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Abstract. We consider a situation where two processors F’l and Pz are to evaluate a collection
of functions f], . . . . f, of two-vector variables x, v, under the assumption that processor P]
(respectively, Pz ) has access only to the value of the variable x (respectively, y) and the functional
form of ~1,. . . . f,. We provide some new bounds on the communication complexity (the amount
of information that has to be exchanged between the processors) for this problem. An almost

optimal bound is derived for the case of one-way communication when the functions ~1, . . . . ~, are

polynomials. We also derive some new lower bounds for the case of two-way communication that
improve on earlier bounds by Abelson [2]. As an application, we consider the case where x and y
are n X t~ matrices and f(x, y) is a particular entry of the inverse of .r + y. Under a certain

restriction on the class of allowed communication protocols, we obtain an fl(n2) lower bound, in
contrast to the Q(n) lower bound obtained by applying Abelson’s results. Our results are based

on certain tools from classical algebraic geomet~ and field extension theory.

Categories and Subject Descriptors: F. 1.2 [Analysis of Algorithms and Problem Complexity]:
Numerical Algorithms

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Algebraic computation, communication complexity, lower
bound

1. Introduction

In several situations of practical interest, there is a set of processors who wish

to perform some computational task and who must communicate because none

of them possesses all of the problem data. Communication resources are often

limited and we are led to the study of the minimal amount of required

information transfer, that is, the “communication complexity” of the problem

under consideration. For example, in parallel computation [5], communication

is often much slower than computation and excessive communication may

create bottlenecks to the speed of an algorithm. A similar argument applies to

computations using special purpose VLSI chips [20] in which communications
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capabilities are constrained by physical and topological considerations. Finally,

there are several applications in signal processing: for example, in decentral-

ized estimation and detection, or in distributed sensor networks [18], data are

collected at geographically distant sites. Then, summaries of the data are

communicated so as to enable a particular processor or sensor to make certain

statistical inferences (see, e.g., [22]). Communication resources are often costly

in such contexts, and it is again natural to minimize the amount of information

exchange.

1.1. COMMUNICATION PROTOCOLS. In this subsection, we introduce the class

of protocols that will be considered and we formulate the general problem to

be studied.

Let there be two processors P, and Pz. Processor P, (respectively, F’z) has

access to the value of a vector x G !Jt “z (respectively, y E !)1” ). Let there be a

given a finite collection j“of functions ~1, fz, . . . . f,: D: ~ )X!, where D~ is some

subset of !l ‘“ X :11’1 on which these functions are defined. (For example, if

each f, is a rational function expressed as a ratio of two relatively prime

polynomials, it is natural to let Df be the set of all vectors at which none of the

denominators of these functions vanishes. )

The objective of the processors is to exchange messages and compute the

values f,( x, y), ..., f,( x, y). It is assumed that both processors know the

formulas defining these functions. (For instance, if each ~ is a polynomial,

then each processor knows the coefficients of these polynomials.) Ideally, a

protocol should work for all possible values (x, y) G D~ of the “inputs.” We

occasionally consider, however, protocols that are defined only when (x, y )

belongs to some possibly smaller set D c D?

In a two-way communication protocol m, messages can be exchanged in both

directions. We use r(T) to denote the number of exchanged messages and we

let T, ~ ~ (respectively, Tz +, ) denote the set of is for which the ith message is
transmitted from PI to Pz (respectively, from Pz to PI). The protocol is

defined in terms of a collection of functions m,, . . . . m, ~~~ mapping a set

D c D~ into \)i. (In particular, mz(x, y) is the value of the ith message and the

set D is called the domain of the protocol.) Since a message by a processor can

only be a function of the information available to that processor, we impose

the requirement that for for each i, there exists some real-valued function ~iz,

such that

m[(x, y) = fi[(x, m,(.Y, y), . . ..mt_*x.y) ),),

V(x, y) GD, if i= T,+z, (1.1)

and

m,(.x, y) = 1~2,(y, nzl(x, y), . . ..m_l(x. y)),

V(x, y) =D if i= Tz 41, (1.2)

We say that the protocol is legitimate if either of the following conditions is
true:

(a) There exist functions h,,..., h, such that

fl(x, y) = h,(x,lfzl(x, y),..., nz,,m)(x, y))l

V(x,y) cD, i=l ,. ... s. (1.3)



Communication Complexity of Distributed Algebraic Computation 1021

(This corresponds to the case where processor PI evaluates the final
result.)

(b) There exist functions h,,..., h,, such that

f(x, y) = h,(y, ml(x,y),..., mr(m)(x,y)),

V(x, y) GD, i=l ,. ... s. (1.4)

Let 11(~ D, e) denote the class of all legitimate two-way protocols, with
domain D, for computing the functions fl,. . . , f,, subject to some additional
restrictions to be introduced later. We define the two-way communication

complexity C( f; D, + ) for computing f+on the domain D to be

The definition of an one-way conzmunication protocol T is identical, except

that messages can only be$-ansmitted by processor Z’l. That is, the set Tz + ~ is

assumed empty. Let 11(~, D, ~ ) denote the set of all legitimate one-way

communication protocols with domain D. We define the one-way (from PI to

Pz) communication complexity C(fi D, ~ ) on the domain D to be

Notice that in the above models the protocols are “continuous” in the sense

that the messages to be sent are real numbers. Given that real numbers can

only be encoded with an infinite number of bits, such protocols might seem

impossible to implement in practice. However, parallel and distributed numeri-

cal algorithms are almost always described and analyzed as if real numbers can

be communicated, with the understanding that in practice these numbers will

be encoded with a finite number of bits that is sufficient to obtain a desired

accuracy. Furthermore, if the messages being transmitted are rational func-

tions of the data and if the data consist of rational numbers, then an

implementation using a finite number of bits is clearly possible. Finally, in

practice, it is usually the case that a field of a fixed length is used for

transmitting an encoded version of a real number. For this reason, it is

reasonable to count the number of real-valued messages being transmitted, as

opposed to counting individual bits. Our model is therefore a fairly realistic

way of capturing the communication resources needed in a number of practical

applications. Let us also note that the formal model of real-number computa-

tion introduced by [6] has been motivated by similar considerations.

Typically, some smoothness constraints have to be imposed on the message

functions ml, ..., m,[w). This is because there exist one-to-one functions from

91”’ into Ji, and processor PI could transmit the value of its vector x by using

a single message. In particular, P, can simply interleave the binary expansions

of the components of x and use the resulting number as a message. This is not

a useful protocol, for the purposes of numerical computation, and is unlike any

protocol that is used in practice. In contrast to the above-described interleav-

ing, a good protocol should compress the information in x or y intelligently,

and then transmit only the compressed information. For this reason, we shall

impose some smoothness requirements on the message functions m,. From a
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TABLE L VA.RIOUS RESTRICTIONS ON ALLOWED PROTOCOLS

Restrictions on the message Restrictions on the final

functions z-iz,,. . ., h, evaluation functions

Notations (cf. Eqs. (1 1)-(1.2)). hl, . . . . h, (cf Eqs (1.3)-(1.4)).

fI[(~D) continuously differentiable continuously differentiable

HJflD) twice continuously differentiable twice continuously differentiable

LIx(~’D) infinitely differentiable infinitely differentiable

rf,.,(f:D) rational rational

LI,,<),y(j?D) polynomial rational

fI[,,zcti,(j; D) linear polynomial

technical point of view, smoothness assumptions prohibit the use of one-to-one

functions from !11~ mto N, if n? > 1. From a practical point of view, such

smoothness is present in the vast majority of practical numerical methods for

algebraic problems. Furthermore, in this paper, we concentrate on the case

where each one of the functions in f,, . . ., f, is rational. It is then natural to

restrict attention even further to protocols involving only rational functions of

the data. This is equivalent to an assumption that each processor can only

perform the elementary arithmetic operations. Such an assumption is common

in complexity studies for algebraic problems [7]. _,

In the sequel, we use the shorter notations H( f; D) and C(fi D’) whenever it

is clear from the context whether we are dealing with one-way or two-way

protocols. Furthermore, ye use the notation H( f; D) and C( f; D) whenever

s = 1 and the collection f of functions consists of the single function f.

In this paper, we consider various restrictions on the set of allowed proto-

cols. We indicate these restrictions in our notation, as shown in Table I.

We use notation like Cl(fi D), Cz(~ D), etc., to denote the communication

complexity under the restrictions on the protocols introduced in Table I.

Notice that, as we go down the table, additional restrictions are introduced

and, therefore, the corresponding communication complexity can only increase.

