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1 Overview

The purpose of this appendix is to prove Theorem 4.6 in [5] and establish various facts used
in verifying some of the assumptions of Theorem A.1 therein. We use the same notation
and assumptions as in [5], and to simplify the analysis, we assume that the parameter θ
is scalar. The setting used here is similar (but not identical) to the one in [4]. The major
difference is that the setting of [4] allows only RSPs of the form

Uk = f(Xk,Wk),

where the parameter θ enters only through the distribution of Wk which does not depend
on x. In contrast, our setting allows for any RSPs of the form

Uk = fθ(Xk,Wk),

as long as the distribution µθ(u|x) of fθ(x, U) satisfies the required assumptions.
The differentiability results presented in this report are based on the following key

lemma (see [3, Corollary 2.2.1]).

Lemma 1.1. Consider a parameterized family of random variables {Fθ(ω); θ ∈ R} on a
Polish space Ω. Suppose the following hold:

1. For each θ0, there exists some d > 1 and Kd > 0 such that,

E
[
|Fθ − Fθ0 |d

]
< Kd|θ − θ0|d,

for all θ sufficiently close to θ0.

2. There is a family of random variables {fθ} such that

Fθ+h − Fθ

h

P−→ fθ, as h → 0, ∀θ,

where P−→ denotes convergence in probability.
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Then the map θ �→ E [Fθ] is differentiable with

d

dθ
E [Fθ] = E [fθ] .

Our proof of the differentiability results involves the following steps.

1. Obtain a representation of the steady-state expected cost and of solutions to the
Poisson equation in terms of suitably defined expectations Eθ,x.

2. Using likelihood ratios, represent the above expectations using only the expectations
Eθ0,x corresponding to some fixed θ0. This new representation has the advantage
that the probability law w.r.t. which expectations are taken does not depend on
the parameter θ. Only the random variables inside the expectation depend on the
parameter θ, making our key result Lemma 1.1 applicable to this representation.

3. Verify the hypotheses of Lemma 1.1.

The next section carries out these steps for expectations over finite horizon. In Section 3,
we recall the results on the regenerative representations for the average cost and solutions
to the Poisson equation. In Section 4, we introduce the likelihood ratio representations
and show that they satisfy the assumptions of Lemma 1.1. In Sections 5 and 6, we use
all the previous results to prove differentiability of expectations over infinite horizon and
verify some of the assumptions of Theorem A.1 in [5].

2 Finite Horizon

In this section, we prove the differentiability of expectations of the form Eθ,x[W ] where W
is a random variable that depends only on a finite number of state-decision pairs (Xk, Uk).
For each θ and k, let

Λθ,k =
k∏

l=0

µθ(Ul|Xl)
µθ0(Ul|Xl)

.

It is easy to see that Λθ,k is the Radon-Nikodym derivative of the distribution of (Xl, Ul)kl=0

under policy θ with respect to the distribution under policy θ0. We will use the following
basic lemma to derive some bounds on Λθ,k.

Lemma 2.1. If W0, . . . ,Wk−1 are positive random variables satisfying

E
[
|Wl − 1|d

]
≤ εdC(d), ∀d ≥ 1, l = 0, . . . , k − 1,

for some monotonic function C(·) ≥ 1, and if ε < 1/k2k, then

E




∣∣∣∣∣
k−1∏
l=0

Wl − 1

∣∣∣∣∣
d

 ≤ εd(2k)dC(kd),

E

[
k−1∏
l=0

W d
l

]
≤ 2dC(kd),

for any d ≥ 1.
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Proof. For any d ≥ 1 and z ≥ 0, we have

zd ≤ 2d−1
(
1 + |z − 1|d

)
, (1)

we have

E
[
W d

l

]
≤ 2d−1(1 + εdC(d))

≤ 2dC(d), l = 0, . . . , k − 1.

To prove the first part, note that

|z0 · · · zk−1 − 1| ≤ |z0 − 1| + z0|z1 − 1| + · · · + z0 · · · zk−2|zk−1 − 1|

and therefore

|z0 · · · zk−1 − 1|d ≤ kd−1
[
|z0 − 1|d + zd0 |z1 − 1|d + · · · + zd0 · · · zdk−2|zk−1 − 1|d

]
.

