicating the decision of the fusion center.

A strategy (for the tree ) is a collection of transmission
functions, one for each node, and a fusion rule.2 Throughout
this paper, we assume that there is a multiple access protocol
in place, so that every node can distinguish the messages it re-
ceives from each of its immediate predecessors. In particular,
transmissions from one node do not interfere with those of an-
other node. This can for example, be a random access protocol
or a time/frequency division multiplexing scheme.

C. Assumptions and Notations

For any , let be the distribution of the random vari-
able , where has distribution . We quantify the
information content of in terms of the Kullback–Leibler (KL)
divergence, defined by (recall that is the expectation operator
under the probability measure )

Note that , with the inequality being strict as
long as the measures and are not indistinguishable. The
following assumptions are standard, and are the same as those
made in [15].

Assumption 1: The measures and are equivalent,
i.e., they are absolutely continuous with respect to (w.r.t.)
each other. Furthermore, there exists some such that

.
Assumption 2: .

III. NODE FAILURES

We model node failures by letting the number of immediate
predecessors of each node be random variables with known
distributions. Although [16]–[18] have studied variations of
this problem in a different context, they specifically assumed
a Poisson distribution and considered only the parallel config-
uration. Our formulation involves trees with a general height

and distributions from a somewhat larger family. The
main reason for introducing this larger family of distributions
is to facilitate comparison with the results in Section IV.

Let be a positive integer. We form a random tree according
to a Galton–Watson branching process [24] with stages. Con-
sider the fusion center . Let be a nonnegative
integer random variable, with marginal law . For each node

in the random set , we let be i.i.d. random
variables with distribution . We continue this process until
the level 0 nodes are reached. Hence, each level node (with

) has immediate predecessors, where is a random
variable with law . Furthermore, we assume that all these
random variables are independent, and are also independent of
the hypothesis. We call such a tree a GW tree of height . We
will sometimes use to denote a generic random variable with
law .

2In general, the transmission functions for each node, and the fusion rule can
be randomized functions, but we have avoided any discussion of randomization
for simplicity, and because randomization does not improve the asymptotically
optimal performance.
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Let be the mean3 of the distribution
and let . We consider the case of

asymptotically large to model a dense network, i.e., we let
for all and allow the laws to vary accordingly.

Strictly speaking, we are dealing with a sequence of random
tree networks: each tree in the sequence corresponds to a dif-
ferent choice of the parameters and these parameters tend to
infinity along this sequence. However, we keep this underlying
sequence hidden (and implicit), to prevent overburdening the
notation. Let , which is the expected number
of leaves that are predecessors of a level node.

We make the following assumption. The assumption is satis-
fied if has Poisson distribution with mean or if there is
a constant such that has a Binomial distribution

with mean . If every has a Binomial dis-
tribution, a GW tree can be interpreted as a deterministic tree
network with erasure channels between nodes.

Assumption 3: Let be random variables with distribution
and mean , . We have

(1)

Suppose that the distributions have been fixed.
A transmission policy for a node specifies the transmission
function of , for each realization of the in-degree . Similarly,
a GW-strategy is defined as a mapping, which for any realization
of the random tree, specifies a strategy (as defined at the end of
Section II-B) for that tree. Note that a GW-strategy requires, in
general, global information on the structure of the realized tree
and may be hard to implement. Given a GW-strategy and a set
of distributions , let be the resulting Type
II error probability at the fusion center. (This is an
average over all possible realizations of the tree, as well as over
the distribution of the observations.) Let us fix some .
Let be the infimum of , over all GW-strategies , subject
to the constraint that the Type I error probability is
less than or equal to . Our goal is to characterize the optimal
error exponent4

(Recall that is the expected number of leaves,
as determined by .)

