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Abstract. We consider a discrete time, finite state Markov reward process that depends on a set of parameters.
We start with a brief review of (stochastic) gradient descent methods that tune the parameters in order to optimize
the average reward, using a single (possibly simulated) sample path of the process of interest. The resulting
algorithms can be implemented online, and have the property that the gradient of the average reward converges to
zero with probability 1. On the other hand, the updates can have a high variance, resulting in slow convergence.
‘We address this issue and propose two approaches to reduce the variance. These approaches rely on approximate
gradient formulas, which introduce an additional bias into the update direction. We derive bounds for the resulting
bias terms and characterize the asymptotic behavior of the resulting algorithms. For one of the approaches
considered, the magnitude of the bias term exhibits an interesting dependence on the time it takes for the rewards
to reach steady-state. We also apply the methodology to Markov reward processes with a reward-free termination
state, and an expected total reward criterion. We use a call admission control problem to illustrate the performance
of the proposed algorithms.
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1. Introduction

We consider discrete time, finite state Markov reward processes in which the transition
probabilities and one-stage rewards depend on a parameter vector e RX. We propose
simulation-based algorithms for tuning the parameter 6 to optimize either the average
reward, or the expected reward-to-go. Compared with earlier work (Marbach and
Tsitsiklis, 2001), these algorithms have a smaller variance and therefore tend to perform
better in practice. Most of the paper focuses on methods for optimizing the average
reward; the resulting methodology is readily applied to Markov processes with a reward-
free termination state where the optimizer wants to maximize the expected reward-to-go.
Here, we only outline the results for the latter case and refer to Marbach (1998) for a
detailed discussion.

In earlier work (Marbach and Tsitsiklis, 2001) we proposed a method for tuning the
parameter 6 to optimize the average reward, denoted by A(#). The method relies on
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simulations to produce an estimate of the gradient of the average reward. It can be
implemented online, and has the property that the gradient of the average reward
converges to zero with probability 1 (which is the strongest possible result for gradient-
related stochastic approximation algorithms). In addition, the method can be applied to
average reward Markov decision processes (with finite state and action spaces) in which
one restricts to a parametric class of randomized control policies that depend on a
parameter vector 6. In this setting, the method does not require the transition probabilities
and one-stage rewards to be explicitly known, but only assumes that a sample path and its
associated reward sequence can be observed.

A drawback of the algorithms proposed in Marbach and Tsitsiklis (2001) is that the
updates may have a high variance, which can result in slow convergence. This is because
they essentially employ a renewal period (interval between visits to a certain recurrent
state) to produce an estimate of the gradient. If the length of a typical renewal period is
large (as tends to be the case when the state space is large), then the variance of the
corresponding estimate will also be large. In this paper, we address this issue and propose
two approaches to reduce the variance: one which estimates the gradient based on
trajectories which tend to be shorter than a renewal period, and another which employs a
discount factor. However, the resulting algorithms introduce an additional bias into the
update direction. As a result, we cannot guarantee the convergence of VA(0) to zero. We
will nevertheless establish a result of the form

liminf ||[VA(6,)|| < D

m — o0

where the constant D is an upper bound on the magnitude of the bias. Thus, if the bound D
is small, then the gradient VA(0,,) is small infinitely often. We interpret the bias bound D in
terms of qualitative properties of the underlying process. In particular, for the case where a
discount factor o is employed, we show that D is small, as long as the effect of the current
state on the expected reward n steps later falls at a rate faster than o”. (A sufficient—but
not necessary—condition for this to happen is that the underlying Markov chain reaches
steady-state at a rate faster than o”.) As gradient-type methods tend to be robust with
respect to small biases, the algorithms we propose are expected to perform better in
practice. We provide a numerical case study to illustrate this point.

We provide some brief comments on the related literature and we refer to (Marbach and
Tsitsiklis, 2001) for a more detailed comparison. The starting point for the methods we
consider is a certain formula for the gradient of A(6), which has been presented in various
forms and for various contexts in Cao (2000), Cao and Chen (1997), Cao and Wan (1998),
Fu and Hu (1994), Glynn (1987), Jaakkola et al. (1995), Tresp and Hofmann (1995) and
Williams (1992). The idea of using simulation to estimate the gradient of a performance
metric with respect to a parameter vector is in the spirit of infinitesimal perturbation
analysis (IPA), specialized to Markov reward processes (Chong and Ramadage, 1994; Cao
and Chen, 1997; Cao and Wan, 1998; Fu and Hu, 1994; Fu and Hu, 1997), and has also
attracted much attention in the more recent reinforcement learning literature (Williams,
1992; Jaakkola et al., 1995; Baxter and Bartlett, 1999). Finally, the introduction of a
discount factor, mostly with the purpose of limiting the variance of the gradient estimates,
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appears in Jaakkola et al. (1995) and Kimura et al. (1997), as well as in the more recent
references (Baxter and Bartlett, 1999; Cao, 2000). The results reported in this paper have
also been presented in Marbach (1998) and Marbach and Tsitsiklis (1999).

The rest of the paper is structured as follows. In Sections 2 and 3, we provide a brief
summary of the framework and results of Marbach and Tsitsiklis (2001). In Section 3.2,
we propose two approaches to reduce the variance in the update, which we study in more
detail in Sections 4 and 5, respectively, where we also state our main results. In Section 6,
we outline how the methodology can be applied to Markov reward processes with a
reward-free terminal state, and an expected total reward criterion. In Section 7, we briefly
mention how the algorithms of the previous sections can be applied to Markov decision
processes. Finally, in Section 8, we provide numerical results from a case study involving
an admission control problem.

2. Formulation

Consider a discrete-time, finite-state Markov chain {7, } with state space § = {1,...,N},
whose transition probabilities depend on a parameter vector 0 e RX. We denote the one-
step transition probabilities by P,j(e), i, jeS, and the n-step transition probabilities by
Pi(0), ie.,

PU(0>:P(11 :]|10:l’9)’ and PZ(G):P(ln :]|10:l50)a n= 1727

where i, stands for the state of the chain at time n. Whenever the state is equal to 7, we
receive a one-stage reward that also depends on 0, and is denoted by g;(0).

For every 0eRX, let P(0) be the stochastic matrix with entries P;(0). Let
2 = {P(0) | 0e R} be the set of all such matrices, and let 2 be its closure (the set of all
limit points of 2 ). Note that every element of Z is also a stochastic matrix and, therefore,
defines a Markov chain on the same state space. We make the following assumptions.

ASSUMPTION 1 (Recurrence) The Markov chain corresponding to every Pe? is
aperiodic. Furthermore, there exists a state i* €S which is recurrent for every such
Markov chain.

ASSUMPTION 2 (Regularity) For all states i, j€S, the transition probability P;(0), and
the one-state reward g;(0), are bounded, twice differentiable, and have bounded first and
second derivatives. Furthermore, we have

VP;(0) = P;(0)L;(0), 0eR®

ij
for some bounded function Ly( +).

Assumption 1 allows us to use the recurrent state i* as a reference state and to employ
results of renewal theory (see, for example, Gallager, 1995) for our analysis. Assumption 2
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(Regularity) ensures that the transition probabilities P;;(0) and the one-stage reward g;(0)
depend smoothly on 0, and that the quotient VP;(0)/P;(0) = L;(0) is well behaved.
Under Assumption 1, the balance equations

' (0)P(0) = '(0)

have a unique solution for every 0 € RX, where 7'(0) is the row vector (7, (0), ..., my(0)),
and 7;(0) is the steady-state probability of state i in the Markov chain with transition
probabilities P;;(0).