We now use Holder’s inequality to see that

E




∣∣∣∣∣
k−1∏
l=0

Wl − 1

∣∣∣∣∣
d

 ≤ kd−1

k−1∑
l=0

E


l−1∏
j=0

W d
j |Wl − 1|d




≤ kd−1
k−1∑
l=0

l−1∏
j=0

E
[
W

(l+1)d
j

]1/(l+1)
E

[
|Wl − 1|(l+1)d

]1/(l+1)

≤ kd−1
k−1∑
l=0

2ldεdC((l + 1)d)

≤ kdεd2kdC(kd).

To prove the second part, use (1) and the fact that ε < 1/k2k to simplify the bound.

The following are two immediate consequences of the above lemma. In the following
lemma, note that the constant Kd might depend on k. This dependence can be safely
ignored as the next lemma is intended to verify the first assumption of Lemma 1.1 for a
fixed k.

Lemma 2.2.

1. For every d ≥ 1, there exists Kd > 0 such that

Eθ0,x

[
|Λθ,k − 1|d

]
≤ Kd|θ − θ0|dL(x), ∀θ, x.

2. For every d /∈ (1,−1), there exists Kd > 0 such that

Eθ0,x

[
|Λθ,k|d

]
≤ KdL(x), ∀x,

and for all θ sufficiently close to θ0.
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Proof. Use the mean-value theorem to see that∣∣∣∣ µθ(u|x)
µθ0(u|x)

− 1
∣∣∣∣ ≤ |θ − θ0| sup

θ̄,θ0

∣∣∣∣∇µθ̄(u|x)
µθ0(u|x)

∣∣∣∣ . (2)

Since ∇µθ(u|x)/µθ0(u|x) belongs to D, we have

Eθ,x

[
sup
θ̄,θ0

∇µθ̄(Xk, Uk)
µθ0(Xk, Uk)

]
≤ KdL(x)

for some constant Kd. Part 1, and Part 2 for d ≥ 1, are implied by Lemma 2.1. To prove
Part 2 for d ≤ −1, note that the inequality (2) holds even if θ and θ0 are interchanged.

The above lemma verifies the first assumption of Lemma 1.1 for expectations of random
variables that are functions of state-decision pairs up to time k. The next lemma verifies
the second assumption and derives a formula for the gradient.

Lemma 2.3. Consider a family of random variables {Wθ} such that the map θ �→ Wθ(ω)
is differentiable for each ω, Wθ is a function of the state-decision pairs up to time k, and

Eθ,x[|Wθ|d] < ∞, Eθ,x

[
sup
θ̄

|∇Wθ̄|d
]
< ∞ ∀θ, x,

for some d > 1. Then, the map θ �→ Eθ,x[Wθ] is differentiable with

∇Eθ,x [Wθ] = Eθ,x [∇Wθ] + Eθ,x

[
Λ′
θ,kWθ

]
,

where

Λ′
θ,k =

k∑
l=0

ψθ(Xl, Ul) =
k∑

l=0

∇µθ(Xl, Ul)
µθ(Xl, Ul)

.

Proof. Note that

Eθ,x [Wθ] = Eθ0,x [Λθ,kWθ] .

Using the bounds of the previous lemma, the fact that d-moments of Wθ and supθ ∇Wθ

are finite, and the mean-value theorem, verify the first assumption of Lemma 1.1. Using
the fact that µθ(u|x) and Wθ are differentiable in θ, the second assumption of Lemma
1.1 follows easily. The gradient formula now follows from interchanging the order of
differentiation and expectation.

The following is an immediate consequence of the previous result. It uses the formula in
the previous result to derive bounds on the rate at which the gradient

∇Eθ,x [fθ(Xk, Uk)]

grows with k.
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Corollary 2.4. Consider a family of functions {fθ(x, u)} in D such that the family
{∇fθ(x, u)} is also in D. Then, the map θ �→ Eθ,x [fθ(Xk, Uk)] is differentiable for each
x, and there exists some K > 0 such that

|∇Eθ,x [fθ(Xk, Uk)]| ≤ (k + 1)KL(x), ∀x.