Finally, assuming that D is a nonempty open set, we see that the set II, ti,(fi D)

(respectively, H(,,,,,., ( ~~ D)) is empty unless ~is a rational (respectively, polyno-
mial) function.

All of our definitions can be extended, in the obvious way, to the case where

the real number field !H is replaced by the complex field ‘F’. Here, all the
functions f, are defined on a subset Df of F’n X %“ and take values in G.

Furthermore, a protocol has a domain D c 6’W1 x ~“” and the message func-
tions r?z, and #IL [cf. Eqs. (1.1)–(1.2)] are defined on D.

1.2. RELATED RESEARCH. The problem formulation we are using is due to

Abelson [1, 2] who established lower bounds on one-way and two-way commu-

nication complexity, assuming that the message functions are once (respec-

tively, twice) continuously differentiable. (These results are stated and dis-
cussed in Sections 3 and 5, respectively.)

Communication complexity has also been studied under discrete models of

communication. In these models, the messages exchanged are binary and the

functions evaluated are such that a finite number of binary messages are

actually sufficient. For example, Yao [27] and Papadimitriou and Sipser [16]
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consider the computation of Boolean functions using binary messages. The

approach in these references is combinatorial in nature and very different from

ours. A fair amount of research has dealt with extensions of the results of [27]

and with the evaluation of the communication complexity of selected combina-

torial problems [3, 14– 17, 20]. A different framework is considered in [19] for

the problem of approximately minimizing (within a desired accuracy) the sum

of two convex functions, with each function known by a different processor.

Here, the objective is to minimize the number of binary messages. as a function

of the desired accuracy of the solution.

1.3. OUTLINE OF THE PAPER. The rest of this paper is organized as follows:

In Section 2, we present some background results from field extension theory

that will be used in our study of one-way communication complexity.

In Section 3, we study the one-way communication complexity of computing

asetfl, ..., f, of polynomials. The results of [1] (stated in Section 3.1) provide

a complete solution for the case of a single function f, smooth message

functions, and polynomials whose domain is a (possibly very small) open set.

We extend these results to the case of s > 1. We also show that we can restrict

to the class of polynomial protocols while increasing the communication

complexity by at most one. Furthermore, the polynomial protocols we construct

have a domain that is almost all of vi”2 x !R’* (except for a set of measure

zero). We also consider the special case where m =: and each one ~f the

polynomials f, : !]” X fit’1 is of the form fl(x, y) = f,(x + y), where f, is a

polynomial in n variables. For this case, we obtain a complete characterization

of the communication complexity, a proof that linear protocols are optimal,

and a constructive procedure for designing such protocols.

In Section 4, we present some background from algebraic geometry (e.g.,

Hilbert’s Nullstellensatz) that will be needed later.

In Section 5, we derive several general lower bounds on two-way communica-

tion complexity of computing a rational function f when the messages are

constrained to be rational functions of the data. Our results are obtained by

combining an earlier result of Abelson [2] with the tools of Section 4. We also

identify certain instances where the lower bounds of [2] are tight.

In Section 6, we apply the results of Section 5 to the problem of computing a

particular entry of the inverse of x + y, where x and y are n X n complex

matrices. We derive an nz – 1 lower bound (which agrees with the obvious

upper bound, within one message), while the results of [2] could only provide

an Q(n) lower bound.

2. Preliminaries

In this section, we introduce some algebraic results (see, e.g., [25, pp. 95-125]

or [21]) that will be needed in Section 3.

Notations. Let {a,: i ● 1} be a collection of vectors in !Ii’, where 1 is a finite

index set. We use [a,: i G 1] to denote the matrix with columns u,, i G 1.

Whenever the range of the index variable i (i.e., the index set 1) is evident
from the context, we use the simpler notation [a,: i]. For any function ~: X” +
N, we use Vf to denote the vector-valued function whose components are the

partial derivatives of f. We also use Vf(p) to denote the value of Vf evaluated

at some p G !M’.
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Let FI be a field and let Fz be an extension field of F,. An element A G F2

is called a primitiue element of the extension FJFI if Fz = Fl( A), that is, if Fz

is generated by A over the field F,. The following result (see, e.g., [25, page 84])

is called the theorem of primitive element and will be used in Section 3.

THEOREM 2.1. Ellery finite separable algebraic extension Fz/F1 has a primitiue

element. Furthermore, if Fz = Fl( Al,. . ., A~), then there exists a primitil~e element

of the form A = X~=, y] A! where y] E F1 for each j.

Remark. In fact, the proof of Theorem 2.1 given in [25, page 84] shows that

a primitive element A is obtained for an arbitrary choice of the coefficients

71, ..7 y~, as long as they do not lie in the zero set of a certain polynomial.

We now turn our attention to the case of transcendental extensions. Let

Fz/F1 be a field extension. The transcendental degree of Fz/F1, denoted by

tr.d. Fz/Fl, is defined as the smallest number t such that there exist elements

Al, A~, ..., A, in Fz with the property that Fz is an algebraic extension of

F1(A1, AZ,..., At). The following theorem summarizes some important proper-

ties of the transcendental degree of a field extension.

THEOREM 2.2. Let Fz be a finitely generated extension field of F, and let F~ be

a finitely generated extension field of Fz. (In particular, Fl is also a finitely

generated extension field of Fl.) Suppose that Fz = Fl( Al, AI,..., A~) and that

tr.d.Fj/F1 = t. Then, t = tr.d.FB/F1 = tr.d.FB/Fz + tr.d.Fz/Fl.

The following is the definition of a derivation over a field, which is a

generalized notion of differentiation.

Definition 2.1. Let F1 be a jinitely generated extension field of F, and let FB be

an extension field of Fq. A mapping D of Fz into Fz is said to be an F, -deriL’ation

of Fz (with ljalues in FA) if for eLle~ A in Fl and eLery .x, y in Fz the mapping D

has the following three propetiies: (1) D(A) = O; (2) D(x + y) = D(x) + D(y);

(3) D(xy) = xD(y) + yD(x).

The well-known chain rules remain true for derivations. We now let

~, ,~$Fj) stand for the space of all F,-derivations of Fz with values in F~.@

~,,~$Fj) can be viewed as a vector space over Fz. It can be shown (seeThen g

[25, pp. 120-127]) that the dimension of the vector space &Z~,,~~F~ ) does not

depend on the particular choice of F~. It is for this reason that we usually drop

Fq from the notation 9 ~,j~~Fs) and use Simply i3F,,F, to denote the space of
F1-derivations of Fz with values in any extension field of Fz.

Example. We now consider in some detail the space of derivations for an

important special case and derive a result that will be needed in Section 3. Let

F, = ~ and let Fj = !R(xl, xZ,.. ., x~ ), the field of rational functions over !ll

with indeterminates X1, Xz, . . . . x~. Furthermore, we let Fz be the subfield of

F~ that is generated by polynomials f,, fz,. . . . f,, G F~. In other words, Fz is

the set of all rational functions that can be expressed as rational functions of
the ~’s. As is well known, we have, for any D ● ~F,/F$F3),

D= :D(xk)+.
k=l k
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Hence, D is completely determined by the choice of D(x~) G F~, k = 1,

2,.. .,m, and{ dxl), ),..., ( d/dx,,l)} is a basis for ~~,,~JF~). Now suppose that

~,,~JF~ ). Since ~ has characteristic 0, it follows that D can be ex-D E$2

(Ft) (see [25, pp. 125-127]). From the abovetended to a derivation D in Q7F,, F,

discussion, we see that

(2.1)

Therefore, the map D, which is equal to the restriction of ~ on Fz, can be

written as a linear combination of the (7/ dx~ )’s (cf. Eq. (2. l)). Conversely, for

each choice of D(xL ) G Fj, Eq. (2.1) defines a derivation in &Z~,,~~ F~).

However, two different choices of ~(x~ ) may give rise to the same derivation

in ~~, ,~~Fj). As a matter of fact, any f E Fz can be expressed in the form of

f = g(flt f~, ~.. >f,,), where g(zl. z~,..., z,,) is a rational function. BY the chain
rule, we have

—D(f2) + . . . + ::D(f) = ~D(fJ + :: —D(f,l),
~ ?1

where dg/ dz, is the partial derivative of g with respect to ZJ defined in the

usual sense. Since the dg/ dz,’s are independent of D, we see that D is

completely determined by its operation on ~, j = 1,2, ..., n. Moreover, since

the ~‘s belong to Fz we see that different choices of the D(L )’s will result in

different derivations in .$Z~ , ~,.
We now develop an expficit formula for the dimensions of S7~, ,~, (eq. (2.4)

below), in the context of the particular example we have been considering. This

formula will be crucial for the results of Section 3.