Given a GW-strategy and a level node , let be the
log-likelihood ratio (more formally, the logarithm of the
Radon–Nikodym derivative) of the distribution of under
with respect to that under . In particular, if is finite, and
if , then . Note
that if is a leaf that uses the transmission function , then

. If is at level , we define the
log-likelihood ratio of the messages it receives by

3When dealing with the distribution of the GW tree, we will use the notation
, , and var, since the distribution is the same under either hypothesis.
4Note that according to our sign convention, error exponents are negative.

where the sum is taken to be 0 if is empty.
Motivated by the -optimal strategies for non-random tree

networks [15], we will be interested in the case where nodes at
some level use a transmission policy [called a mean-nor-
malized log-likelihood ratio (MLLR) quantizer] that results in a
message of the form

if
otherwise

for some threshold . We assume that all nonleaf nodes are al-
lowed to use MLLR quantizers.

For deterministic network topologies, i.e., if almost
surely, for all level nodes , our previous work [15] shows
that the Type II error probability decays exponentially fast with

, at rate , where

(This is the same as the rate of error decay in a parallel config-
uration, hence the notation .) The proposition below shows
that this remains true for a GW tree.

Proposition 1: Suppose that Assumptions 1–3 hold and that
. The optimal error exponent of a GW tree of height

is given by

(2)

Furthermore, for any and any large enough ,
the following GW-strategy satisfies the Type I error probability
constraint and its error exponent is bounded above by :

1) each leaf uses the same transmission function ,
with ;

2) for , every level node uses a MLLR quantizer
with threshold .

To prove the proposition, we will first lower bound the op-
timal error exponent. We will then derive a matching upper
bound by showing that the proposed GW-strategy comes within

of the lower bound.

A. Lower Bound

In this section, we show that in the limit, as and
for any GW-strategy, the error exponent is lower bounded by

. We will use the following elementary fact, proved in the
Appendix.

Lemma 1: Suppose that and are non-negative random
variables with and , and that the event
has probability , where . Then, there
exists some such that and .

In the following lemma, we show that (the actual number
of leaves) and (the expected number of leaves) are close
(in probability), in the limit of large . The proof is in the
Appendix.

Lemma 2:
(a) and , as .
(b) For all , , as .
We are now ready to prove the lower bound for the optimal

error exponent.
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Lemma 3: Suppose that Assumptions 1–3 hold, and that
. Then

Proof: Suppose that .

Fix and such that . Then,
there exists a sequence of distributions along
which , such that for the th element of that sequence
we have , where , ,

, and

Let be the set of all trees with height less than or equal to ,
and let be a random tree, generated according to the GW
process. It follows that there exists some such that for
all , we have

Fix a . From Lemma 2(b),
, as . Since , we can choose a

, such that for all

Using Lemma 1, for each , there exists some tree
with leaves, where , so that

(3)

(4)

From (3)

Letting , we obtain

Recall that is the optimal Type II error exponent (as
) of a parallel configuration with nodes sending messages

directly to the fusion center, subject to the constraint that the
Type I error probability is less than or equal to [cf. (4) and
[19]]. Since such a parallel configuration can simulate the tree

, we obtain a contradiction, which proves the desired result.

B. Achievability

In this subsection, we fix some , consider a
GW-strategy of the form described in Proposition 1, and show
that it performs as claimed. In particular, for , every level

node sends a 0 (or, for the fusion center, it declares ) iff
.

We first show that this strategy results in a Type II error
exponent within of . Consider a node at level .
Since is the ratio of the likelihood under to
that under , of the received messages at node , we have

. Hence, from the Chernoff bound, we
obtain

(5)
In particular, for , we have and

(6)

By taking in (6), we obtain the claimed upper bound on
the Type II error exponent.

It only remains to verify that this strategy meets the Type I
error constraint, when is sufficiently large. This is accom-
plished by the following lemma.

Lemma 4: Suppose that Assumptions 1–3 hold. Let be a
level node, with . For the particular GW-strategy pro-
posed in Proposition 1, we have , as .

Proof: We proceed by induction on . We start by consid-
ering the case . Let be a typical immediate predecessor
of . We have

Furthermore, using a well-known formula for the variance of
the sum of a random number of i.i.d. random variables

which converges to zero as , because
converges to zero (Assumption 3),

, , and (from As-
sumption 2 and Proposition 3 of [19]). Since the threshold
used by satisfies , Chebychev’s inequality
yields , and, therefore, .