Furthermore, the families of functions

{Eθ,x [fθ(Xk, Uk)]} , {∇Eθ,x [fθ(Xk, Uk)]}

belong to D.

Before we move on, we would like to point out that the above result holds for expec-
tations of the form Eθ,x[·|U0 = u] as well, if we redefine Λ′

θ,k as

Λ′
θ,0 = 0, Λ′

θ,k =
k∑

l=1

ψθ(Xl, Ul), ∀k > 0.

3 Splitting

In this section, we recall the splitting technique of Athreya and Ney [2], and Nummelin [7]
to obtain a regenerative representation for the average cost function ᾱ(θ) and the solutions
Qθ of the Poisson equation. Let δ, N , X0 and ϑ be as in Assumption 4.2 of [5]. Consider
the {0, 1}-valued process (Bk) constructed as follows:

1. If k is not divisible by N , then Bk = 0.

2. If k is divisible by N , then

P(Bk = 1|Xl, Ul, l = 0, 1, . . . , Bl, l 	= k) = P(Bk = 1|Xk, Xk+N )

= f
(1)
θ (Xk, Xk+N )

where

f
(1)
θ (x, y) =

δ

2
× IX0(x)

ϑ(dy)
Pθ,x(XN ∈ dy)

.

(Assumption 4.2(a) ensures existence of f (1)
θ .)

Let

f
(0)
θ (x, y) = 1 − f

(1)
θ (x, y), ∀θ, x, y,

Qθ,x(dy) =
Pθ,x(XN ∈ dy) − δ

2 × IX0(x)ϑ(dy)

1 − δ
2 × IX0(x)

.

It is easy to see that for each θ, x,

f
(0)
θ (x, ·) =

(
1 − δ

2
× IX0(x)

)
× Qθ,x(dy)

Pθ,x(XN ∈ ·dy)
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where the existence of the Radon-Nikodym derivative is guaranteed by the fact that

Qθ,x(dy) ≤ 2
2 − δ

Pθ,x(XN ∈ dy).

With this construction it is not difficult to see that the process (XkN , BkN ) is a Markov
chain for which X × {1} is an atom. Consider the first time this atom is hit, i.e.,

τ = min{k|Bk = 1}.

The time τ is well-defined and finite w.p.1. as the set X0 is hit infinitely often from any
initial state (cf. Assumption 4.2 in [5]) and the probability that Bk is 1 given that Xk = x
is δ/2 whenever x ∈ X0. Using standard results [6, Theorems 10.0.1 and 10.2.2] on Markov
chains with atoms, the average cost ᾱ(θ) can be written as

ᾱ(θ) =
Eθ,ϑ

[∑(τ/N)−1
k=0 c̄θ,N (XkN )

]
Eθ,ϑ [τ ]

,

where

c̄θ,N (x) =
N−1∑
k=0

Eθ,x [c(Xk, Uk)] .

Furthermore, the functions Vθ(x) given by

Vθ(x) = Eθ,x


(τ/N)−1∑

k=0

(c̄θ,N (XkN ) −Nᾱ(θ))


 (3)

satisfy the Poisson equation

Vθ(x) = Eθ,x [c(x, U0) + V (X1)]

for the Markov chain {Xk}. To see this, note that Vθ(x) is a solution to the Poisson equa-
tion for the cost function c̄θ,N and the Markov chain {XkN} (see [6, p.441] ). Furthermore,
if V̂θ is a solution to the Poisson equation for the cost function c̄θ,1 and the Markov chain
{Xk}, then V̂θ is a solution to the Poisson equation for the cost function c̄θ,N and the
Markov chain {XkN}. Since V̂θ and Vθ are two solutions to the Poisson equation for a
positive Harris chain {XkN}, they must differ by a constant (cf. Proposition 17.4.1 of [6])
and therefore, Vθ is a solution to the Poisson equation for the cost function c̄θ,1 and the
Markov chain {Xk}.