Notice that for every j’ and any D G &Z~,,~,, one has

= (D(x,), D(x,),..., D(I,,,))vf/. (2.2)

We now rewrite 13q. (2.2) in the matrix form

(DAD,..., D(f,l)) = (D(x, ), D(x J,..., D(xn, ))[vfi:j EJl,

where J={l,2, ..., n}. Since D( x~ ) can be taken arbitrarily, we see that the

vector space ~~, ,~~F~) is isomorphic to the space spanned by the rows of the

matrix [Vi: j]. Hence

dim ~~, ,~1 = rank[Vf,: j], (~3)

where the entries of [ Vf,: j ] are polynomials in variables xl, Xz, . . . , x~, and the

rank is evaluated in the field F~. We can now assign real values to x 1, Xz, ..., Xtil

and calculate the rank in N. Let [ Vfi( p): j] denote the matrix [V~: j] evaluated

at the point p G St’”. Notice that if Za,(p)Vf(p) = O, Vp, then, by solving the

linear system formally with Gaussian climinaticm, we see that each ai( p) can

be chosen as a rational function of p. This implies
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Combining this with Eq. (2.3), we obtain the following basic result:

We close this section with a result that relates the transcendental extension

degree and the dimension of the associated space of derivations (see [25, pp.

125–127]).

THEOREM 2.3. Let F, be a field and let Fz be a jlnite~ generated extension

field of F, such that tr.d.F,/Fl = d and dim &2~ 1,, = t. Then t is equal to the

smallest number r such that there exist elements ‘h,, AL, . . . . A, with the prope~~

that F, is separable algebraic oLer Fl( Al, Al, . . . . A, ). IFZparticldar, t > d. Further-

more, ‘if F1 has characteristic O, then the equalip t = d holds.

3. One-Way Communication Complexity

In this section, we study the one-way communication complexity of evaluating a

set fl, ..., f, of polynomials, when the messages transmitted are restricted to

be polynomial functions of the data. We apply the tools of field extension

theory (presented in Section 2) to obtain a bound for the communication

complexity that is almost optimal (within one message). It will be seen that our

results strengthen earlier results in a number of directions. We also show that

the restriction to polynomial protocols can increase the communication com-

plexity of the problem by at most one message. We then specialize to~he case

where the polynomials ~ to be evaluated are of the form ~(.x, y) = 1(x + y),

for some functions ~, and we show that there exist optimal protocols with a

very simple structure: they consist of messages that are linear functions of the

data.

3.1. GENERAL RESULTS. The main available result on one-way protocols is

due to Abelson [1]: 1

THEOREM 3.1. Let f: \~i ‘“ X !]~” H g~ be an infinitely differentiable function.

(a) Let D be a subset of !11m X N”. There holds C.( f; D) < r if and only if there
exist infinitely differentiable functions m,, mz, . . . . m~: !]~’z ~ !H and h: ~]~’+”

H !~i sLLch that

f(.x, y) = h(y, nz,(x), m,(x),..., mr(x))> v(x, y) E D. (3.1)

(b) Let (x*, y“ ) be some element of !Ii m X !Ii ‘Z. There exists some open set

D c 91“’ X !~” containing (x*, y* ) for which C%(f: D) < r if and onlj f

dim(span{gl,,., go,,,,... ,g ~,})}) s r, (3.2)

where g, ,* ( y ) = ( df/ d.x, )(x*, y) and where tile span is taken in the l]ector

space of’functions of y defi?zed on an open set containing ( x“, y*).

1We state this result for the class IIm(fl D) of protocols that use infinitely differentiable
functions. The result was actually proved in [1] for the class II,( fi D) but the proof remains vahd
for fI=(~; D).
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Let us consider protocols whose domain D is all of !)i m X !11”. By varying

(.x*, y*) over all possible elements of !li ‘“ X Oi n and applying part (b) of the
theorem to each one of these points we obtain

Cm(f; :M”z x fit”) 2 max dim(span{gl, X,, . . ..gn.,li}). (3.3)
l.* ~ )]~})1

Part (b) of the theorem states that this lower bound is also tight in a local

sense: there exist protocols whose number of messages equals the lower bound

and that evaluate f correctly when (x, y) is restricted to a suitably small

domain D. However, nothing can be inferred on the tightness of this bound

when one considers protocols whose domain is all of ~1~~ X !Ii ‘z. Furthermore,

the message functions ml in Eq. (3.1) are not guaranteed to be polynomials,

even if the function f is a polynomial. Both of these deficiencies will be

remedied in the sequel.

~ Throughout this section, we assume that we are dealing with a given set

f = {f, ,..., f,} Of polynomial functions mapping fl~’” X !li” into !H and that
only one-way protocols are considered. We start by proving a lower bound

similar to Theorem 3. l(b), but more general, because Theorem 3.1 dealt only

with the case s = 1.

Notation. For i = 1,..., s, and for any sequence a = ( al, ..., a,, ) of non-
negative integer indices, we define a function gla: N “’ + ‘z * !M by letting

(3.4)

(We use the convention g: = f.) Let .ti be the set of all a such that g: is not

identically zero for some i. (Clearly, M is a finite set, since each f, is a

polynomial.) For any function g(x, y): ?II ‘“ x Vi n * m, we use VXg to denote

the vector-valued function of dimension m whose components are the partial

derivatives of g with respect to the first m coordinates.

THEOREM 3.2. Let D be some open subset of ~l?m X 9i’.

(a)

(b)

If C.(fi D) < r, then there exist infinitely differentiable functions

ml, ..., m,: ~l~m ~ !li andh~: M’+” x M, i = 1,. ... s, Q Ed, such that

g:(x, y) = h:(y, ml(x),..., m2(x)), V(x, y) GD, i=l ,. ..,.

(3:5)

There holds

C.(E D] > max mnk[~, g,a(x, y):i = 1,2, . . ..s. a ~.w’l- (3.6)
(.x, y)=f)

PROOF

(a) Since Cm(I D) s r, there exist infinitely differentiable functions m 1, ..., ln,

and h,, . . . . h, such that

f(x, y) = h,(y, ml(x),..., nzr(x)), V(x, y) GD, i=l, . . ..s.

We differentiate both sides of this equation, with respect to y. The

left-hand side yields g~(x, y). The right-hand side remains an infinitely
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differentiable function of m,(x), j = 1,. ... r and y, and h: can be taken

equal to that function.

(b) Suppose that C.(I D) = r. Then Eq. (3.5) holds for some suitable func-
tions h; and for all (x, y) G ~. By differentiating both sides with respect to

.K, we obtain

V,g; (,r, y) = ~
d

—h:(y, m,(x) >..., rnr(x))”v, mL(x),
k=l ~nzk

V(.x, y) G D, Vi. (3.7)

Thus, each column of the matrix [Vtg,a(x, y): i = 1,2,.. ., s; CKE,-M] is a

linear combination of the vectors V, m l(x), . . . . Vym,( x). It follows that the

rank of that matrix is at most r for every (x, y) ● D. Q.E.D.

We now notice that any polynomial ~ can be written in the form

f(x, y) = z La(x) yp’y:’ ~~~y;, (3.8’)
(a,,, , czj, )GJY

where each la is a suitable polynomial. By differentiating both sides of (3.8),

setting y = O, and comparing with Eq. (3.4), we see that for each i, a, there

exists a positive constant c,,, such that

f.(x) = C,ag:(x, o), Vx e !11“1.

Let us define

t= max rank[Vf’, a(x):i= l,. ... s;a=cd].
.Y● !)t“1

Using Eq. (3.9), we see that

t == max rank[V, g[a(x, O):i = 1,2, . . ..s. a ES]
.7~ ))/01

< max rank[V, gla(x, y):i = 1,2, . . ..s. a =Cti].
(r, y)=!li’” <:)i”

(3.9)

(3.10)

(3.11)

pROOF. The first inequality is trivial since we are considering a restricted

class of protocols. The second follows from (3.6) and (3.11). Q.E.D.

We make a short digression to verify that the bound t of Corollary 3.1 is a

generalization Theorem 3.1.

THEOREM 3.3. For the case s = 1, that is, for the problem of conlpLlting a

Sl?lgle po@zomial f ( x, y) = Eti ~ ~f,,( x)y ~’ “”” y.”’z, the value oft is equal to the
right-hand side of Eq. (3.3).

PROOF. Let us fix some x’ G !Ii ~. Let 7(x*) be the dimension of the span
c)f{df/dx, (x*, y), J = 1>...7 m.}, where the span is formed in the vector space
of functions of the variable y. We only need to show that max,.. !)i,, Y(X* ) = t.