Suppose now that the induction hypothesis holds for ,
where . Let be a level node and let be a typical
immediate predecessor of . Using the facts
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and in the second equality that follows, we
have

where the last inequality follows from (5) applied to .
Using a similar argument, we have

(7)

We then obtain

Furthermore

which converges to zero as , because
(Assumption 3), , and both

and are bounded.
Since , Chebychev’s inequality shows that

, and, therefore, .

C. Discussion

We have shown that the optimal error exponent for a tree net-
work with node failures is , the same as for a parallel con-
figuration with a large but deterministic number of nodes, and
developed a strategy that achieves the optimal performance, as
close as desired. In our -optimal strategy, every nonleaf node
uses an MLLR quantizer. Hence, there is no loss in optimality
if we restrict each of the nonleaf nodes to sending only one bit.

Another advantage of this strategy is that every nonleaf node
only needs to know the received messages from its immediate
predecessors and the distributions ; no additional in-
formation on the topology of the realized tree is required. While
it might be possible, in a static network, as part of the setup
process, to inform each node of the topology of the network,

this would be too difficult or costly in a mobile or time-varying
network. The model that we have adopted, i.e., modeling the
immediate predecessors of each sensor as a random set, can be
applied to a mobile network, in which a node does not know a
priori how many nodes will be within transmission range. See
[16] for a related model, employed in a similar spirit.

IV. UNRELIABLE COMMUNICATIONS

In this section, we consider the case where messages are re-
stricted to be binary and the channel between any two nodes is
a binary symmetric channel (BSC) with known crossover prob-
ability . Let be a tree with nodes.
The sequence of trees models the evolution of the net-
work as more nodes are added. We assume that for some ,
and for all , is an -uniform tree [15], i.e., all leaves
are exactly hops away from the fusion center (this is done for
simplicity, to reduce the number of cases that we need to con-
sider; an extension to more general types of trees is possible).
For every nonleaf node , we assume that , for some
sequence of positive integers that diverges to infinity as
increases. Similar to Section III, we are interested in character-
izing the Type II error exponent at the fusion center, when the
Type I error probability is constrained to be less than or equal
to a given . However, in this case, it turns out that the
relevant error exponent is

where is the minimum Type II error probability at the fusion
center, for the tree , optimized over all strategies that satisfy
the Type I error constraint.5 Note that we have normalized the
error exponent using (instead of , the total number
of leaves), even though every leaf makes an observation. The
reason for this will become apparent in Proposition 3 below.

Consider a nonleaf node . It receives a message from each
node , and forms a message , which it sends to
its immediate successor . Because of the noisy channel, the
message received by , denoted by , may be different from

. Let be the log-likelihood ratio of the distribution of
under with respect to that under . Since is binary, the
random variable takes one of the two values

, 0,1, depending on whether is 0 or 1.
Let

which is the sum of the log-likelihood ratios of the received
messages at node .

We will be interested in the case where nodes at some level
use a transmission policy [called a log-likelihood ratio

quantizer (LLRQ)] that results in a message of the form

if
otherwise

for some threshold .

5To simplify notation, we are suppressing the dependence of � and ������
on �.
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A. Case

Let us first consider the simple case where , i.e., the
parallel configuration. For every , let

and

For an interpretation, note that if is a leaf that employs
the transmission function , then . Let

. The following proposition follows im-
mediately from [19].

Proposition 2: Suppose that Assumptions 1 and 2 hold. Then,
for , and for any , we have

Furthermore, the optimal error exponent does not change if we
restrict all the leaves to use the same transmission function

.
As shown in [19], the optimal error exponent can be

achieved to within some , by letting all leaves use a transmis-
sion function that satisfies , and letting the
fusion center use a LLRQ with threshold .