4 Likelihood Ratio

For each θ, k, let

Λ̃θ,k = Λθ,kN Λ̂θ,k

where
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Λ̂θ,k =
k−1∏
l=0

f
(0)
θ (XlN , XlN+N )

f
(0)
θ0

(XlN , XlN+N )
,

and 0/0 is interpreted as 1. It is easy to see that Λ̃θ,k is the Radon-Nikodym derivative of
the joint distribution of (Xl, Ul; 0 ≤ l ≤ kN,Bl; 0 ≤ l ≤ (k − 1)N) under Pθ with respect
to that under Pθ0 on the set of outcomes for which τ > kN . Therefore for any W that is
a function of only these random variables, we have

Eθ,x [WI{τ > kN}] = Eθ0,x

[
WI{τ > kN}Λ̃θ,k

]
.

To show that the map

θ �→ Eθ,x [WI{τ > kN}]

is differentiable, we need to verify the hypothesis of Lemma 1.1 for the likelihood ratio
Λ̃θ,k. We now derive several bounds to verify the first assumption of Lemma 1.1.

Lemma 4.1.

1. For each d ≥ 1, there exists Kd > 0 such that

Eθ0,x




∣∣∣∣∣f
(i)
θ (x,XN )

f
(i)
θ0

(x,XN )
− 1

∣∣∣∣∣
d

 ≤ Kd|θ − θ0|dL(x) ∀θ, x, i = 0, 1.

2. For each d ≥ 1, there exists Kd > 0 such that

Eθ0,x




∣∣∣∣∣f
(i)
θ (x,XN )

f
(i)
θ0

(x,XN )

∣∣∣∣∣
d

 ≤ KdL(x) ∀x, i = 0, 1,

and for all θ sufficiently close to θ0.

3. For each d ≥ 1, there exists Kd > 0 such that

Eθ0,x

[∣∣∣Λ̂θ,k − 1
∣∣∣d] ≤ Kd|θ − θ0|dL(x) ∀θ, x.

4. For each d ≥ 1, there exists Kd > 0 such that

Eθ0,x

[∣∣∣Λ̂θ,k

∣∣∣d] ≤ KdL(x) ∀x,

and for all θ sufficiently close to θ0.
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Proof. To prove the first part, note that for x /∈ X0,

f
(1)
θ (x, y)

f
(1)
θ0

(x, y)
= 1,

and for x ∈ X0,

f
(1)
θ (x, y)

f
(1)
θ0

(x, y)
=

Pθ0,x(XN ∈ dy)
Pθ,x(XN ∈ dy)

= {Eθ0,x [Λθ,N |XN = y]}−1 .

Therefore, we have

Eθ0,x




∣∣∣∣∣f
(1)
θ (x,XN )

f
(1)
θ0

(x,XN )
− 1

∣∣∣∣∣
d

 ≤ Eθ0,x

[∣∣∣Eθ0,x [Λθ,N |XN ]−1 − 1
∣∣∣d]

≤
√

Eθ0,x

[
Eθ0,x [Λθ,N |XN ]−2d

]
Eθ0,x

[
|Eθ0,x [Λθ,N − 1|XN ]|2d

]

≤
√

Eθ0,x

[
Λ−2d
θ,N

]
Eθ0,x

[
|Λθ,N − 1|2d

]
,

where the last two inequalities follow from Holder’s and Jensen’s inequalities respectively.
For i = 0, note that ∣∣∣∣∣f

(0)
θ (x, y)

f
(0)
θ0

(x, y)
− 1

∣∣∣∣∣ =

∣∣∣∣∣f
(1)
θ (x, y)

f
(1)
θ0

(x, y)
− 1

∣∣∣∣∣
(
f

(1)
θ0

(x, y)

f
(0)
θ0

(x, y)

)

≤ 2

∣∣∣∣∣f
(1)
θ (x, y)

f
(1)
θ0

(x, y)
− 1

∣∣∣∣∣
since f

(1)
θ ≤ 1/2 for all θ. The proof of the second part is similar. The last two parts

follow from the first two and Lemma 2.1.

The next lemma proves that the first of the two hypotheses for Lemma 1.1 hold for Λ̃.

Lemma 4.2.

1. For each d ≥ 1, there exists Kd > 0 such that

Eθ0,x

[∣∣∣Λ̃θ,k − 1
∣∣∣d] ≤ Kd|θ − θ0|dL(x),

for θ sufficiently close to θ0.

2. For each d ≥ 1, there exists Kd > 0 such that

Eθ0,x

[∣∣∣Λ̃θ,k

∣∣∣d] ≤ KdL(x).
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Proof. Follows from Lemmas 2.2, 4.1 and 2.1.