As a performance metric associated with the parameter 0, we use the average reward
criterion

1
#0) = lim - Ey

=1
Zgik(e)l
k=0

Here, i, is the state visited at time &, and the notation Ej[ - ] indicates that the expectation is
taken with respect to the distribution of the Markov chain with transition probabilities
P;(0). Under Assumption 1 (Recurrence), the average reward A(0) is well defined for
every 0, and does not depend on the initial state.

We define the differential reward v;(0) of state i € S, and the mean recurrence time E; [T
by

T—1
(0) =E, Z (giA (0) — /1(9)) lipg=1i
k=0
[T] = Ey[T | ig = i*]
where T = min{k > 0 | i, = i*} is the first future time that the recurrent state i* is visited.

We have v;.(0) = 0. The following lemma, established in Marbach and Tsitsiklis (2001),
states that A(0), Ey[T] and v;(0), i €S, depend smoothly on 0.

Vi
Ey

LEMMA 1 Let Assumption 1 (Recurrence) and Assumption 2 (Regularity) hold. Then,
2(0), Eg[T) and v;(0), i €S, are (as functions of 0 ) bounded, twice differentiable, and have
bounded first and second derivatives. Furthermore, for every integer s > 0, there exists a
constant D, such that for all 0 e RX, we have

Ey[T"] = Eg[T" | ig = i*] < D,

where T = min{k > 0 | i, = i*} is the first future time that state i* is visited.

3. Background

To maximize the average reward A(0), we will use a gradient-type method of the form

0 := 0+ 7F(0)
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where F(0) is a simulation-based estimate of VA(0), and y is a positive step size. In order to
construct such an estimate F(6), we start with the gradient formula

Vi(0) = m(0) <Vg,(0) +y° VPU(Q)VJ-(Q)>

ieS JES

(see Cao and Chen, 1997, Glynn, 1987, or Marbach and Tsitsiklis, 2001, for a derivation)
which we rewrite as

Vi(0) = Z 7;(0) (Vgi(g) + ZPij(G)Lij(e)vj(0)>

ieS JES

where L;;(0) is as in Assumption 2.

Let the parameter vector 6 be fixed to some value, and let {7, } be a sample path of the
corresponding Markov chain, possibly obtained through simulation. Furthermore, let #,, be
the time of the m-th visit at the recurrent state i*, i.e. i = i* form = 1,2, .... Consider
the estimate of VA(0) given by

’m+l -1 -
Fu(0,2)= Y (3 (0.0)L; ; (0)+ Vg (0) (1)
n:tm
where
~ tm+l <! ~
v; (0,2) = (8,(0) = 2), ty <n <ty (2)
k=n

is an estimate of the differential reward v; (0), and /. is some estimate of A(6). Noting that
v (0) = 0, we let

5, (0,4) =0, if n=1,

In

Assumption 1 (Recurrence) allows us to employ renewal theory (see, for example,
Gallager, 1995) to obtain the following result, which states that the expectation of F,,(0, 1)
is aligned with VA(0) to the extent that 4 is close to A(0) (see Marbach and Tsitsiklis,
2001).

PROPOSITION 1 We have

Ey[F,,(0,7)] = E,[TIVA(0) + G(0)(A(0) — 1)

where
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b1 — 1

G(0) = Ey Z (tyy1 —n)L; ; (0)

n=t,+1

and E,[T) is the mean recurrence time.

3.1. An Algorithm that Updates at Visits to the Recurrent State

Using the estimate of the gradient VA(0) given above, we obtain an algorithm which
updates the parameter vector 0 at visits to the recurrent state i*. At the same time, the
estimate 4 of the average reward gets updated to drive the bias term G(0)(4(0) — 4) to
Zero.

At the time ¢,, that state i is visited for the m-th time, we have available a current vector
0,, and an average reward estimate 4,. We then simulate the process according to the
transition probabilities P;(0,,) until the next time ¢, that i* is visited, and update

according to

0m+1 = Om + ymFm(0m7j"m) (3)
Ty —1 ~
;“erl - )‘m + MY m Z (gi,, (em) - /“m) (4)
n=t,

where 7 is a positive scalar and y,, is a step size sequence which satisfies the following
assumption.

ASSUMPTION 3 (Step Size) The step sizes y,, are nonnegative and satisfy

iv,ﬁw, iﬁﬁw

m=1 m=1

This assumption is satisfied, for example, if we let y,, = 1/m. We then have the following
convergence result (Marbach and Tsitsiklis, 2001).

PROPOSITION 2 Let Assumption 1 (Recurrence), Assumption 2 (Regularity), and

Assumption 3 (Step Size) hold, and let {0,,} be the sequence of parameter vectors
generated by the above described algorithm. Then, A(0,,) converges and

lim VA(0,,) =0

m— oo

with probability 1.
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3.2. Variance Reduction Methods

For systems involving a large state space, as is the case in many applications, the interval
between visits to the state i* can be large. Consequently, the parameter vector 0 gets
updated only infrequently, and the estimate F,, (0, 1) can have a large variance. In Marbach
and Tsitsiklis (2001), we extended the method of Section 3.1, so that the parameter vector
gets updated at every time step. We will give a summary of the corresponding algorithm in
the next subsection. In addition, we will consider two ways of reducing the variance in the
updates, by replacing the estimate v; (0) of the differential reward v; (0) (cf. equation (2))
by alternative estimates.

In the first approach, we truncate the length of the sample path for estimating the
differential reward by replacing the (generally large) time until we reach the recurrent state
i*, by the (generally smaller) first time that a set of states S*, containing i*, is reached.
Given a simulated trajectory (iy,i;,...) under the parameter 0, this leads us to estimate

Vi, (0) by

e, (0.2 = 3 (2,(0) = 7) )

k=n

where
T =min{k > n|i,eS™}

is the first future time that a state in the set $* is visited.
In the second approach, we introduce a discount factor a:€ (0, 1) and form the estimate

T-1
T, (0:2) = ) o (g;,(0) = 7) (6)

k=n

where T = min{k > n | i, = i*} is the first future time the state i* is visited.

3.3. An Algorithm that Updates at Every Time Step

By rearranging terms (see Marbach and Tsitsiklis, 2001), we can rewrite the estimate
F,,(0,7) in the following form

T

F(0,2) = Vg (0) + Y (Vg (0) + (8;,(0) — 1)z,)

k=t,+1

where
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= Y Ly o (0), k=t,+1,.. 1

n=t, +1

is a vector (of the same dimension as ) that becomes available at time k.