B. General Case

We henceforth assume that . We have the following
proposition, which shows that the optimal error exponent is the
same as that of a parallel configuration in which the nodes in

have perfect knowledge of the true hypothesis. Intuitively,
as becomes large, each node discriminates between
the two hypotheses with vanishing probabilities of error. Let

denote the Bernoulli distribution on {0,1} that takes
value 1 with probability . Let

which is the KL divergence function of w.r.t.
.

Proposition 3: Suppose that Assumptions 1 and 2 hold,
, and . Then, the optimal error exponent is

Furthermore, for any , as , the following strategy
satisfies the Type I error probability constraint, and also satisfies

:
1) all leaves use the same transmission function ,

where is chosen so that
;

2) every node at level 1 uses a LLRQ, with a threshold
that satisfies ;

3) all other nodes other than the fusion center, use the ma-
jority rule: send a 1 if and only if more than half of the
received messages are equal to 1;

4) the fusion center uses a LLRQ with threshold
.

Proof: (Outline): Similar to the proof of Proposition 1, we
first lower bound the optimal error exponent. Consider the fu-
sion center . Suppose a genie tells each the true
hypothesis and each node sends this information to the fu-
sion center. Because of the BSC from each node to , the
received message at has distribution under , and

under . From Stein’s Lemma [25], the optimal
error exponent is . The performance in the absence of the
genie cannot be better. Therefore

(8)

We now turn to the proof of the upper bound. Consider the
strategy described in the proposition. Let be a node at level 1.
This node receives a message from each leaf .
These messages are binary, conditionally i.i.d., but with a dif-
ferent distribution under each hypothesis. Moreover, receives
at least such messages. In such a case, it is well known
[25] (and also easy to show from laws of large numbers) that
if the node uses a LLRQ with a threshold that satisfies

, then the error probabilities at node decay
exponentially fast with ; that is, there exist some and
such that

(9)

Taking into account the statistics of the BSC, we have

(10)
In particular, for sufficiently large, and for all level 1 nodes

, we have and . Con-
sider now a node at level 2. This node receives at least
independent messages from each , where these
messages have error probabilities and

. The node then uses a majority rule to
form its message . It is easy to show, using laws of large num-
bers, that (9) holds for , with possibly different constants
and . Then, (10) also holds for . Continuing inductively, we
conclude that there exist constants and , such that
for all nodes , (10) holds.

Consider now the fusion center, and a typical node .
From (10), if is sufficiently large, the message received
by the fusion center has KL divergence at least
[note that is continuous and decreasing over (0,1/2)]. It
then follows, from Cramér’s Theorem [25], that the Type II error
exponent at the fusion center is less than or equal to
, if a LLRQ with threshold is used at the

fusion center. Moreover, the Type I error exponent is strictly
negative in this case, so that the Type I error probability can be
brought to below when is sufficiently large. The proof is
now complete.
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C. Discussion

We have established that the detection performance of a tree
network in which the communication channel between two
nodes is a BSC, and which has a height , is the same as
if every immediate predecessor of the fusion center had perfect
knowledge of the true hypothesis. On the other hand, when
compared to the case of reliable communications (where the
error probability falls exponentially with the number of nodes
[15]), the performance is significantly degraded. Thus, channel
noise can be detrimental.

Consider a tree network in which all nonleaf nodes have the
same number of immediate predecessors . Suppose that each
node estimates its channel to its immediate successor, and sends
its message only if that message will be received reliably. In
this case, the number of immediate predecessors of a node of
level has a Binomial distribution with mean

. In Section III, we showed that the Type II
error probability, when the network is operating in this manner,
falls exponentially with . On the other hand,
Proposition 3 shows that the minimum error probability achiev-
able when messages are sent regardless of channel conditions,
falls exponentially with . Hence, our results suggest that in
a dense sensor network of height , if a node determines
that it cannot reliably transmit its message to its immediate suc-
cessor, it is better for the node to remain silent. Our results also
suggest that when designing a large scale sensor network, it is
more important to ensure that there is reliable communication
between nodes (e.g., by using sufficient transmission power),
than to guard against node failures.