We are now ready to state the following result on differentiability of finite horizon expec-
tations.

Lemma 4.3. For any family of functions {fθ(x, u)} in D such that the family {∇fθ(x, u)}
is also in D, the map θ �→ Eθ,x

[
f̄θ(XkN )I{τ > kN}

]
, where

f̄θ(x) =
N−1∑
k=0

Eθ,x [fθ(Xk, Uk)] ,

is differentiable for each x, with∣∣∇Eθ,x

[
f̄θ(XkN )I{τ > kN}

]∣∣ ≤ (k + 1)ρk0KL(x),

for some ρ0 < 1.

Proof. Since

Eθ,x

[
f̄θ(XkN )I{τ > kN}

]
= Eθ0,x

[
Λ̃θ,kf̄θ(XkN )I{τ > kN}

]
,

we can use Lemma 2.1 to prove its differentiability and to calculate the derivative. To
verify the first assumption of Lemma 2.1, use Holder’s inequality to see that

Eθ0,x

[∣∣∣f̄θ(XkN )I{τ > kN}Λ̃θ,k − f̄θ(XkN )I{τ > kN}Λ̃θ0,k

∣∣∣d]

= Eθ0,x

[∣∣f̄θ(XkN )
∣∣d ∣∣∣Λ̃θ,k − 1

∣∣∣d]

≤ Eθ0,x

[∣∣f̄θ(XkN )
∣∣2d]1/2

Eθ0,x

[∣∣∣Λ̃θ,k − 1
∣∣∣2d]1/2

.

The first assumption now follows from the fact that fθ(x, u) (and therefore f̄θ(x)) belongs
to D , and the first part of the previous lemma. To verify the second assumption of Lemma
1.1, use Assumption 4.4 of [5] to conclude that the map

θ �→ Λθ,k(ω)

is continuously differentiable for all ω, and therefore it is enough to prove that

Λ̂θ0+h,k − 1
h

converges in probability. This in turn is verified if the functions

f
(i)
θ (x, y)/f (i)

θ0
(x, y), i = 0, 1,

can be shown to be differentiable w.r.t. θ for all x, y. Since

f
(1)
θ0

(x, y)/f (1)
θ (x, y)
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is equal to

Eθ0,x [Λθ,N |XN = y] ,

for all x 	∈ X0 and is equal to 1 otherwise, use part 3 of Assumption 4.4 in [5] and the
mean-value theorem to see that

Λθ0+h,N − 1
h

is bounded above by an integrable random variable. Therefore, we invoke dominated
convergence theorem for conditional expectations to show that there exists a version of

f
(1)
θ (x, y)/f (1)

θ0
(x, y)

that is differentiable at θ0 for all x, y. Furthermore,

Λ̃θ0+h − 1
h

converges in probability to Λ̃′
θ0,k

where

Λ̃′
θ,k =

kN∑
l=0

ψθ(Xk, Uk) −
k−1∑
j=0

IX0(XjN )Eθ,x


 jN+N−1∑

l=jN

ψθ(Xl, Ul)

∣∣∣∣∣∣XjN , XjN+N


 .

Therefore, we have

∇Eθ,x

[
f̄θ(XkN )I{τ > kN}

]
= Eθ,x

[
Λ̃′
θ,kf̄θ(XkN )I{τ > kN}

]
+Eθ,x

[
Λ̃θ,k∇f̄θ(XkN )I{τ > kN}

]
To derive the bound on the derivative, use Holder’s inequality to obtain

∣∣∇Eθ,x

[
f̄θ(XkN )I{τ > k}

]∣∣ ≤ Eθ,x

[∣∣∣Λ̃′
θ,k

∣∣∣3]1/3

Eθ,x

[∣∣f̄θ(XkN )
∣∣3]1/3

·Pθ,x(τ > kN)1/3

+Eθ,x

[∣∣∇f̄θ(XkN )
∣∣3]1/3

· Pθ,x(τ > kN)1/3.