Notice that

vzf(x*, y) = ~ vtfa(x*)yyy:~ . . . y,:”.
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Using the definition of r(x* ), we see that there exist m – r(x* ) linearly

independent vectors p,, Pz, ..., P~_,(X*) in ~~m with

5P1,:(X*7Y) =07 j=l ,.. .,r (x*),), Vy ,
j=l 1

where p,] denotes the jth component of Wt. The above relation implies that

PI> /%3 . . . . P,n _ ,(x* ) are orthogonal to VXf(x”, y) for all y. This is clearly

equivalent to

and implies that rank[ VI fa: a G ~] < r(x* ). Taking the maximum over all X*,

we have t s r( x* ). The proof of the reverse inequality is just the reverse of the

preceding argument. Q.E.D.

We now come to the main result of this section, which shows that the lower

bound of Corolla~ 3.1 is quite tight.

THEOREM 3.4. There exists an open se{ DO c 91‘n whose complement has

Lebesgue measure zero and such that CPOIY(f; D() X !ll”) < t + 1.

PROOF. We show the existence of an open set DO and of a set of polyno-

mial message functions rn 1, m ~, ..., m ~+ 1, such that each f,. can be expressed
in the form

(3.12)

where h, ~ is a suitable rational function. In light of Eq. (3.8), processor Pz is

able, upon receipt of the messages ml(x), m2(x), ..:, mt + l(x), to evaluate

f,(x, y) for each i, and this will prove that CPOIY(fl DO x !11”) s t + 1, as
desired.

Let FI = Oi (the field of real numbers). Let F~ = Fl({fa}) be the field

generated by the polynomials {~.: i = 1,...,s; a GM} over F,. Since F, has

characteristic O and F~/Fl is finitely generated, Theorem 2.3 applies and shows

that

tr.d.F~/F1 = dim %~,[F,. (3.13)

Notice that we are dealing with the situation considered in the example of

Section 2. In particular, Eq. (2.4) shows that

dim ~F,,~, = max rank[V~.a(x):i = 1,. ... s;cx~til. (3.14)
x G !H “’

By comparing with Eq. (3.10), we see that t = dimSZF,,~, and using Eq. (3.13),

we obtain

t = tr.d.F/F1.

Let us choose a set of indices such that

t = gy,, rank[vf, ajx)’”’ ”’vfi,afx)]’



1030 Z.-Q. LUO AND J. N. TSITSIKLIS

and let F: stand for the field generated by ~,a,, . . . . ~,a, over F1. By repeating

the argument in the preceding paragraph, we obtain t = dim ~~, ,~, =

tr.d.F~/Fl. We then invoke Theorem 2.2 to obtain

t = tr.d.Fj/F1 = tr.d.F~/F1 + tr.d.FT/F~ = t + tr.d.Fy/Fz,

which shows that tr.d.F~/Fz = O.

We notice that Fy is a finitely generated extension of Fz, and Fz clearly has

characteristic zero. Therefore, we are in a position to apply Theorem 2.3 to

Fj/Fz, to conclude that FJ/Fz is a separable algebraic field extension. Since

every finitely generated algebraic extension is finite (see [25, pp. 60–61]), we

see that Fj/Fz is also a finite algebraic extension. We can therefore apply the

theorem of primitive element (Theorem 2.1) to F~/Fz. This leads to the

conclusion that Fj = Fz( f* ) where ~* is some linear combination (over the

field Fl) of the polynomials {fiu: (i, a) # (iL, a~), ‘v’k}. More precisely,

where each ●,~ is an element of F? and where e,ka~ = O for k = 1, . . . . t. In

particular, using the definition of F;, each ●t~ can be expressed as a rational

function of f,,a,,..., f,,a,.

Since F~ = Fz(f*) = F1(~,.,,.. ., f,~,, f * ), it follows that each flu can be
expressed as a rational function of the functions ~la,, . . . . f,,a,, f*. Thus, there

exist rational functions ~, ~ such that

fla =LJfl,u,>... >fwf*). (3.16)

Note that (3.16) is similar to (3.12) except that it refers to the equality of two

elements in F~ and that f* need not be a polynomial. Let S be the set in !)I ‘n

on which the denominator of some of the rational functions under considera-

tion vanishes. The set S has measure zero. Let us denote the complement of S

by DO. Clearly, DO is an open set. By evaluating both sides of Eq. (3.16) at an

arbitrary vector x = DO, Eq. (3.12) is obtained, provided that we can replace f*

by a polynomial.

To see that f* can be replaced by a polynomial, we recall the representation

(3.15) of f*. Since each qU is a rational function of fi,a,,. . . . fl,a,, the function

f* can be expressed as the ratio of two polynomials, f“ = p/q, where q is a
common multiple of the denominators of each one of the rational functions

e. It follows that q is a polynomial function of fi, a,, . . . . j,,,,. Let us consider

t~e one-way protocol defined by m~ = ~,,ti,, k=l ,.. .,tand Eit+l =f*. Then,
q is lmown to a processor who has already received the values of ~j,,,,, . . . . ~,,a,.

Consequently, transmitting the value p(x) (as the last message) carries the

same information as transmitting the value f* ( x). We have therefore con-

structed a one-way protocol (with m~ = f,, a,, k = 1, . . . . t, and mf+ ~ = p) that

uses t + 1 messages, and all messages are polynomial functions of the input x.

Furthermore, by Eq. (3.16) and the fact that q is a polynomial function of

ml, ..., mk, we see that Eq. (3.12) holds for some suitable rational functions

}l,G. Q.E.D.

In order to turn Theorem 3.4 into a useful result, one needs a computation-

ally effective method for evaluating t* and for constructing a protocol that uses
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t + 1 messages. The solution to this problem is not apparent and depends on

the structure of the field F~. However, our proof does suggest a randomized

procedure, which we now outline. Assuming that the number of functions f[u is

not excessive, we can evaluate the rank of the matrix consisting of the gradients

Vl~. at a random point. Obviously, except for a closed set of zero measure (an

algebraic set) we find the maximum rank t,as well as polynomials fi,.,, ..., ~,,.,

with the desired properties. Moreover, according to the remark following

Theorem 2.2, we know that the overwhelming majority of choices of the

coefficients 6,~ in Eq. (3.15) are acceptable.

To summarize the results in this subsection, we have shown that (as long as

we are willing to disregard a set of points of measure zero) the restriction to

polynomial messages can increase the communication complexity by at most

one. This is in contrast to the earlier results (Theorem 3.1) that asserted the

existence of protocols that are not necessarily polynomials and whose domain

is only some (possibly very small) open set.

3.2. COMPUTING POLYNOMIALS OF THE FORM f( x + y). In this section, we

consider the special case where all of the polynomials ~: 91” X !Ti” - !Ii to be

computed are of the form

X(x, y)= f(x+y), i= 1,2 ,. ... ,s,

where each f;: W‘2 - W is a polynomial. We exploit this special structure and

show that linear protocols (i.e., the messages are linear functions of the input)

are optimal within the class of protocols that use infinitely differentiable

message functions.

Let, as in the preceding subsection,

r] ~fl
g;(x, y) = ,;(x,y).

dyf ’ . . . dy,,

We view fi as a function of a variable x G :Ii n and we define

d “~
g:(z) = (z).

dzy’ ““ “ Jz,:”

Let

t = max rank[Vz~,U(z):i = 1,..., s;aw.l’l. (3.17)
~~ ))~,1

THEOREM 3.5. Cm(fi ~~” X !l~”) = cllnear(fi fi~’z X !X”) = t.

PROOF. We first prove a lower bound. Using Theorem 3.2(b), we have

C.(F9 Ytn X Vi’zj > max rank[VXgIa(x, y); i, al.—
(.v,y)e!lt”x!li”

We notice that ~;(z) = g;(x, y) and VZFY(Z) = v.g~(x, y), where z = x + Y.

We thus obtain

1C.(F: R“ x !lin 2

—

——

max rank[V1&t”(x +y):i, al
(X, y)= fli’’x!}t”

max rank[VZ~,u(z); i, a]
z G !N “

t,
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which proves the lower bound. Given that Cm(~U ~~” X !l~” ) < C1l.c,.,(~~ ~11” x

!l,, ), the proof of the theorem will be completed once we establish that

c /lneur(fl !~~n x :li”) <t.
We first consider the case where t = n. In this case, we can use the protocol

defined by ink(x) = x~, k = 1,..., n. (That is, processor P, transmits its entire

vector to processor Pz.) This is clearly a linear protocol with t messages and

establishes the desired result for the case t = n. Notice also that the case t > n

cannot occur since t is the rank of a matrix with n rows.