Using this expression, we obtain the following algorithm which updates the parameter
vector at each time step. At a typical time £, the state is i;, and the values of 0, z;, and 4,
are available from the previous iteration. We update 0 and p) according to

Op o1 = O +7:(Ve; (0,) + (8;,(0) — )z
At = A+, (00) — Ae)

where 7 is a positive scalar, and y, is a step size parameter. We then simulate a transition to
the next state i; , | according to the transition probabilities P;(0; ), and update z by
letting

. _Jo if i, =it
k+1 zx + Ly, (0;), otherwise

From a theoretical point of view, the algorithm of this subsection and Subsection 3.1 differ
only by certain small terms that are of second order in the stepsize. This is because 6,
moves by O(y) between successive visits to i*. Under a minor additional assumption on
the step size (which again holds for y, = 1/k) and on the recurrence property of the state
i*, it can be shown that such O(y?) modifications do not affect the asymptotic behavior and
that this algorithm converges, i.e., A(6;) converges and

k—o0

with probability 1 (we refer to Marbach, 1998 and Marbach and Tsitsiklis, 2001, for a
detailed proof ). On the other hand, there are clear practical advantages when E,[T] is very
large.

In the remainder of the paper, we incorporate the variance reducing estimates of v; (0)
of Section 3.2 into the algorithms of Sections 3.1 and 3.3, and study the resulting biases
and convergence properties.

4. Truncating the Sample Path to Reduce the Variance

In this section, we use equation (5) to produce an estimate of the gradient VA(6), and then
proceed to analyze the resulting gradient-like algorithms for tuning 6.
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4.1. An Estimate of the Gradient VA(0)

Let the parameter 0 R be fixed to some value and let (ij,i,,...) be a simulated
trajectory of the Markov chain w1th transition probabilities P; (9) Let t be the time of the
m-th visit to the recurrent state i*. We fix a set S*C § contammg i*. Let K( ) be the
number of times a state in the set S* is visited in the interval k = #,, + 1,...,#, . — 1, let
I, be the time of the n-th visit to such a state, and let 7,, o and 7, .. 4 1 be equal to ¢,, and
t,, .1, respectively. Using these definitions, we consider the estlmate Fg. (0, 2) of the
gradient VA(0) given by

t 1

m+1 "

FS*,m(Oa}") = Z (Ve (eaz)LiL,lik(g) + Vg, (0)) (7)
k=t,
where, for ¢, <k <t,,,;,n=0,...,Kk(m), we set

For k = t,,, we let v, (0, A) =
We define

f5-(0.7) = Eg [Fy(0,7)]

and we have the following result. The proof parallels the proof of Proposition 1 given in
Marbach and Tsitsiklis (2001), and is omitted.

PROPOSITION 3 We have

£5:(0,2) = Eg[T] Y i (Vg, )+ D VPy(0)vs: ) + Gy (0)(2(0) — 7)

ieS jes

where

GS*(G) :E() Z ([m,l [ ]jn Z Z mk+1 i,_ ]j”(g)

and
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Ve i Z 8, (0 ) Lig=J|, jeS\{i"}
st’l'* (0) = O
with T = min{k > 0 | i € S*} being the first future time that the set S* is visited.

Note that the expression for fsx(G,Z) in Proposition 3 is of the same form as the
expectation of the original estimate F,, (0, 1) given in Proposition 1, except that the bias
term G(0)(4 — A(0)) in Proposition 1 is replaced by G. (0)(4 — A(0)), and the exact value
of the differential reward v;(0) is replaced by the approximation vg. ;(6). Replacing G(0)

by Gi. (0) is inconsequential to the behavior of the algorithm. Replacing v;(0) with vg. ;(0)
introduces an additional bias Ey[T)as- (0), where

O-S*(e) Z (ZVPU VS N ) V](G))>
ieS JjeS

4.2. A Bound on the Bias o.(0)
In this subsection, we derive an upper bound on the magnitude of ag. (). Clearly, oy. (6)

will be small if the difference vg. ;(0) — v;(0) is small for every 0 and every i. However, a
weaker condition is possible. In particular, using the fact that

> VP;(0) =0, forall ieS andall feR”
jes

we see that the bias g.(0) will be zero, if for any i, and all j such that VP;(0) # 0,

vs- j(0) — v;(0) takes a constant (possibly nonzero) value, that could also depend on i. This
leads us to the following definitions. Let

S;={jeS|VP;(0)#0 for some 0eR*}
and

‘35*,1‘(9) = VS*,i(H) —v;(0)
Also, let N be given by

N = max{|S;| | ie S}

where |S;| is the number of states in the set S;. Thus, N bounds the number of possible
transitions from any state i €S whose probability depends on 0. We have the following
result.
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PROPOSITION 4 Let Assumption 1 (Recurrence) and Assumption 2 (Regularity) hold.
Furthermore, let € be such that, for all states i €S, we have

Vs (0) = Vs 5 (0) <&, if jj'€S;
Then
Jos- (O)]] < NCa

where C is a bound on ||VP;(0)]|.

Note that by Lemma 1 and by Assumption 2 (Regularity) the bound C on [[VP;(0)]| is
finite.

Proof: For every state i €S, let j,.(i) be a state in
S;={jeS|VP;(0) #0 for some 0eRt}

which we use as a reference state. By assumption, for all states i € S and for all states j€ .S,
we have

Vg ;(0) =V ; 0 (0)| < &

Using the fact

> VP;(0) =0

jes

it follows that

los-0)] = || Y- m(0) Y- vPy0)3s. ,0)|

ieS Jjes;

which completes the proof. |

Proposition 4 suggests that in order to keep the bias . (0) small one should choose $*
such that, for all states i € S and for all states j, j’ €S, the difference |Vs. ;(0) — V5. ; (0)} is
small. The following example illustrates this result.
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Figure 1. Structure of the Markov reward process in Example 1.

Example 1: Let ¢ be a scalar in (0, 1], and consider the Markov reward process on the state
space S = {0, 1,2,3}, with transition probabilities

The structure of this Markov reward process is given in Figure 1. Note that Assumption 1
(Recurrence) and Assumption 2 (Regularity) are satisfied, with state 0 serving as the
recurrent state ;. Define the set S* to be {0, 3} and consider the estimates V. ; (0, ) and
vy (0, A) of the differential reward of state 1. Note that vg. ; (0, A) has the same distribution
as the random variable X, described by

gLy o

P(Xp=n(1— 1) - 2) =1 _plz(g)))"—lpn(g)’ n=12

and that the estimate v, (6, }) has the same distribution as the random variable
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where (X)) is a sequence of IID random variables with the distribution of X, and N is a
random variable, independent of (X, ), with distribution

PN=n)=(1-¢"""e n=1,2,...

Using . 1 (0, /), instead of ¥,(6, 1), then reduces the variance by the factor

Var (ﬁl(e, Z)) _ E[N] Var(X,) + E[(X, — 2)°] Var(N) _ E[N] =
&

Var(ﬁsm (0, Z)) Var(X,) B

which becomes large when ¢ becomes small.
Furthermore, note that the set §; = {jeS | VP;(0) # 0 for some 0eR} = {1,2},
SOZSZZS?, :@,and

‘35*,1(9) = ‘75*,2(9) = v3(0)

Therefore, by Proposition 4, using V. ;(0, /NL) can significantly reduce the variance in the
estimate of the differential reward v, (0) without introducing a bias into the estimate of the
gradient VA(0).