D. Error Exponent With Small Channel Crossover
Probabilities

In Proposition 3, we showed that the Type II error probability
decays exponentially fast with , when the channel error
probability is fixed. In this section, we let go to zero as
increases, which corresponds to increasing the transmit power
of each node.6 Under an assumption on the rate at which goes
to zero, we show that the Type II error probability can be made
to decay exponentially fast with , at rate .

Proposition 4: Suppose that Assumptions 1 and 2 hold. Sup-
pose also the following.

1) If , then .
2) Let . If , then

.

Fix an . Suppose that all leaves use the same
transmission function , chosen so that

. Suppose also that each level node sends a
message 0 iff . Then, for sufficiently
large, we have for every level node

(11)

(12)

6We suppress the dependence of � on � in the notation.

where are positive reals less than or equal to . In
particular, for any and , the optimal error
exponent is

Proof: If , the situation is similar to the case consid-
ered in Section IV-A. As , approaches ,
and approaches , which leads to the desired result. The de-
tails are omitted.

We now consider the case where . From the Chernoff
bound, we have

hence (11) follows. To show the inequality (12), we proceed
by induction on . When , the inequality follows from
Cramér’s Theorem [25]. Suppose that (12) holds for all level
nodes. Consider a level node . For any , we
have from the Chernoff bound

(13)

The last inequality follows because

(In the penultimate inequality, we used (11), and the assumption
on the decay rate of ; in the last inequality, we used the fact

.) Similarly, using the induction hypothesis instead
of (11), we have

hence inequality (13) holds. We choose in the right-hand side
of (13) so that . Note that and ,
which together guarantee that . Recall that every
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nonleaf node is assumed to have degree at least , which grows
to infinity. Thus, for sufficiently large, (13) implies that

hence (12) holds for level nodes. The induction is now
complete.

To complete the proof of the proposition, since
as (cf. Lemma 4 of [15]), (11) yields

while (12) ensures that the Type I error probability is less than
for sufficiently large. Finally, the optimal error exponent is

obtained by letting go to 0, and the proposition is proved.
Using a similar argument as in the proof of the previous

proposition, it can be shown that the condition

(14)

is sufficient for a tree network of height to achieve a
Type II error probability that decays exponentially fast with ,
although the error exponent can be worse (less negative) than

.

E. Energy Efficiency Comparison

In this subsection, we consider nodes arranged on a grid,
with neighboring nodes unit distance apart. The nodes are
the leaves of our network, but we are otherwise free to configure
the network, and to possibly introduce additional nodes that will
serve as message relays. We will compare the energy consump-
tion of a parallel configuration with that of a tree network of
height , under the assumptions of Proposition 4. In both
cases, the fusion center is placed at the center of the entire grid.

To construct a tree of height , we add new nodes at levels
, as follows (see Fig. 1). Let be a positive integer

which is a perfect square. Partition the grid of nodes into equal
sub-squares, each of which is called a level sub-square.
At the center of each sub-square, we place a new node, which
serves as a level node. Next, partition each level
sub-square into further sub-squares, and place a new node at
the center of each of the latter sub-squares. These are the level

nodes, which send their messages to the level node of
that sub-square. We repeat this procedure times. Finally,
all the leaves in a level 1 sub-square send their messages to the
level 1 node in that sub-square.

The total number of nodes is
. As we consider progressively larger values of , we ad-

just the value of used in the previous construction, so that
and , as . We compare

the performance and energy consumption of this tree network
with that of a parallel configuration in which all nodes send
their messages directly to the fusion center. (Since
as , the results would also be the same for a parallel
configuration with , instead of , nodes.)

Fig. 1. Tree network of height 3, with � � �. The circles represent the new
nodes that we have added. The dotted lines indicate communication links. Only
one level 1 sub-square (the top right one) is shown with all its communication
links.

In the tree network that we have constructed, the
condition

is not only sufficient, but also necessary for the Type II error
exponent to be . To see this, suppose that are
messages received at the fusion center. For the Type I error
constraint to be satisfied, there exists such that

. Moreover, for any , we
have . Therefore,
we obtain

Hence, if , we would have
, since .