The proof of the upper bound for the general case (t< n) proceeds by

induction on n. For the basis of the induction, we consider the case where

n = 1. If t = n = 1, then the result is true, by the argument of the preceding

paragraph. If on the other hand t = O, then VZ~;(z)A = O for all z = Ot and all

i, a. By letting q = (0,0, ..., O), we see that VZ~(z) = O for all z and i.

Therefore, each ~ is a constant function. In this case, processor Pz+ can

compute ~,(x, y) for each i, without receiving any messages, and C,l.,.,(~; fll n
x !)i”) = O = t,as desired.

We now assume that the result has been proved for n – 1 (n > 2) and we

prove it for n as well. The case t = n has already been dealt with and we

assume that t < n.

LEMMA 3.1. If t < n, then there exists a nonzero uector c = (cl, Cz, . . . . CR) G

?M“ such that
A

ic%z)=o,
,=, ‘ C7Z,

‘v’i, z. (3.18)

PROOF. The left-hand side of Eq. (3.18) is a polynomial, therefore, it

suffices to show that the coefficient corresponding to each term z: Iz~~ “”. z,~

is identically zero. Let us denote the coefficient corresponding to the term

z;lz;~ . . . Z~JI of df,/dz, by d. ( ij). Then Eq. (3.18) becomes equivalent to

~~=lclda(v) = O for all i and a.
Let H(z) = [V1~,(z); i = 1,..., s; CYGM], and consider the matrix H(O).

Note that the column of H(O) corresponding to indices i, a, is equal to

~!(~a(il), da(iz),. ... ~a(in)),

where a!d~fal!ao! “.” a,, !. (This is because the terms corresponding to a’ # a

are either washed out by the differentiations or are set to zero when we let

2 =(0,0 ,. ... O).) We have rank H(0) < max Z~ !}i,, rank H(z) = t < n. There-

fore, there exists a nonzero vector c = (cl,..., c,, ) = 91n that is orthogonal to
each one of the columns of M(O). This implies that X“

concludes the proof of the lemma. Q.E.D.
,.lc,~a(~) = O and

Without loss of generality, we assume that c,, # O, where c. is the last

coordinate of the nonzero vector c given by Lemma 3.1. We define an

invertible linear transformation T: 01” ~ fit” by means of the formula

Tz = (Zl +CIZ,,, Z2 +C2Z,1, . . .. Zn_1 +C,l_l Zn, CnZn).

We show that this coordinate transformation leads to polynomials that are

independent of the last coordinate of their argument, which will then allow us

to use the induction hypothesis.



Communication Complexiv of Distributed Algebraic Computation 1033

Consider the polynomials ~~,. ... ~ and f;,. ... f; defined by

f(z) =f(Tz) =f(z, + C,-z,l,..., z,,-, + Cn-lz,z>c,tz,,)> (3.19)

Using

f’(x, y) =f’(x

the chain rule and

+y). (3.20)

Eq. (3.18), we see that

A

(?f’
— = ,:,C,:=o.
dz,l

J

Therefore. the ~olvnomials p are inde~endent of the last coordinate of their

argument ‘and ~an’be viewed as mappi~gs defined on N”- 1 (instead of !l” ).

Given that T is an invertible linear transformation, it is easily ~een that the

rank of the matrix considered in (3.17) does not change if each ~ is replaced

by fl. We now apply the induction hypothesis on the functions ~ = {f{,..., f;}

to conclude that

c,l,lea, (~; !X” x :W) < t.

Let the linear functions mj(x),..., mj(x) corre~ond to a linear protocol for

the problem of evaluating the functions in f’. It follows that there exist

polynomials II; ,. ... h($ such that

f’(x, y) = h~(y, m\(x),..., mj(x)), Vi, x, y.

Therefore,

~(x, y) ‘~(x +y) ‘fl(T-’(x +y)) =f:(T-lx, T-ly)

=h’l(T-*y, m\(T-lx),..., m)(lx)),), Vi, x,y,

where we have use of the definitions (3.19) and (3.20). Thus, the functions

ml, ..., rnt defined by m,(x) = m~(T–lx), i = 1, ..., t,define a one-way proto-

col for the problem of evaluating f 1, f2, ..., f,. Furthermore, each Y, is linear,

since it is the composition of linear functions. Therefore, C~,,,C..(t, ~~i” X ~~~n)
s t.This completes the induction and the proof of the theorem. Q.E.D.

We remark that the proof of Theorem 3.5 actually provides a procedure for

constructing a linear and optimal protocol. Furthermore, the proof shows that

we do not need to evaluate max,. !lt, rank H(z) but only the rank of H(O). If

the latter rank is equal to n, the problem is trivial, and if it is less than n,

Lemma 3.1 applies and the problem can be reduced to one with a smaller

dimension. Another point worth mentioning is that our proof actually suggests

a deterministic procedure for constructing the optimal linear protocol. In fact,

one can first compute the rank of H(O). If rank H(O) = n, then m~(x) = XL is
an optimal protocol. If H(O) has rank less than n, then one can use, for

example, Gaussian elimination method to find a nonzero vector c such that

c~H(0) = O. As shown in the proof, the problem is reduced to one with a

smaller dimension by a suitable change of variables. By repeating this process
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at most finitely many times, one will find an optimal linear protocol for

computing functions fi, i = 1,...,s.

4. preliminaries Continued

In this section, we review some results (e.g., Hilbert’s Nullstellensatz) from

algebraic geometry (see, e.g., [4] and [10]) that will be needed in Section 5.

Let ‘i?[xl,xz, . . . . x,, ] denote the ring of polynomials of variables x,, . Y.. >-,,
over %, the field of complex numbers. Let ~, g E %7x1, X2, ..., Xn]. We use the

notation ~lg and say that ~ divides g if there exists some lz G %[x1, X2.. . ., X,l 1

such that g =~” h. We say that a polynomial g ~ %[.x1, X2, ..., X.] is ime-

ducible if g = ~” h implies that either f or h is an element of 8. As is well

known, %[xl, Xz,. ..,. ,,x ] is a uniqule factorization ring, that is, each one of its

elements can be expressed as a product of irreducible polynomials. Further-

more, this factorization is unique up to reordering of the factors and up to

multiplication of each factor by an element of &.

Let f, ,..., f, be some polynomials in @-[.x,, x,,..., x,,]. We define the zero

setoff[,. ... ~ by

v(f,, . . .. f.)= {(x,, x2,1 ... l-n) =% ’’lf~(x], .xz, . ..>-~.t) ‘o>

‘dk={l,..., r}}.

We now state a simple version of Hilbert’s Nullstellensatz [4, p. 85] that will

be used in Section 6.

THEOREM 4.1 (HILBFRT’S NULLSTELLENSATZ). Let f,, . . . . ~. be some polyno-

mials in %[xl,. . . . x,,]. ljfg E F[.x I,.. ., x,,] and V(fl, ..., f.) c V(g), therz there

exist sonze polynomials gl, . . . . g, ~ HX1, . . . . x,, ] and some positil’e integer k sLlch

that

d=glfl +g2f2 + ““” +grf; . (4.1)

Notice that if Eq. (4.1) holds, then W f],. . . . f ) c V(gk) = V(g). The fact

that the converse is also true is exactly the content of Hilbert’s theorem.

COROLLARY 4.1. If f,g E%’[x,,..., x,, 1, and if f( x ) = O implies that g(x) =
O, that is, if V( f ) c V(g), then there is an integer k and some h 6 %[x,,..., x,,]

such that g’ = jh. (I?l other words, f/g”.)

One can assign a topology to the field $2-’2by taking the family {V(S)IS is an

ideal} as the closed sets. (It is a simple exercise to check that these sets satisfj

the usual requirements for the closed sets of a topology.) Traditionally, this

topology is called the Zariski topolo~ on %’. An important property of Zariski

topology is the following (see [101).

l%EOREM 4.2. ELwty two nonenlp# Za~iski open set.~ of F“ haLv norlemph
i?~tersection atld el)ety closed set Ilas zero Lebesgue nleasure.

5. Two-Way Corm?mnication Complexity

In this section we study the two-way communication complexity of evaluating a

function f: D+ x W, where Df, the domain off is an open subset of @m X %“*.
Throughout, we assume that f is twice continuously differentiable on D,.

5.1. ABELSON’S LOWER BOUND

Definition 5.1. We let H,,(f) be the matrix (of size ?n x )~) whose (i, j)th

entry is given by d 2f/ dxt dy,. We use the alternative notations ( H,y( f ))( p ) and
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H*Y( f )IP to denote the value of H,, ( f) at some vector p c D~. Mo, we let V,f

and VYf stand for the vectors of dimensions m and n (respectively) with the

partial derivatives off with respect to the components of x and y, respectively.