An important special case of Proposition 4 arises when the set S* has the following

property:

[v;(0) = v (0)| <=, forall 0eRK andall ieS* (8)

N[ ™

since v;. (0) = 0, this is the same as requiring |v;(0)| < ¢/2, for all i e S* and all 0. It is then
easily verified that

[Vs- ;(0)] <&/2

for all j, and the assumption in Proposition 4 is satisfied. In practice, condition (8) can be
satisfied by picking S* to be small enough so that v;(0) does not vary much within the set
S*, but should also be large enough so that the set $* is typically entered much earlier than
the state i is visited (see Section 8.1.1 for an application).

4.3. An Algorithm that Updates at Visits to the Recurrent State

We will now use the estimate Fy. ,, (0, /) of the gradient VA() to formulate an algorithm
which updates the parameter vector 0 at visits to the recurrent state i*. Again, we use the
variable m to index the times when the state i* is visited and the corresponding updates. At
the time ¢,,, we have available a current vector 0,, and an average reward estimate /,, . We
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then simulate the process according to the transition probabilities P;;(0,,) until the next
time 7, , that i* is visited and update according to

0m+1 = Gm + ymFS*,m(ema j'm)

Iyl — 1

;;“m-H = )‘m + NV Z (gi,,(em) - /“m)

n= flll

where 7 is a positive scalar, and y, is a step size parameter. We have the following result.

PROPOSITION 5 Let Assumption 1 (Recurrence), Assumption 2 (Regularity), and
Assumption 3 (Step Size) hold, and let D be such that, for all 0e RX, we have

los-(0)]] < D

where ag.(0) is as in Proposition 4. Furthermore, let {0,,} be the sequence of parameter
vectors generated by the above described algorithm. Then,

liminf ||[VA(0,,)|| <D

m-— o0
with probability 1.

We defer the proof of this proposition to Appendix A.
Proposition 5 establishes that if the bias ||og.(0)|| is small, then the gradient VA(0,,) is
small at infinitely many visits to the recurrent state i*.

4.4. An Algorithm that Updates at Every Time Step

Similar to Section 3.2, we can break down the total update F. ,,(0,,, Zm) in the algorithm
in Section 4.3 into a sum of incremental updates carried out at each time step, and derive
the following algorithm which updates the parameter vector at each time step. At a typical
time k, the state is i;, and the values of 0,, 4, and z;, are available from the previous
iteration. We update 6 according to

Op 1= 0k +7:(Vg; (0) + (8;,(0k) — 4)z)
Air = A (g, (0r) — Ae)

We then simulate a transition to the next state #; , | according to the transition probabilities
P;;(0x1), and update z by letting
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0, if =i

. ! "
Zer = 4 L., (00), if 41 €S
zt + Ly, (0;),  otherwise

Similar to Subsection 3.3, it can be shown that the conclusions of Proposition 5 remain
valid for this algorithm as well, under some minor additional assumptions (see Marbach,
1998).

5. Using a Discount Factor to Reduce the Variance

Given a simulated trajectory (iy,;, .. ..) under the parameter 0, we produce in this section
an estimate of the gradient VA(0) by using another expression for estimating the
differential reward of state i,, namely

T—1
ﬁa,i,,(ga 1) = Z ak(g,-k((’) - j) )
k=n

where T = min{k > n | i, = i*} is the first future time that the state i* is visited and
o€ (0,1) is a discount factor.

5.1. An Estimate of the Gradient V(0)

Let the parameter 0eRX be fixed to some value and let (ij,i,,...) be a simulated
trajectory of the Markov chain with transition probabilities P;;(0). Furthermore, let 7,, be
the time of the m-th visit at the recurrent state i* and consider the following estimate
F, (0, /) of the gradient VA(6),

tpa1—1

Foum(0,0) = > (3, (0,A)L; _; (0) + Vg, (0)) (10)

n=ty,

where, for 7, <n <t,, ; — 1, we set

1 — 1

7, (0,0) = > (g (0) = 2)

k=n

We have the following result for £, (0, 2), which we define to be the expected value of
F, ,(0,4), namely,

fx(ev j”) =E [Fot,m(gﬂ j')]
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PROPOSITION 6 We have

£,00,7) = Eg[T]Y_ i (Vgl +) VPy(0) ) +G,(0)(2(0) — 2)

ieS jes

where

and

- [z (5,0 >>|zo/] jes

with T = min{k > 0 | i, = i*} being the first future time that the state i* is visited.

As in Section 4, the expression for f, (0, ;1)~ in Proposition 6 is of the same form as the
expectation of the original estimate F,, (0, 1) of the gradient VA(0), except that the bias
term G(0)(A — A(0)) is replaced by G, (0)(A — A(0)), and the exact value of the differential
reward v;(0) is replaced by the approximation v, ;(0).

5.2. A Bound on the Bias c,(0)

In this subsection, we analyze the bias

Eg[T]o, (0) = Ey[T] Y m(0) (Z VP;(0) (v,,(0) - v,-w)))

ieS jeS

which is due to replacing v;(0) with v, ;(0), and derive a bound for the magnitude of 7, ().

To do that, we consider the ‘‘mixing behavior’’ of the Markov reward process, i.e., we
define scalars A and 3, with 0 < f < 1, such that, for all states i € S and all integers n > 0,
we have

> (P3O) = 70))g(0)| < ap

jes

Such constants are guaranteed to exist under Assumption 1 (Recurrence). In particular,
can be taken to be an upper bound on the second largest of the magnitudes of the
eigenvalues of the stochastic matrices P(6). This setting becomes interesting when f is
small relative to o, which corresponds to ‘‘fast mixing’’. Let us emphasize, however, that
the value of ff may turn out to be small even if the Markov chain takes a long time to reach
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equilibrium. All that is required is that the expected reward >, _¢ P7:(0)g;(0), n steps into
the future, can be well approximated by the average reward >, ¢ 7;(0)g;(0) = A(0).
In other words, the value of f§ is not determined by how long it takes for the chain to reach
steady-state, but rather by how long it takes for the rewards to reach steady-state.

PROPOSITION 7 Let Assumption I (Recurrence) and Assumption 2 (Regularity) hold.

Furthermore, let the constants 5,0 < B < 1,and A, be such that for all 0 e R, for all i€ S,
and all integers n > 0, we have

| (PO — m(0))g(0)| < A"

jeSs

We then have

o, (0)] < lA_C];Iﬁ (ﬂ(ll__ﬁa) +> m(0)E, [aT iy = z})

ieS

where T = min{k > 0 | iy = i*}, C is a bound on |[VP;;(0)||, and N is the same bound as
in Proposition 4.