To calculate

Eθ,x

[∣∣∣Λ̃′
θ,k

∣∣∣3]1/3

,

note that Λ̃′
θ,k is a sum of 2kN +1 terms. Since ψθ(x, u) belongs to D, the 3-norm of each

of these terms is bounded by KL(x)1/3 for some K. Similarly, since fθ(x, u) and ∇fθ(x, u)
(therefore f̄θ(x) and ∇f̄θ(x)) belong to D, the terms

Eθ,x

[∣∣f̄θ(XkN )
∣∣3]1/3

and Eθ,x

[∣∣∇f̄θ(XkN )
∣∣3]1/3

are also bounded by KL(x)1/3 for some K. Finally, due to uniform geometric ergodicity,
we have

Pθ,x(τ > kN) ≤ Kρk0L(x),

for some ρ0 < 1. Combining all these terms it is easy to establish the stated bound on the
derivative.
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5 Infinite Horizon

The above lemma concerns the differentiability of expectation w.r.t. finite dimensional
marginals of Pθ,x. We use the following result from advanced calculus (e.g., see Apostol
[1]) to extend the above result to the infinite horizon case.

Theorem 5.1. Assume that each fk is a real-valued function defined on a neighborhood
Θ of θ0 such that the derivative f ′

k(θ) exists for each θ in Θ. Assume that

1.
∑

fk(θ0) converges,

2. there exists a g(θ) such that
∑

∇fk(θ) = g(θ) uniformly on Θ.

Then:

1. There exists a function f(θ) such that
∑

fk(θ) = f(θ) uniformly on Θ.

2. If θ ∈ Θ, the derivative ∇f(θ) exists and equals
∑

∇fk(θ).

By combining the previous two results we have the following theorem. Recall that ηθ
is the steady state expectation of the state-decision process {(Xk, Uk)}.

Theorem 5.2. For any family of functions {fθ(x, u)} in D such that the family {∇fθ(x, u)}
is also in D, the map

θ �→ Eθ,x


(τ/N)−1∑

k=0

f̄θ(XkN )




is differentiable for each x, and the families of functions
Eθ,x


(τ/N)−1∑

k=0

f̄θ(XkN )





 ,


∇Eθ,x


(τ/N)−1∑

k=0

f̄θ(XkN )





 ,

belong to D.

Proof. Note that

Eθ,x


(τ/N)−1∑

k=0

f̄θ(XkN )


 =

∞∑
k=0

Eθ,x

[
f̄θ(XkN )I{τ > kN}

]
.

The differentiability now follows from the previous two lemmas. To show that the functions
Eθ,x


(τ/N)−1∑

k=0

f̄θ(XkN )





 ,


∇Eθ,x


(τ/N)−1∑

k=0

f̄θ(XkN )






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are in D, consider ∣∣∣∣∣∣Eθ,x


sup

θ̄

(τ/N)−1∑
k=0

f̄θ̄(XkN )




∣∣∣∣∣∣
d

≤ Eθ,x




∣∣∣∣∣∣
(τ/N)−1∑

k=0

sup
θ̄

f̄θ̄(XkN )

∣∣∣∣∣∣
d



≤ Eθ,x


(τ/N)d−1

(τ/N)−1∑
k=0

∣∣∣∣sup
θ̄

f̄θ̄(XkN )
∣∣∣∣
d



≤
∞∑
k=0

Eθ,x

[
(τ/N)d−1

∣∣∣∣sup
θ̄

f̄θ̄(XkN )
∣∣∣∣
d

I{τ > kN}
]

≤
∞∑
k=0

Eθ,x

[
(τ/N)3(d−1)

]1/3
Eθ,x

[∣∣∣∣sup
θ̄

f̄θ̄(XkN )
∣∣∣∣
3d

]1/3

×Pθ,x(τ > kN)1/3.

It is now easy to see that the right hand side is bounded by KdL(x) for some Kd > 0.

The following corollaries are immediate consequences of this result.

Corollary 5.3. For any family of functions {fθ(x, u)} in D such that the family {∇fθ(x, u)}
is also in D, the map

θ → ηθ(fθ)

is bounded and differentiable with bounded derivatives.