The following basic result has been established by Abelson [2]: z

THEOREM 5.1. For any open set D c D~ and any p G D, we hale

C,(f; D) > rarzk(Hly(f))(p). (5.1)

Theorem 5.1 has an obvious corollary:

COROLLARY 5.1. For any open set D c D~, we hal’e

C2(f; D) > ~z~rank(H.)(f)) (p). (5.2)

The matrix HXY(f) is defined in terms of the cross derivatives of f and in

some sense provides information on how x and y are interrelated in the

formula for f(x, y). On the other hand, Eq. (5.1) only takes into account the

second order derivatives of f and ignores the higher-order derivatives or the

first-order derivatives off. Thus, this bound should not be expected to be tight,

in general. As an example, let f be a linear function, that is, f(x, y) = aTx +

b~y (a G g“”’, b G %’”, a # 0, b + O). It is clear that Cz(fi D) = 1, for any

nonempty open set D, while Eq. (5.1) gives a vacuous lower bound of zero. The

following corollary strengthens Eq. (5.1) somewhat, by incorporating the first

order derivatives of f as well. It is only a minor improvement because it can

increase the lower bound by at most 1.

COROLLARY 5.2. For any open set D C D~, we halle

PROOF. We notice that Cz( f; D) > Cz(g o f; D), for any twice continuously

differentiable function g:% + %’, where g o f denotes the composition of f

and g. For any p G D, and c ● %, consider a function g such that g’( f( p )) + O

and c = g“( f( p))/g’( f(p)). The result then follows by applying Theorem 5.1 to

the function g of. Q.E.D.

In the remainder of this section, as well as in the next section, we investigate

the extent to which Abelson’s bound is tight and we derive some tighter

bounds. We mostly restrict attention to the case where f is a rational function

and we require the messages to be rational functions of the input. In the next

section, we identify two instances where Abelson’s lower bound (Theorem 5.1)

is tight. Then, in Section 5.3, we establish some new general lower bounds by

making use of Hilbert’s Nullstellensatz.

s.~. SOME CASES WHERE ABELSON’S BOUND 1S TIGHT. We consider here

two particular cases in which Abelson’s bound (Theorem 5.1) can be shown to
be tight. This is in contrast to the results in Section 6 in which it will be shown

to be far from tight.

~This result was actually proved in [2] for real-valued functions defined on !l ‘“ +” but the proof

remains valid when Vi is replaced by ‘6’.
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THEOREM 5.2. Suppose that f (x, Y ) = XTQJ, where Q is a matrix of size

m x n and x E \R’n, y G !11”. The~t Cl(f; ti’’+~) = rarzkHXY(f) = rank(Q). In

fact, the lower bound can be attained by an one-way protocol with linear messages.

PROOF. Let rank(Q) = r. By Theorem 5.1, we see that Cz(fl Oi”+ ~) >

rank(fi,}( f ) = rank(Q) = r. To prove the other direction of the inequality, we

present an one-way linear protocol that uses exactly r messages. Using the

singular value decomposition of Q, there exist vectors u ~, ..., u, = 91n and

111,..., ~LI E j]~ n such that

Q = 1[11[ + U2V; i- ““” +11,11:,

from which we obtain

XT& = XT1 L’T1, ,y + xTu21J;y + ““” +xTurv,Ty. (5.3)

Notice that in Eq. (5.3) each one of the expressions x ‘u, and LIITy is a scalar.

Thus, the one-way protocol with r linear messages, defined by m,(x) = xTzf,,

i= l,..., r, is adequate for computing f. Q.E.D.

Theorem 5.2 states that Abelson’s bound is tight for homogeneous quadratic

polynomials. What happens for polynomials of degree greater than 2? In what

follows, we show the tightness of Abelson’s bound for computing functions of

the form: f (x, y ) = g(x + y), where g is a nonlinear homogeneous polynomial

in no more than four variables. Although this result determines a case for

which Cz( f; M 2’2) can be determined completely, it is of little use in practice.

This is because we have n <4 and the naive protocol ml(x) = x,, i = 1,.. ., n,

uses at most four messages and cannot be too far from being optimal. Our

result makes use of the following theorem proved by Gordan and Noether in

1876 [9].

THEOREM 5.3. Let f: !?1” + M be a tlonlinear homogeneous po@on~ial in

n < 4 L)ariables and let H(f) be its Hessian matrix, that is, the matrix with entries

(d ‘f/6’xl dXJ). If detH(f ) = O, then there exists a linear mapping Tfiom !R” onto
$ “1-1 + :Ii such that f(x) = g(Tx).M”- 1 and a homogeneous polynomial g: Jt

Our result is the following:

THEOREM 5.4. Let g: !11” * ~hl be a nonlinear homogeneous polynomial and

let the poijMomial f: $i 2“ M ~l~n be defined by f(x, y) ==g(x + y). If n <4, then

PROOF. Let z = x + y. We regard g as a nonlinear polynomial in the

variable z = 9+’. Let k be the smallest integer such that there exists some

linear mapping T from fl~” onto M k and some homogeneous polynomial

~: !llk * 01 such that g(z) = $(Tz), Vz. Since g is nonlinear and T is linear,

we see that ~ is also nonlinear. We claim that there exists some vector

i=(2,, . . .. fL)esl~ at which Ef( &) is nonsingular. Indeed,_if this is not so,

then by Theorem 5.3, there exists another linear mapping T from X L onto

!Rk - 1 and some homogeneous polynomial ~: ~i’ - ] x !3 such that ~(.i?) =

~( ~2), f~r all 2. But this implies that g(z) = ~(TTz). Since the composition of
T and T maps ~)1” onto fll~-*, this contradicts the definition of k.
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A simple calculation shows that H(g)lZ = T7H(~)l~ZT. Since T maps ~”

onto N‘, the matrix T has full column rank and we obtain rank H(g)!, =

rank 11(~)1 ~Z. Since the range of T is all of VI ~, we have

Since HXy(f)l(~, Y) = H(g)l. =..+Y, we obtain tlhat maxi, Yrank Hxy(f) = k. It
then follows from Theorem 5.1 that Cz(~, !l~ 2“ ) > k. To establish the reverse

inequality, we present a protocol for computing f that uses exactly k messages.

Letml(x) =~x, i= l,..., k, where ~ is the ith row of the matrix T. Then,

f(x, y) ‘g(x +y) =~(T(x +y)) ‘~(TI(x +Y)>..., T,(x +y))

=~(ml(x) + ~ly,. ... ,(x)x) + ~Ay).

This last formula shows that f can be computed using the one-way protocol

with messages ml(x) = Lx, i = 1, . . . . k. In particular, C2(f; 0i2’1) <

c ~,,,e,lr(fi M 2“) s k, which completes the proof. Q.E.D.

Unfortunately, Theorem 5.4 is not true for the case n >4, for the simple

reason that Theorem 5.3 fails to hold. Historically, Hess had published a paper

in which he gave an erroneous proof of Theorem 5.3 for all n. It was later

discovered by Gordan and Noether that Hess’ proof was incorrect and proved

that the largest value of n for which Theorem 5.3 holds is 4.

5.3. SOME NEW LOWER BOUNDS. Throughout this subsection we assume

that f: D~ ~ % is a complex rational function, where D~ c %’n X %“2 is the set

of vectors (x, y) at which f is finite. In this context, it is natural to consider

“rational” protocols, in which the messages transmitted are rational functions

of the input data (x, y).

We present two new methods for establishing lower bounds on the two-way

communication complexity in this setting. The first method provides lower

bounds on C,a,(fl D) for any open subset D ~ Df. The second method

requires that D = D~ but usually gives sharper lower bounds.

Our first method (Theorem 5.5–5.7) exploits the fact that any rational

protocol can be converted into a protocol in which the messages are polyno-

mial function of (x, y) and that uses at most twice as many messages:

THEOREM 5.5. Let f be a rational finction and let D bean open subset of D~.

Then there holds

The idea behind the proof of Theorem 5.5 is that each rational message of a

rational protocol can be replaced by two polynomial messages consisting of the

numerator and denominator polynomials (respectively) of the original message.

The proof can be found in [12] and is omitted because it is relatively straight-

forward and also because Theorem 5.5 will not be invoked in subsequent

proofs.