Proof: We introduce some additional notation. For any o € [0, 1], we let v;(0), i€, be
given by

V0 = S Bl (0) — A(0)) | iy = 1]
k=0

The above infinite sum is well-defined and finite even for the special case where o = 1,
because under our assumptions, the summands converge exponentially fast to zero.
Furthermore, the resulting differential reward v{%(6) turns out to be the same as the earlier
defined v;(0), modulo an additive constant. That is, there exists a constant ¢ such that
vi(0) = vi5(0) +¢, foralli (11)

We then have

a,(0) =Y m(0) (Z VP;(0)(v,,;(0) — VZ?,-(H)))

ieS jes
+y m(0) (Z VP;(0)(vy;(0) — Vf,(f)))>
ieS jes

+_m(0) (Z VP;(0)(vi;(0) — V;(@)) (12)

ieS jes
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Using equation (11) and the property Zj VP;(0) = 0, the third sum above vanishes.
Let us consider the second sum. Using also the property A(6) = >, ¢ 7;(0)g;(0), we
obtain

E0) v 0)] < 31 — 1| ST PE(0)(5,(0) — 2(0))

k=0 JjeS
=Y (1= (P0) — m;(0))g,(0)
k=0 jeS
<AY (1 -
k=0
p 11—«
AR T
and

@ ACN Bl —oa)
;n1(9)<;vpy(9)(‘}1] >H — 1—%8 1_B

We finally provide a bound for the first sum. By Assumption 2 (Regularity) and Lemma
1, |g; (0) — 2(0)| is bounded and we have, for o€ (0, 1),

It follows that

v, (0) = vi5(0)] = [Z (8, (0) — 2(0)) | iy = l]
— i zw: glA AM0)) | ig =i, T=t|Py(T=t|iy=1)
:Z Z gu ))|lol‘|Pa( =t|iy=1)
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Figure 2. Structure of the Markov reward process in Example 2.

Z(Pi‘i‘j - nj(g))gj(e)

Jes

= Eglo’ i =)o
k=0

o0
BT iy = 1A 2
k=0
A
1—of

— gl |i = 1]

and we obtain

Zni(g) (Z vP;(0)(v, (0) — vf](g))> H < ACN Zni(Q)EG[aT | iy = 1]

ieS JjeS
The result then follows. |
Proposition 7 indicates that the bias will be small as long as f§ is moderate (not too close to
1, which corresponds to fast mixing), the discount factor is chosen large enough so that
1 — o is significantly smaller than 1 — B, and >, _¢ 7;(0)Eg[o” | iy = i] is also small. Note
that the latter term will be small if the time T to reach i* starting from a random state
(drawn according to the steady-state distribution 7(0)), is large; this is the typical case in

large scale problems. The following example serves as an illustration.

Example 2: We consider the Markov chain given in Figure 2, where we set

_exp(0)
T T o)

Note that [[VP;(0)]| < 1/4, for all 0 € R. The steady state probabilities are
7y(0) =€(0) and = (0) =1—¢(H)

which implies that



130 MARBACH AND TSITSIKLIS

and the process reaches steady state in a single step. Therefore, we can set the constants f3,
and A, of Proposition 7 equal to 0, and 1, respectively. Choosing the state i = 0 as the
recurrent state i*, we obtain

e(0)o

Eglo” | iy = 0] = Egla” | i = 1] T T—a(l—e(0)

and the bound on the bias becomes

o
o0 < 5 * =5 =00}

Thus, the bias can be made arbitrarily small by letting o approach O.

5.3. An Algorithm that Updates at Visits to the Recurrent State

Using the estimate F, (0, /) of the gradient V4(0), we can formulate an algorithm which
updates the parameter vector 0 at visits to the state i* according to

0m+1 = Qm + VmFoz,m(0m7 5“)
[m+171 ~

}Lm-H = ;lm + Yl Z (gin (Hm) - )“m)

n=t,

where 7 is a positive scalar, and where 7,, is a step size parameter for which Assumption 3
(Step Size) holds. This situation is identical to the one in Section 4.3 and Proposition 5
remains valid, except that D must now stand for the bound on a,(0).

With this algorithm, the time between updates, and the resulting variance, would still be
large. This problem is alleviated by the variant that we introduce next.

5.4. An Algorithm that Updates at Every Time Step

We now consider a variant of the algorithm of the preceding subsection but in which an
update is carried out at each step. At a typical time k, the state is i;, and the values of 0, and
7;, are available from the previous iteration. We update 0 according to

O 1 = 0 + (Vg (0,) + (gik(ek) - ik)zk)
dr = A (g () — 4¢)

We then simulate a transition to the next state 7; , | according to the transition probabilities
P;;(0x1), and update z by letting
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_ O‘LikiH,(Ok)a if iy = i
k1 = 7z +oly;  (0), otherwise

Similar to Subsection 3.3 and 4.3, under some minor additional assumptions (see
Marbach, 1998), the algorithm of this and the preceding subsection exhibit the same
asymptotic behavior.

5.5. A Modified Estimate

Instead of using the expression given by equation (9), we could estimate the differential
reward of state i by

<2

200.7) = o (g, (0) — 7)
k=0

Using this new estimate, one obtains an algorithm that updates at each time step and which
is identical to the one in the preceding subsection, except that the state i/* does not play a
special role, and the vector z, is not reset at visits to the recurrent state i*.

In Baxter and Bartlett (1999) it is shown that, as long as 0 is unchanged, the estimate
A /) can be used to produce an estimate of the gradient VA(6) for which the bound on
the bias is proportional to (1 —a)/(1 — B). The same conclusion is obtained with our
approach: with this new estimate, the first sum in equation (12) disappears, and the term
Y iesmi(0)Eg[e! | ig =] is eliminated from the bias bound of Proposition 7. In this
respect, the variant considered in this subsection has a somewhat better bias bound.
However, from a practical point of view, the two algorithms are essentially the same. If the
visits to i* are very rare (as is typical in large problems), the term
S ies Mi(0)Egla® | ip = i] in the bias bound is very small. This reflects the fact that the
term v (0, 4) — v, ;(0, ) which causes the difference between the two algorithms is very
small with high probability.

From a mathematical point of view, the convergence analysis of the modified algorithm
discussed here is actually much more involved, because the updates during a ‘‘renewal
cycle’’ are affected by discounted terms originating in previous renewal cycles. This
introduces certain dependencies and martingale-based tools are harder to apply. We feel
that the difference between the two algorithms is not significant enough to warrant a long
separate proof.

6. Optimizing the Weighted Reward-to-go

In this section, we outline how the methodology of the previous sections can be applied to
Markov reward processes with a reward-free termination state i that is eventually reached
from every initial state i €S. We make the following assumption.
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ASSUMPTION 4 (Termination) There exists a state i* €S, such that, for every parameter
vector e RK, we have

g-(0)=0 and P..(0)=1
and, for every state i€ S and every transition matrix P € 2, we have
Pi. >0

where N is the number of states in the state space S.

When Assumption 4 (Termination) holds, the reward-to-go J;(0) of state i is defined as

J;i(0) = Ey [igik(6> | ig = i} =Ey lzgik(g) | ip = 11 (13)

where T = min{k > 0 | i, = i*} is the first future time that state i* is visited. Note that
J-(0) =0.

In this setting, we associate with each possible parameter vector 0, a weighted reward
performance measure y(6), defined by

10) = mJi(0) (14)

ieS

where @ = (7T;,...,7y) is a given probability distribution on the state space S. This
performance measure corresponds to a situation where a decision maker wants to
maximize the expected reward-to-go, given that the initial state of the system is equal to i
with probability 7;.

We would like to point out that optimizing the weighted reward-to-go is not equivalent
to finding a control policy which optimizes the reward-to-go simultaneously for all states
(which is the goal of dynamic programming). We chose the weighted reward-to-go as an
objective function because there might not exist a parameter vector 0" e RX that
maximizes the reward-to-go simultaneously for all states. However, if there exists a
parameter vector 0" e RK , such that for all vectors 6 € RX and for all states i € S we have

Ti(0%) > 7,(0)

then 0F maximizes the weighted average reward-to-go y(0) for every probability
distribution 7 over the state space S. In this case, maximizing the weighted reward-to-go is
equivalent to finding a parameter 0* which maximizes the reward-to-go for all states.
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6.1. The Gradient of x(0)

In this section we derive an expression for the gradient of the weighted reward-to-go y(0)
with respect to 6, and propose a gradient algorithm for tuning 0 so as to improve y%(0).