We assume that each node employs antipodal signalling, and
the received signal is corrupted by additive white Gaussian
noise with variance : a node receives a
random variable if a 1 is sent by its immediate predecessor
and a random variable if a 0 is sent. The
recipient node performs a maximum a posterior probability test
to determine if a 1 or 0 was sent. The resulting channel error
probability is

where is the Gaussian complementary error function. To
satisfy the conditions in Proposition 4, we choose as follows:

1) if , let , where as ;
2) if , let , where is a

constant.
We also assume a path-loss model, so that the received bit en-
ergy at each receiver node is , where is the
transmission distance, is the path-loss exponent, and is the
transmission energy expended by the transmitting node. There-
fore, the transmission energy of a node is . In line
with standard wireless communications models [26], we take

.
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Let be the circuit processing energy required by each
node, and be the receiver circuit energy incurred by a re-
ceiver node per message received [27]. The total energy ex-
pended by a parallel configuration is given below. The first term
is the receiver circuit energy of the fusion center, the second
term is the processing energy expended by all the nodes, the
third term is the total transmission energy, and is the av-
erage path-loss suffered by the nodes. We have

Since more than half of the nodes are at distance at least
from the fusion center, we obtain7

For the tree network with height , we have the following
upper bound on the total energy consumption . The first term
is the total processing energy of all the nodes, the second term
is the receiver circuit energy expended by nodes from level 1
to level , the third term is an upper bound on the transmission
energy expended by nodes from level 1 to level , and the
last term is an upper bound on the transmission energy expended
by the leaves. So, we have

The above analysis shows that for large , . Hence,
the tree network consumes less energy than the parallel config-
uration, if both networks are designed to have the same error
exponent .

V. THE BAYESIAN PROBLEM

In this section, we consider the Bayesian formulation of the
problems analyzed in Sections III and IV, under some additional
simplifying assumptions.

Suppose that we are given positive prior probabilities and
for each hypothesis. Let
be the probability of error at the fusion center, and let

be the minimum probability of error, where the minimization
is over all strategies. We assume that the fusion center always

7For two nonnegative functions � and �, we write ���� � ������� (respec-
tively, ���� � �������) if for all � sufficiently large, there exists a positive
constant � such that ���� � ����� (resp. ���� � �����).

uses the optimal fusion rule, namely the maximum a posteriori
probability rule. In this section, we assume that all nodes are
constrained to sending 1-bit messages. We also make the fol-
lowing assumption on the observations at the leaves.

Assumption 4: Either one of the following holds.
i) The observations at the leaves take values in a finite

set.
ii) Assumption 2 and the condition

hold.
For each , let

Under Assumptions 1 and 4, it is known that the optimal
error exponent for a parallel configuration with a deterministic
number of nodes is given by

According to Propositions 2 and 3 of [19], Assumptions 1 and
4 imply the following lemma.

Lemma 5: Suppose that Assumptions 1 and 4 hold. Then,
for any choice of transmission functions used by the

leaves in a parallel configuration, the resulting probability of
error, , assuming that all transmissions are reliable, satis-
fies

where is a function such that .
In the next two subsections, we consider separately the cases

of node failures and unreliable communications, in the Bayesian
framework.

A. Node Failures

For tractability, we consider only the case where for all ,
is the Poisson distribution with mean . We have the fol-

lowing proposition, which yields the optimal error exponent in
the presence of node failures. Unlike the Neyman–Pearson case,
where the Type II error probability decays exponentially fast
with the expected number, of leaves, the Bayesian error
probability decays exponentially with .

Proposition 5: Suppose that Assumptions 1 and 4 hold.
a) If , the optimal error exponent is given by

b) If , the optimal error exponent is given by

Furthermore, the optimal error exponent remains unchanged if
we restrict all leaves to use the same transmission function

, and all other nodes to use a majority rule.
Proof: 1) Suppose that . For every , we have from

Lemma 5, . Furthermore,
, where has a Poisson distribution with mean .