Corollary 5.4. (Lemma 5.1 in [5]) If X0 is singleton (i.e., X0 is an atom and therefore
splitting in unnecessary) and τ is the first hitting time of X0 then the functions defined as

Qθ(x, u) = Eθ,x

[
τ−1∑
k=0

c(Xk, Uk)

∣∣∣∣∣U0 = u

]
,

Tθ(x, u) = Eθ,x [τ |U0 = u] ,

belong to D. Furthermore, for each (x, u), the maps θ �→ Qθ(x, u), θ �→ Tθ(x, u) are
differentiable, and the derivatives ∇Qθ(x, u), ∇Tθ(x, u) also belong to D.

Corollary 5.5. The average expected cost function ᾱ(θ) is bounded and differentiable
with bounded derivatives. Furthermore, the solutions Vθ(x) to the Poisson equation given
by (3) belong to D and the map

θ �→ Vθ(x)

is differentiable for each x and the derivatives ∇Vθ(x) also belong to D. Furthermore, the
family of functions

Qθ = c− ᾱ(θ)1 + PθVθ

12



belongs to D, with the map θ → Qθ(x, u) being differentiable for all (x, u) and ∇Qθ(x, u)
belonging to D.

This corollary is used in [5] to establish Theorem 4.6 in [5], which is again proved here
for completeness.

Theorem 5.6. For any solution Qθ to the Poisson equation we have

∇ᾱ(θ) = 〈ψθ, Qθ〉θ.

Furthermore, ∇ᾱ(θ) has bounded derivatives.

Proof. Note that the Qθ defined in the previous corollary satisfies the Poisson equation:

Qθ(x, u) = c(x, u) − ᾱ(θ) + Eθ,x [Qθ(X1, U1)|U0 = u] .

Since Qθ belongs to D, Qθ is differentiable in θ, and ∇Qθ also belongs to D, we can
differentiate both sides of the above equation to obtain

∇Qθ(x, u) = −∇ᾱ(θ) + Eθ,x [∇Qθ(X1, U1)|U0 = u]
+Eθ,x [ψθ(X1, U1)Qθ(X1, U1)|U0 = u] .

Taking expectation with respect to the steady state distribution of (Xk, Uk) we obtain
the desired formula with Qθ defined as in the previous corollary. To see that Qθ can be
replaced by any other solution Q̂θ to the Poisson equation, note that Qθ − Q̂θ is some
function C(θ) (Proposition 17.4.1 of [6]) and that

Eθ,x [ψθ(x, U0)] = 0.

To prove that ᾱθ is twice differentiable with bounded derivatives, note that ∇ᾱθ =
ηθ(ψθQθ) and apply Corollary 5.3.

The above result leads to the following theorem on differentiability of a common repre-
sentation for solutions to Poisson equation.

Theorem 5.7. For any family of functions {fθ(x, u)} in D such that the family {∇fθ(x, u)}
is also in D, the map

θ �→
∞∑
k=0

Eθ,x [fθ(Xk, Uk) − ηθ(fθ)]

is differentiable for each x, and the families of functions{ ∞∑
k=0

Eθ,x [fθ(Xk, Uk) − ηθ(fθ)]

}
,

{
∇

[ ∞∑
k=0

Eθ,x [fθ(Xk, Uk) − ηθ(fθ)]

]}
,

belong to D.
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Proof. To simplify the proof, assume that fθ = c. Then the results on differentiability for
the finite horizon case, imply that the function

θ �→ Eθ,x [c(Xk, Uk) − ᾱ(θ)]

is differentiable with

|∇Eθ,x [c(Xk, Uk) − ᾱ(θ)]|

=

∣∣∣∣∣
k∑

l=0

Eθ,x [ψθ(Xl, Ul) (c(Xk, Uk) − ᾱ(θ))] −∇ᾱ(θ)

∣∣∣∣∣
≤

[k/2]∑
l=0

Eθ,x

[
ψθ(Xl, Ul)Eθ,Xl+1

[|c(Xk, Uk) − ᾱ(θ)|]
]

+
k∑

l=[k/2]+1

Eθ,x [|ψθ(Xl, Ul) (c(Xk, Uk) − ᾱ(θ))

−
〈
ψθ, P

k−l
θ (c− ᾱ(θ)1)

〉
θ

∣∣∣]

+
∞∑

l=[k/2]

〈
ψθ, P

l
θ(c− ᾱ(θ)1)

〉
,

where [k/2] represents the “floor” of k/2. Using geometric ergodicity, the fact that V 1/d

also satisfies the geometric Foster Lyapunov criterion with the decay factor ρ1/d, and
Schwartz inequality, we can see that each of these terms can be bounded by Kρk0L(x) for
some ρ0 < 1. The result now follows from an easy application of Theorem 5.1.