We start out by defining a new Markov reward process on the state space S with
transition probabilities

P _{PU(G) i# i

i T

_ Lk
‘IIj 1=1

and one-stage rewards
87,i(0) = &(0)

Note that this new Markov reward process differs from the original one only in the
transition probabilities from the termination state i* to other states j€S. These transition
probabilities are now equal to ;. This means that whenever the termination state i* s
reached, then the new process moves to state j (and restarts the original process with j as
the initial state) with probability 7;.

In the following, we use the notation P ,(+), to denote the probability distribution
induced by the Markov chain with transition probabilities P ;;(0). Accordingly, we use
E; o[ -] to indicate that the expectation are taken with respect to the probability distribution
of the Markov chain with transition probabilities P ;;(0).

For the Markov chain with transition probabilities P ;;(0), let 7; ;(0) be the steady-state
probability distribution of being in state i€S, let A,(0) = > . ¢m;;(0)g:;(0) be the
average reward, and let Eﬁﬁ[T] be the mean recurrence time, i.e., we have

ExglT) = Exg[T |ig = "]

where T = min{k > 0 | i, = i*} is the first future time that state i* is visited. We then
obtain the following proposition which gives an expression for the gradient of the
weighted reward-to-go y(6) with respect to 0 (for a proof see Marbach, 1998).

PROPOSITION 8 Let Assumption 2 (Regularity) and Assumption 4 (Termination) hold. Then,

Vi(0) = Ez [T Z 77,1 (0) (ng(g) + Z VPij(H)Jj(9)>

ieS jes
6.2. Estimation of Vy(0)

Similar to Section 3, we rewrite the formula for Vy(6) given by Proposition 8 in the form

Vi(0) = EqglT] Y my(0) (Vg,-(g) + Pij(0>Lij(9)Jj(0>>

ieS jes

where L;;(0) is as in Assumption 2.
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Let the parameter vector 0 be fixed to some value, and let @ be a given probability
distribution on the state space S. Furthermore, let (i;,i,,...) be a sample path of the
corresponding Markov chain with transition probabilities P ;;(0) and let t,, be the time of
the m-th visit at the termination state i*. We refer to the sequence Iy olyp1seeoniy,  —las
the m-th renewal cycle. Consider then the estimate of Vy(0) given by

by 11

Fu(0)= Y (7, (OL;_,; (0) + Vg, (0))

n=t,

where

L1 —1
Ji,,(e) = Z gik(e)v by <n <ty — 1
k=n

is an estimate of the reward-to-go J; (0). Noting that J;. (0) = 0, we let
T, (0)=0, if n=t,

Note that the random variables F,,(6) are independent and identically distributed for
different values of m, because the transitions during distinct renewal cycles are
independent. We define f;(0) to be the expected value of F,,(0), namely,

The following proposition confirms that the expectation of F,, () is an unbiased estimate
of Vy(0) (for a proof see Marbach, 1998).

PROPOSITION 9 We have
fz(0) = Vy(0)
6.3. An Algorithm that Updates at Visits to the Termination State

We now use the estimate of the gradient direction provided by Proposition 9 to propose a
simulation-based algorithm that performs updates at visits to the state i*. We use the
variable m to index the times when the recurrent state i* is visited, and the corresponding
updates.

At the time 1, that state i* is visited for the m-th time, we have available a current vector
0,,- We then simulate the process according to the transition probabilities Py, ;(0,,) until the
next time 7,,,, that i* is visited and update according to
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0m+1 = Om + ymFm(Om)
Im+171

=0 +7m Y (Ui, (O)L;_; (0) + Vg, (0))

n=t,
where y,, is a positive step size parameter. We can rewrite this iteration as
Ot = 0+ 70 V(0,) + &
where

Proposition 9 then implies that we have

EQ[SM] = EO[Vm(Fm<9m) - VX(Qm))] =0

Therefore, the algorithm we propose here can be interpreted as a gradient algorithm with a
stochastic error term ¢, that is a zero mean random vector. It is then not surprising that we
have the following convergence result (for a proof see Marbach, 1998).

PROPOSITION 10 Let Assumption 2 (Regularity), Assumption 4 (Termination), and
Assumption 3 (Step Size) hold, and let {0,,} be the sequence of parameter vectors
generated by the above described algorithm. Then, with probability 1, y(0,,) converges
and

lim Vy(0,)=0

m-— o0

An algorithm which updates the parameter vector at each time step, as described in
Section 3.3, can also be derived based on the above update rule. Variance reducing
modifications, in the spirit of Sections 4 and 5, are straightforward. Detailed descriptions
of the resulting methods can be found in Marbach (1998) and are omitted from this paper.

7. Markov Decision Processes

As shown in Marbach and Tsitsiklis (2001), the algorithms of the previous sections can be
applied to Markov decision processes that are defined on a finite state space
S ={1,...,N} and a finite action space U = {1,...,L}. At any state i, the choice of a
control action ue U determines the transition probabilities Pij(u), and the one-stage
rewards g;(u). We consider a parametrized family of randomized policies that associate
with each parameter vector 0 € RX the probability p, (i, 0) that control action u is applied at
state i. The corresponding transition probabilities are given by
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Pij(g) = Zﬂu(ﬂ Q)Pij(u) (15)

uelU

and the expected reward per stage is given by

2i(0) =Y (i, 0);(w) (16)

uelU

Our original algorithms, as described in Sections 3.1 and 3.3 were shown in Marbach and
Tsitsiklis (1998) to have natural counterparts for the case of Markov decision processes.
Variance reducing modifications, in the spirit of Sections 4 and 5, are straightforward.
Detailed descriptions of the resulting methods can be found in Marbach (1998) and are
omitted from this paper. A case study to illustrate the methodology is presented, however,
in the next section. We would like to point out that the resulting algorithms do not require
the transition probabilities P;(u) and one-stage rewards g;(u) to be known, but only assume
that the optimizer has access to an observation of a sample path and the associated rewards.

8. Numerical Results

As a case study, we use an admission control problem. More details on the experiments
reported here can be found in Marbach (1998).

Consider a provider of a communication link with total bandwidth of B units, that
supports a finite set {1,2, ..., M} of different call types. When a customer requests a new
connection for a call, the provider can decide to reject, or, if enough bandwidth is
available, to maybe accept the call. Once accepted, a call of class m seizes b(m) units of
bandwidth. Whenever a call of class m gets accepted, the provider receives an immediate
reward of c¢(m) units, which is the price the customer pays for using b(m) units of
bandwidth of the link for the duration of the call. The goal of the link provider is to
exercise call admission control in a way that maximizes the long-term revenue.

Assuming that class m calls arrive according to independent Poisson processes (with
rate o(m)), and that the holding times of class m calls are exponentially (and
independently) distributed (with mean 1/f(m)), the problem can be formulated as a
discrete-time Markov decision process (see Marbach, 1998), where the state i is of the
formi = (s(1),...,s(M),w). Here s(m),m = 1, ..., M, denotes the number of active calls
of type m, and w indicates the type of event that triggers the next transition (a departure or
arrival of a call, together with the type of the call).’