Suppose that f(x, y) = P(X, y)/Lz(x, y) where p and q are two relatively
prime polynomials. Let D~ = {(x, y)lq(x, y) # 0} and let D c D~ be an open

subset. Consider some rational protocol n = ll,.((~, D) with r messages,

where r = C,~t(~, D) (cf. Section 1). Then, by Theorem 5.5, there exists a
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polynomial protocol # G ~,,fllY(~; D) that uses Zr messages. Let m,,. . . . mz,

be the message functions of the protocol m’. Assuming that processor l’,

performs the final evaluation of ~(x, JI), we must have ~(x. y) =

12(X, n?,(x, -y),.. ., m?,(x, y)) for all (x, Y) G D, where h is a rational function.

Since h is rational, we must have f(x, j) = p’(.x, y)lq’(.x, y ), where p’ and q’

are some polynomials whose values (on the set D) are completely determined

by the values of message functions m,, . . . . mz, and x. This implies that

C~,,,,y( p’; D) < 2r and CP,,l}(q’; D) < 2r. Notice that p/q = p’\q’. Using the

unique factorization property of rational functions over % (cf. Section 4), we

see that p’ = pg and

that there exists some

and

q’ = qg for some nonzero polynomial ~. We conclude

nonzero polynomial g such that

z @y(Pg; ~~C, U,(f; D) > ‘C

C,a, (f; D) z ;C,,,,Jqg; D).

This shows that we can bound from below the communication complexity of f

by bounding from below the communication complexity of pg or qg. The

difficulty, however, is that the polynomial g is not known and we are forced to

develop a bound which is valid for an arbitra~ choice of g. Ideally, we would

like to be able to say that if p has high communication complexity then the

same is true for pg. Although this does not seem to be true in general, the

following result makes a step in that direction:

THEOREM 5.6. Leff, g= ’%[x,,.. .,x,n, y,,.. ., y,, ] be two ~lonzero polynomi-

als that are relatiL1e~ prime. Then,

C,(fg; %’’’+”) > r?lax rankHIV(f)l,l, ,,) – 2,
(X, y)= l(f)

where V(f) = {(x, y)lf(x, y) = O} is the zero set ofpo$nornialf.

PROOF. By Theorem 5.1, we have

c2(fg; 8”’’’+”) 2 m ax rank(~. v(fg))l(t,l)(x, ~)=~ill+rl

max
(

rank f(x, y) H,v(g)lf.,. Y) + g(x,Y)~~y(f~l[k.y)
(x,,V)= ’?’’”+”

+(vxf(x, y))(y,!g(x, y))T + (Vlg(x, y))(vyf(x, y))’)

> max rank(j’(.x, y) HIY(g)l[,, vj +g(x,y)~.,}(f)lf.t,~)
(X, y)%-’’”’” )-~

> max rank(g(x, y) H, Y(f)l(,. Y)) –~, (5.4)
(.l, })= v(f)

where the third step follows from the fact ( V,f( x, -Y))(V} g(x, y))~ and

(vKg(x, y))(V},f(x, y))~ have rank at most 1. Choose some (xU, yfl) = V(f) such
that

rank(H.tv(f)lI~,l.Y,,) ) = max rank Hyy(f)l(. t,yj = r.
(.r. y)= v(f)
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Then, there exists a submatrix M of size r X r embedded in H,,,(f), which is

nonsingular at ( X{l, y~l). We view this submatrix as a function of ( x, y) and we

consider its determinant det( M), which is a polynomial in (x, y). We have just

shown that V(f) is not contained in V(det(M )). In other words, if we write f as

a product of irreducible polynomials, then at least one of the irreducible

factors of f, call it fl, does not divide det( M). But since f and g are relatively

prime, it follows that fl does not divide g either. We conclude that fl does not

divide g” det(M). We now claim that V(f) c V(g . det(M)). If the claim is not

true, then V(f) c V(g. det( M)). Hilbert’s Nullstellensatz applies and shows

that (g “ det(M))~ =$2 for some positive integer k and some polynomial h. By

the unique factorization property, we see that the irreducible polynomial f,

would have to be a factor of either g or det( M), which is a contradiction and

establishes our claim.

Since PI f ) @ V(g “ det(M)), there exists some (x*, y* ) e W f ) such that

g(x*, y* )det(M)l(., -,,* ~ # O. Consequently,

max rank(g(x, y) HXY(f)lf., Y)) > rank(g(-Y*, y*) H,rY(f)l(~~, Y.))
(.t. y)=v(j)

which when combined with (5.4) completes the proof of the theorem. Q.E.D.

The above theorem states that if rank H,,V( f ) is large for some (x, Y) ● W f ),

then fg also has large communication complexity for any polynomial g which

is relatively prime to f. Unfortunately, Theorem 5.6 is not always sufficient for

proving tight lower bounds for fg because there exist functions f for which

rank H, ~(~ ) is small for every (x, y) ● V(f) even though H,,(f) has high rank

when the restriction (x, y ) = V(f) is removed. A specific example will be seen

in the next section.

The following is a result from algebraic geometry that gives a sufficient

condition on f under which Hl V(f ) has high rank at some point belonging to

v(f).

THEOREM 2.7. Let ~ be a nonlinear hot?logeneous polynomial in n oariab[es

such that Vf(x) + OAfor eue?y x = V(f). Let the polynomial f: %’~” ~ %

dejined by f(x, y) = f(x + y). Then,

max rank(~ty(f)l(,,,y))2,?-1.
(.t. v) EJ’(f)

The proof of the above theorem can be found

immediate consequence of Theorems 5.6 and 5.7, we

COROLLARY 5.3. Let f and ~be as in Theorenl 5.7.

Cz(f”g; %z”) >n – 3

for any poijwowlial g that is relatileij p,irne to f.

in [24] and [11]. As

have the following:

Then,

be

an

Unfortunately, the above corollary is not easy to apply, bqcause the set V(f)

is u~ually hard to determine. Accordingly, the condition Vf(x) # O on the set

V(f) cannot be easily tested. In fact, it seems a lot easier to just compute
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the rank of HIY(~) at a random point of k’(~) because max(x, ~, e ~(f ~

rank H., y(~)l(,, ~, is attained at the majority of points on V(f) (a Zarlskl open
set of V(f)).

We have so far shown that lower bounds on the communication complexity

of a rational function f’ = p/q ( p and q are relatively prime) can be obtained

by developing lower bounds on the communication complexity of pg or qg,

where g is an arbitrary nonzero polynomial. We now develop our second

method for establishing lower bounds by exploiting the fact that if the domain

of a protocol is the set Df on which ~ is finite, then the polynomial g is not

entirely arbitrary. We have shown earlier that if ~ can be evaluated by a

rational protocol with domain Df, then there exist polynomials p’ and q’ such

that ~(x, y) = p’(x, y)/q’(x, y) for all (x, Y) ● Df and CpO1v(f; Df) >

CPOlv(q’; D~)\2. The polynomial q’ must certainly satisfy q’ = qg, for some g,

but it must also be nonzero at every point in the domain Df of ~ because

otherwise the expression p’(x, y )/qr( x, y) will be meaningless for some (x, y)
G Df. This additional constraint is used in an essential way in the following

result.

THEOREM 5.8. Suppose that f is a rational function and that f = p/q, where p,

q=~[x,, . . ..x.n, y~,. ... y.] are relatively prime polynomials. If q is irreducible,

then

(a)

Crar(f; IIf) > max rankHIY(q)l[,, YJ – 1. (5.5)
(X, y)=w’xw’

(b)

PROOF

(a) consider a rational protocol for computing f on Df that uses r =
C,ut(fi D~) messages and let ml,. ... m,: D~ ~ % be the corresponding mes-

sage functions. We first consider the special case where each one of the

message functions is a polynomial. Without loss of generality, we assume that

the final evaluation of the function f is performed by processor PI. By the

definition of a rational protocol (cf. Section 1), there exists a rational function

h such that f(x, y) = h(x, ml(x, y),..., m,(x, y)) for all (x, y) E Df. Note that
h can be expressed in the form

hl(x, rnl(x, y) . . . ..m. (v))v))
h(x, rnl(x, y),. ... rn, (x, y)) =

h2(x, rnl(x, y),..., rnr(x, y)) ‘

where hl and h, are relatively prime polynomials. Let h’z( x, y) =

h2(x, W2.1(X,y), . . . . -m, (.x, y)). The functions m,, . . ., m, were originally defined

on Df. On the other hand, since they are polynomials they can be uniquely

extended to polynomial functions on the entire of ‘%’”+”, Furthermore, the

representation hj(x, y) = hz(x, ml(x, y), . . . . m.(.x, y)) must be also valid over