6 Verification of Assumption A.3 parts (d) and (e)

In this section, we verify parts (d) and (e) of Assumption A.3 of [5] for the two cases of
TD(1) and of TD(λ), λ < 1 separately. Since φθ, Qθ, Tθ belong to D, part (d) in both
cases follows from Corollary 5.3. Therefore, we will verify only part (e). We start with
the TD(1) case.

6.1 TD(1)

We will now verify part (e) for ĥθ(·). Note that

ĥθ(y) = Eθ,x̄

[
τ−1∑
k=0

(hθ(Yk) − h̄(θ))
∣∣∣ Y0 = y

]
,

=
∞∑
k=0

Eθ,x̄

[
(hθ(Yk) − h̄(θ))I{τ > k}

∣∣∣ Y0 = y
]
.

Since hθ(Yk) is a function of the state-decision pairs up to time k and satisfies the assump-
tions of Lemma 2.3, a formula can be derived for the derivative of the expectation

Eθ,x̄

[
(hθ(Yk) − h̄(θ))I{τ > k}

∣∣∣ Y0 = y
]
.
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Using this formula, a bound on this derivative of the form

K(k + 1)dρk0L̃(x, u)z , d ≥ 1,K > 0, ρ0 < 1, L̃ ∈ D.

can be obtained. This bound and Lemma 5.1 can be used to conclude that ĥθ is differen-
tiable with respect to θ and the derivative is bounded by KL̃(x, u)z for some other K > 0.
It is now easy to verify that

Eθ,x

[
ĥθ(Y1)

∣∣∣Y0 = y
]

is differentiable with the derivative bounded appropriately. The verification of part (e) for
Ĝθ is similar.

6.2 TD(λ), λ < 1

Since the verification of part (e) for ĥθ is simpler and the verification for Ĝθ is similar, we
will consider ĥθ only. Note that the first component of the vector ĥθ does not depend on
z and is equal to

L
∞∑
k=0

Eθ,x

[
(c(Xk, Uk) − ᾱ(θ))

∣∣∣U0 = u
]
.

Therefore, part (e) for this component follows from Lemma 5.7. For the second component,
consider the sum

∞∑
k=0

Eθ,x

[
c(Xk, Uk)Zk − h̄1(θ) − ᾱ(θ)Z̄(θ)

∣∣Y0 = y
]

= z

∞∑
k=0

λkEθ,x

[
c(Xk, Uk) − 〈P l

θc, φθ〉θ
∣∣Y0 = y

]

+
∞∑
k=0

k−1∑
l=0

λlEθ,x

[
c(Xk, Uk)φθ(Xk−l, Uk−l) − 〈P l

θc, φθ〉θ
∣∣Y0 = y

]

+
∞∑
k=0

∞∑
l=k+1

λl〈P l
θc, φθ〉θ

= z
∞∑
k=0

λkEθ,x

[
c(Xk, Uk) − 〈P l

θc, φθ〉θ
∣∣Y0 = y

]

+
∞∑
l=0

λl
∞∑

k=l+1

Eθ,x

[
c(Xk, Uk))φθ(Xk−l, Uk−l) − 〈P l

θc− ᾱ(θ)1, φθ〉θ
∣∣Y0 = y

]

+
∞∑
l=0

λl
l−1∑
k=0

〈P l
θc, φθ〉θ.

It is now easy to see that the second sums of the first two terms are differentiable with the
derivatives uniformly bounded in l as the second sum of the second term is an expectation
of the solution to a Poisson equation for the Markov chain (Xk−l, Uk−l, Xk, Uk) (cf. Lemma
5.7). The second sum of the third term is also differentiable with the bound on the
derivative linear in k. It now follows from Theorem 5.1 that ĥθ(y) is differentiable with
the derivative bounded above by KL̃(x, u)z for some L̃ ∈ D.
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