We define a randomized policy as a function of 0 = (0(1),...,0(M)) e RM, where M is
the number of different service types. The provider accepts a new call of class m with
probability

| 1
Ha (0 = o — 00m)

where s+-b =Y s(m)b(m) is the currently occupied bandwidth. Note that

m

ty, (i,0) > 0.5 if and only if s+b < 0(m)
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Table 1. Call types.

Call Type m 1 2 3
Bandwidth Demand b(m) 1 1 1
Arrival Rate o(m) 1.8 1.6 1.4
Average Holding Time 1/(m) 1/0.6 1/0.5 1/0.4
Immediate Reward c(m) 1 2 4

and O(m) can be interpreted as a ‘‘fuzzy’’ threshold on system occupancy, which
determines whether type m calls are to be admitted or rejected.
8.1. Experiments

We consider a link with a total bandwidth of B = 10 units, which supports three different
call types (see Table 1). The number of link configurations (i.e., possible choices of s that
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Figure 3. Parameter vectors 0, and the average rewards A(6,) (computed exactly) of the idealized gradient
algorithm. The solid, dashed, and dash-dot line correspond to 6,(1), 0,(2), and 60,(3), respectively. After 100
iterations, the parameter vector 0, is equal to (7.5459, 11.7511, 12.8339) which corresponds to an average
reward of 8.6318.
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Figure 4. Parameters 0, (1), 0,(2), and 0, (3), and estimates of the average reward /,, obtained by the algorithm
which updates at each iteration step.

do not violate the link capacity constraint) turns out to be 286. Any state (s, ®) in which
s =(0,...,0), and w corresponds to an arrival of a new call, can serve as the recurrent
state i*.

For this case, we can compute an optimal call admission control policy using methods of
dynamic programming (Bertsekas, 1995). The policy accepts customers of service type 1
if the currently used bandwidth does not exceed the threshold value of 7 units, while
customers of service type 2 and 3 get always accepted (if enough bandwidth is available).
The corresponding optimal average reward is equal to 8.6902. In Marbach and Tsitsiklis
(2001), we implemented for this problem an idealized gradient algorithm (where we used
the exact value of VA(0) to update the parameter vector) and the simulation-based
algorithm of Section 3.3. As a reference, we give in Figures 3 and 4, the trajectories of the
parameter vector and (estimates of the) average reward for the idealized algorithm, and the
algorithm of Section 3.3, respectively.” Note that the simulation-based algorithm of
Section 3.3 makes fast progress in the beginning, improving the average reward from 7.64
to 8.53 within 1 - 10° iteration steps. After 8 - 10° iterations, the average reward is 8.6064,
which is still slightly below 8.6318, the average reward of the idealized gradient
algorithm.
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Figure 5. Parameters 0, (1), 0,(2), and 6,(3), of the deterministic version of the algorithm which uses truncated
sample paths.

In the next two subsections, we apply the modified algorithms of Sections 4.4 and 5.4 to
this problem. Our result illustrate that these algorithms are robust with respect to a small
bias term in the update direction and converge faster than the original simulation-based
algorithm of Section 3.3.

8.1.1. Modified Algorithm Using Truncated Sample Paths

Recall that any state i = (s, ) in which s = (0,...,0), and w corresponds to an arrival of
anew call, can serve as the recurrent state ;. This leads us to consider a set S* of the form

3
$*=Si=(s,0)eS| > s(mb(m) <Byp, By>0
m=1

for the algorithm of Section 4.4 which uses truncated sample paths to reduce the variance.
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One would expect that the bias introduced by using the set S* is small when By, is small.
Figure 5 gives the trajectories of the parameter vector for the deterministic version of this
algorithm (where we replaced the random estimate F. ,,(6) used to update 6 by its mean)
for several values of B,. Comparing Figure 5 with Figure 3 shows that the algorithm is
robust in the presence of a small bias, and for B, equal to 5 and 7, the effect of the
additional bias is negligible.

Using B, = 7, we implement the algorithm of Section 4.4 (see Figure 6). As expected, it
makes much faster progress than the algorithm of Section 3.3. After 150,000 iterations
steps the average reward is roughly equal to 8.53, and after 1 - 10° iterations the average
reward is 8.6117 (which is even slightly higher than the one obtained with the original
algorithm of Section 3.3).

8.1.2. Modified Algorithm Using a Discount Factor

Next, we consider the algorithm of Section 5.4 which uses a discount factor o, 0 < o < 1,
to reduce the variance. First, we consider its deterministic version where we use the mean
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Figure 7. Parameters 0,(1), 0,(2) of the deterministic version of the algorithm which uses a discount factor.

of the estimates F, , (0) to update the parameter vector 0. The resulting iterations for
values of the discount factor o equal to 0.5, 0.9, 0.99, and 0.999, are given in Figure 7. We
observe that the deterministic version of the algorithm is robust with respect to a small
bias, and for « equal to 0.99 and 0.999, the effect of the additional bias is negligible. In the
simulation-based version (implemented with « = 0.99), the average reward is equal to
8.6128 after 1- 10° iterations (see Figure 8).

9. Conclusions

We have proposed two approaches to reduce the variance of the updates in a simulation-
based method for optimizing Markov reward processes that depend on a parameter vector.
The resulting algorithms introduce an additional bias into the update direction, for which
certain bounds were derived. In addition, we carried out a convergence analysis and
showed that when the bias is small, then the algorithms will infinitely often lead to policies
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Figure 8. Parameters 0,(1), 0,(2), and 0,(3), and estimates of the average reward /;, obtained by modified
simulation-based algorithm using a discount factor & = 0.99.

at which the gradient of average reward is small, and can therefore be expected to be close
to a local optimum. The numerical results for an admission control problem are
encouraging: compared with the original algorithm, the modified algorithms obtain
essentially the same average reward, but converge much faster.

Appendix
Proof of Proposition 5

In this section, we analyze the algorithm proposed in Section 4 (the same analysis applies
verbatim to the algorithm of Section 5). We will take the same approach as in Marbach and
Tsitsiklis (2001) (and accordingly omit those parts that are identical to the proof in
Marbach and Tsitsiklis, 2001). In particular, we will use a few different Lyapunov
functions to analyze the algorithm in different regions.
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Before we start with the proof of Proposition 5, we introduce some additional notation
and definitions. Recall the update equations

0m+1 = 0m+ymFS*,m(0ma}m) (17>
fyir—1 B
m+1 _) TNV Z (gin(em) - im) (18)

n=t,

where the estimate Fi. ,, (Qm,/lm) of the gradient VA(0,,) is defined by equation (7) in
Section 4. We rewrite (17) and (18) as

0m+1 = 0m +Vm (EG,,, [T]V}‘(0m> + EO,,, [T]O-S* (em) + GS* (Gm)()“(am) - }m)) + Eo.m

~m-«—l - ) + ’WmEem [T](}(em) - ;lm) + &m

where Gg.(0) and 0. (0) are defined in Propositions 3 and 4 in Section 4, and

0 = (Fs:m(Os hn) = Eq, |Fs:(Ors 7))

n=t

Eim = Mim <m+21 (gin (9’”) - j‘m) - E@m [T]()“(am) - j'm))

m

Let us establish some properties of Gy. (0), & ,» and ¢, .. The following lemma states that
G, (0) is a bounded function of 0.