Fix some . Let be such that , for every
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. Let , and notice that
. We have

Therefore,

Since was arbitrary, it follows that

For a corresponding upper bound, let all leaves use a trans-
mission function such that . We then have

We take logarithms, divide by , and take the limit as .
Using also the fact that was arbitrary, we obtain that

2) (Outline) Suppose now that . Notice that there
is a probability that the fusion center has no prede-
cessors, and a further probability of of making
an error, so that . It follows that

.
For a corresponding upper bound, consider the case where all

leaves use the same transmission function, and all other nodes
use a majority rule. An easy induction argument shows that for
every immediate predecessor of the fusion center,
and can be brought arbitrarily close to zero, as

. This brings us to a situation similar to the one con-
sidered in part (a), except that now can be replaced by an
arbitrarily negative constant. A calculation similar to the one in
part (a) yields .

B. Unreliable Communications

In the case of unreliable communications, the corresponding
results are obtained easily.

Proposition 6: Suppose that Assumptions 1 and 4 hold.

i) If , it is optimal to have all leaves use the same
transmission function, and the optimal error exponent is
given by

ii) For , it is optimal to have all leaves use the same
transmission function , where is chosen so that

, and to have all intermediate nodes use a majority rule.
Furthermore, the optimal error exponent is given by

Proof: (Outline): Part (i) follows from Theorem 1 of [19].
As for part (ii), an argument similar to the proof of Proposition
3 shows that the probability of error at each intermediate node
converges to zero, so that the messages received by the fusion
center have asymptotic distributions or ,
under or , respectively. The final result then follows im-
mediately from Chernoff’s bound [25].

VI. CONCLUSION

We have studied the effects of node failures and unreliable
communications in a dense sensor network, arranged as a tree of
bounded height. We have analyzed the asymptotically optimal
performance in order to gain insights into otherwise intractable
problems. Our analysis suggests that, in practice, it is preferable
to have a node faced with an unreliable channel remain silent
(as if it had failed). It also suggests that, when designing a large
scale sensor network, it is more important to ensure that nodes
can communicate reliably with each other (e.g., by boosting the
transmission power) than to ensure that nodes are robust to fail-
ures.

We now discuss some future research directions. Our assump-
tion that the leaves make (conditionally) i.i.d. observations is re-
strictive and will often be violated. The case of correlated obser-
vations in tree networks has been unexplored. For some recent
work in the case of a parallel configuration, we refer the reader
to [28] and [29].

This paper concentrated on the case of trees with fixed or
bounded height. It would be of interest to understand the de-
pendence of the error probability on the height of the network.
For the case of failure-proof sensors and reliable transmissions,
we have shown that the optimal Bayesian error probability in a
tandem configuration decays sub-exponentially [30]. A similar
problem is worth studying for the case of general tree networks
with node failures and/or unreliable communications.

Other than node failures and unreliable communications, an-
other threat to a sensor network is malicious tampering of some
nodes so that they report false information to the fusion center
[31], [32]. It would be of interest to characterize the impact of
such Byzantine sensors on the detection performance.
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APPENDIX

A. Proof of Lemma 1

From Markov’s Inequality

Therefore, by the union bound, we have

This implies that

Hence, there exists some such that and
.

B. Proof of Lemma 2

a) We use induction on . For , (a) follows from As-
sumption 3. Suppose that the claim holds for GW trees
of height , and consider a GW tree of height . Re-
call that is the cardinality of the set of imme-
diate predecessors of the fusion center . For ,
we observe that is the number nodes in a GW tree
of height , rooted at . The induction hypothesis
yields and ,
as . Furthermore, the random variables are
i.i.d. Let be a typical element of . We have

Using a well-known formula for the variance of the sum
of a random number of i.i.d. random variables, we also
have

which, using the induction hypothesis and Assumption 3,
converges to 0.

b) This is an immediate consequence of Chebychev’s In-
equality.
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