LEMMA 2 Let Assumption I (Recurrence) and Assumption 2 (Regularity) hold, then there
exists a constant L such that, for all 0 e RX, we have

1G5 (O)]| < L
Proof: Recall the definition of Gg. (), namely
g —1 k(m) by +1—1

Gs(0) =Eg| Y (tups1—n)L; Z Z tuge1 =ML (0)

n=t,+1

Let C be a bound on ‘

’ which exists by Assumption 2 (Regularity). Then we obtain

G- (O] < CEy (141 = 1,)]

By Lemma 1, the expectation E, {(tm 11— tm)z} is bounded, and the result follows. W
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Similar to Marbach and Tsitsiklis (2001), we define the augmented parameter vector
7y = (0, 4,,), and write the update equations in the form

Tmp1 = Ty T ym(h(rm) + p(rm)) + &y

where
M) = [Ey [TIVA(0,) + Gs. (0,)(A(0,,) — 7,)
"o NEq, [T100,)) — 7r)
o) = [ FT1s (9,,,>]

-80.m
e =

_8/1,m
Also, we define the set 7, = {(, 1) e RE*! | |2] < ¢}, and the set ®, which contains all

functions ¢ : RE+1—$ that are twice differentiable and which have the property that, for
every ¢ > 0, V¢ and V¢ are bounded on Z,. For ¢ € ®, let ¢, (¢) be given by

8m(¢) = ¢(rm+1) - d)(rm) - '))mVQS(Fm) : (h(rm) + p(rm))
By slightly adapting the martingale argument given in Marbach and Tsitsiklis (2001), we
obtain the following lemma.

LEMMA 3 For every function ¢ € ®, the series ¢, (P) converges with probability 1.

We now proceed with the main body of the proof of Proposition 5. We will concentrate
on a single sample path for which the sequence ¢,,(¢) (for the Lyapunov functions to be
considered) is summable. Accordingly, we will be omitting the ‘‘with probability 1’
qualification.

We show in the next lemma that when [[VA(0,,)|| is nonzero, and the two quantities

llos-(0,,)]| and |4(0,,) — 4,,| are small enough, then the difference A(0,,) — /,, increases.
Remember that there exists a constant L such that, for all 6 e RK,

1G5 (O)]] < L

LEMMA 4 Let L be such that ||Gg.(0)|| < L, for all 0eRK. For k > 0, let

ETIVEO) (IVAO)] - o5 (O)]]) -
NE, [T] + VO]

B(0,x) =

and let



POLICY-SPACE OPTIMIZATION OF MARKOV REWARD PROCESSES 145

We have ¢ € ®. Furthermore, if B(6, k) > 0 and 7. — ()| < B(0, k), then

Vo)« (hr) + () =

Proof: The fact that ¢ € ® is a consequence of Lemma 1. We have
e 4 oy — (VRO | [EglTIVA0) + G (0)(A(0) = 2) + Eg[T]os: (0)
Vo (r) - (h(r) + p(r)) ( O ) ( WEWT]((0) — 1) )
= —nE[T](2(0) = 7) + EglT]IVAO)]
+ (z(e) — 2)VA0) - Gs.(0) + ETIVA(0) - 75.(0)

E[T)|2(0) — 2] + Ey[T]IVA(0) ||
—Lli(9) AIVAO)| = Eo[T][VA(0) |- (0)]

= ~12(0) 71 (nEy[T] + LIVA(0)]))

+ EyTIVAO) (IVA0)] ~ llos. 0)]])

Note that when B(6, ) > 0 and |4 — A(0)] < B(0, k), then we have

V() (hr) +p(r)) = x n

By the same argument as in Marbach and Tsitsiklis (2001), we obtain the following
lemma.

LEMMA 5 We have liminf,, _,  |4(0,,) — 4,| = 0.
We are now ready to prove Proposition 5.

Proof of Proposition 5: We assume that Proposition 5 is not true and proceed in two
steps as follows.

1. We show that when the proposition is not true, then there exists a constant > 0
(which we define below), such that

lim sup |2(0,,) = 2| > B (19)

m— o0

2. Using the result of Step (1), we derive a contradiction.
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We introduce some notation. When Proposition 5 is not true, then there exists a constant
& > 0, and an integer M, such that

IVA(O,)|| > D +¢e, forall m>M
Let B be a bound on ||[VA(6)||, and let T,,;, and T,,,, be such that, for all 6 € R, we have

1< T, <EJT<T

min — — max

Such constants exist by Lemma 1. Furthermore, let D' = D + ¢, and let
B = TminD/S/(nTmax + LB)
where L is the bound on ||Gg. (0)]| used in the statement of the proposition.

Step (1): Suppose that the proposition is not true and, furthermore, that the condition given
by equation (19) does not hold. Then there exists an integer M,,, and a scalar k > 0, such
that, for all m > M,

D' — K
<p- <
NTax + BL = Ty + BL

_ B TIVAOI (IVAO] ~ o @)])
- WEg, [T + VA, )L

14(6,) — v T

m

Therefore, Lemma 4 applies and we obtain, for m > M, that

D(rni1) = $(r) +7,V() - (M) + p(1)) + ()
B(r) + T+ 20 (9)

\%

As lim,,_,, &,(¢) =0and >_"_, 7, = oo, it follows that ¢(r,,) = A(6,,) — J,, diverges.
This is a contradiction to Lemma 5, which states that

liminf |A(6,,) — /

‘m
m-— o0

=0

Step (2): Suppose that Proposition 5 is not true. Using the result of Step (1), together with
Lemma 5, it follows that there are infinitely many pairs n, n’, with n’ > n, such that

Bra) = 9r) = (10,) 1) = (40,) = 3,) < ~ 38

and, form=mn,...,n —1,
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IVA(0,,)] > D’
M(Hm) - jLm| < ﬂ

This implies that, for m = n,...,n" — 1, we have

IVA(O,)Il = llos: (0,)]| = &> 0

and
M(Gm) - j‘m| < :B
 TanD'e
 NTpax +BL
_ Ea TIVAOI (IV4O] ~ o5 0,)1)
- nky, [T]+ [[VA(0,,)[|L
Therefore, Lemma 4 applies, and we obtain, for m = n,...,n’ — 1, that

Vo(r,) - (h(r,) + p(r,)) =0

Combining these results, we have

1
_Eﬂ > ¢(rn’) - (]’)(7'”)
=1 n—1
= 37 (V) (1) + plra) +50(8)) = 3 ()

By Lemma 3, the series ), ¢,(¢) converges and the term || Z:’;;L &,(¢)]| becomes
arbitrarily small. This leads to a contradiction in equation (20) and completes the
proof. |

Notes

1. The event w needs to be included into the state i, because the decision (accept or reject) and the associated
reward depend explicitly on the type of the arriving call.

2. In Marbach and Tsitsiklis (2001), the average reward is given for the sampled discrete-time problem (as
defined in Marbach (1998)) for a sampling rate equal to 9.8; the average reward for the continuous-time system
(used in this paper) is then obtained by multiplying the average reward of the discrete-time system with the
sampling rate 9.8.
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