%’” +‘ and this implies that CPOly(hj; %’rn+”) s r. We now notice that we must
have h’z(x, y) # O for all (x, y) e Df, because the function h must be defined

for all (x, y) ~ Df. Equivalently, V(hj ) c V(q), where q is the denominator
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polynomial of f, assumed irreducible. Hilbert’s Nullstellensatz shows that

q~ = h~ g, for some polynomial g and some positive integer k. We factor the
polynomial hj g as a product of irreducible factors. Since q is irreducible, it

follows that each one of these factors must be equal to q. We conclude that

hj = cqK for some nonzero constant c ● %’ and some positive integer ~, and

therefore r z CPOIY(h\; %n’ ‘“) = CPOIY(q K; %“” ‘p]).
We now consider the case where there exists some i such that the message

function m, is not a polynomial and let us choose, in particular, the first such

index i. Suppose, without loss of generality, that i G TI ~ ~. We have mi(x, y)

= fi,(x, m,(x, y), ..., m ,. l(x)) for some rational function ‘fit and each one of
the functions m ~,. . ., mi _ ~ is a polynomial. We write fill in the form fit =

hl/hz, where h ~ and 112 are relatively prime polynomials, so that

hl(x, ml(x, y),..., nZZ_l(x, y))
fii(X, ml(X, y), . . ..m. _l(X, y)) =

hz(x, nzl(.x, y),..., nzl_l(x, y)) “

Let )zj(x, y) = Az(x, ml(x, y),. . . . m ,. ,(x, y)). We now repeat the argument of
the preceding paragraph. Since the domain of the protocol is all of Df, it

follows that V(hj) c V(q) and hj = cq~ for some nonzero constant c G %

and some positive integer K. Notice that hj can be expressed as a polynomial

function of x, nzl(x, y),..., mi _ I(x, y), and this implies that r > i – 1 >

Cpo,y(h; ; $3‘+”) = cpo,,(q~; %m+n).
To summarize, we have shown that in both cases that there exists a positive

~oly(q~; %m+”integer K for which C,af(f; D ) = r > C

(

). It now remains to

~ %“” + “). To this effect, we apply Theoremderive a lower bound on CPOIY q ;

5.1. We have

cpoly(qK; w+”) > c2(qK; %’m’”)

> max Z=IkH,ty(qK)l(~, ~,
(,K,JJ)GW”+”

.
(

rank Kq’ - *(x> Y)~.ry(q)l(x, y)(x, ~y=ytn+!,

+K(K – l)q ~-’(x, y)(vxq(x, y))(v,q(x>y))T) (5.7)

> max )
rank[Kq K–’(x, y) HXY(q)l(.,, Y) – 1 (5.8)

(X, y)e%’”’+”

> max rank H~Y(q)l(,, Y) – 1, (5.9)
(x,y)=%~’~”

Here, the first equality (5.7) is a simple calculation and the next step (5.8) is

due to the fact (VXq)(V q)~ has rank at most 1. The last step is obtained as

follows: The set {(x, y)~q(x, y) # O} is a Zariski open set. Furthermore, the

maximum rank of H,V(q) is attained at the set of points where the determinant
of a suitable submatrix of HXY(q) does not vanish and is also a Zariski open set.

Since every two nonempty Zariski open sets have nonempty intersection

(Theorem 4.2), it suffices to consider a vector (x, y) in the intersection of these
two sets.
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(b) Let (x, y) be an arbitrary vector of Df. Note that

HP 2P
Iixy – = :H.,, (p) – $H,y(q) – :(v, p)(v,qr + #Qm@)T.

qq”
q-

q

By evaluating the rank of both sides at (x, y) and noticing that both

(V, p)(Vvq)~l(.t, Y~ and (v,qXv/yq)Tlt,,Y) have rank at most L we = that

HP
rank H,” — > rank Hl, (p)l(,,,, ) – rank H., Y(q)l(t, y) – 2.

“q (..,})

Therefore,

Craf(f; ~f) ~ C’z(f; Df)

()P> rank HXV —
‘q [x. v)

z rank H1, (p)l(~, Yl – C,.t(f; ~~) – 3, V(x>y) ● Df,

where the last step follows from Eq. (5.5). After rearranging the above

inequality, we see that

1 3
C,.,(~; Df) z ~rank ~.,(PN.,,,J – ~, V(x, y) ‘=Df. (5.10)

Since max(x,,,~,,1)111 rank H,,,(p) is attained at a Zariski open set and Df is
also a Zariski open set, by Theorem 4.2. there exists some vector (x*, J’*) ~ Df

such that

NOW Eq.

6. An Q(

5.6) becomes evident when one considers (5.10) at (x*, y’ ). Q.E.D.

nz ) Lower Bound for Computing [(x + y ) –‘ 11,

Let x and y be n x ~t matrices. As an application of the results of Section 5,

we consider the communication complexity of the function ~( x, y) =

[(x + YJ-l 1,, (the (L l)th entw of (~ + Y)-l ) within the class of rational
protocols. Although Abelson’s lower bound is only Q(n), we derive a lower

bound of n~ – 1, which is almost equal to the obvious upper bound of n2. In

particular, this example will show that Abelson’s bound can be far from tight.
We motivate our choice of the problem. The value of [(x + y)- 1111can be

thought of as the first entry of the solution of the system of linear equations:

(x+y)u= b,whereb=(l, O,..., 0) and u is the unknown. Thus, the problem

under consideration captures the essential difficulties of a distributed solution

of a system of the form (x + y)u = b, when x and y are possessed by different

processors. Since the solution of linear systems of equations is the most basic

problem in numerical computation, the problem we are studying is an interest-

ing paradigm.

It is easy to see that n2 messages would be needed if we had required that a

particular processor, say f’{, should eventually evaluate all entries of the
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inverse matrix (x + y) -‘. (This is because P] could then invert (x + y)- 1 to

obtain x + y and use its knowledge of x to infer the value of y, and this is

possible only if at least n2 messages have been exchanged.) However, the fact

that the evaluation of the whole inverse matrix (x + y) -1 is hard does not

imply that the computation of a particular entry is also difficult. In fact, we

shall see that the derivation of tight bounds on the communication complexity

of [(x + y)- 1]1~ is surprisingly hard. As a first indication, we show that

Abelson’s result (Theorem 5.1) gives only an Q(n) lower bound.

THEOREM 6.1. Let f(x, y) = [(.x + y)-l],l. Then

max rankfity(f)l(.l. yl < 3rz. (6.1)
Ct, y)e Df

PROOF. Let us fix a pair p = (xO, y,)) G Df of n x n matrices. We show
that the rank of 17XY(f)lP is at most 3rz. Let Al, Az be two n x n perturbation

matrices. We consider the Taylor series expansion of f at the point p:

f(xo + A1, YO + A,) = [((x(, +y,) + (A, + A,)) -l],,

[(
–1.

1[
X()+yo) ~, – I(x,, +yo)-’(A1 + A2)(x0 +-Y(l) ,1

+[(xO +yo)-’((A, + A,)(xo +yo))’],, + ““

Notice that the value of H,Y( f )1~ is completely determined by the second-order

terms of this expansion. Thus, if we let

[g(A1, Az) = (X. +yo) “((A, + A2)(x0 +Y(l))’], i,

then ~.,)(f )l(,(,. ,,,) = ~~,~$g)lt~.o). Therefore, we only need to show that

rank HA,3 $g)l(O, O, s 3n. We present a two-way polynomial protocol for com-

puting g that only uses 3n messages.

Notice that as far as the computation of g is concerned, the matrices X., y[,

are constant and the matrices A, (i = 1,2) are the inputs. Let e = (1, O, ..., 0)~.

The protocol proceeds as follows:

(1)

(2)

(3)

Processor P, sends the vector AI(xO + y. )e to processor Pz (n messages).

Processor Pz computes (A, + A ~)( X. + y{) )e and sends the following two

vectors (2 n messages) to P,:

(Al + Az)(x{) +yo)e

and

Az(x(l +y{, )(Al + Az)(xo +y~~)e.

Once processor P, receives these messages, it can use its knowledge of A,

to ev~luate ((A, “+ Az)(xo + yo))2e. It follows that g(Al, Az) = [(.x() +

Y()) -l((A1 + A2)(x0 + Yo))zlll can also be evaluated bY P1.

By Abelson’s result (Theorem 5.1), we see that for any open set D contain-
ing (O, O), we have

rank ‘ALA./, S Cp.l}(g; D) S 3n,

which completes the proof. Q.E.D.
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Let Df be the set of all (x, y) ● %“” x %“” at which the rational function

jlx, y) = [(x + y)-l 11[ is well defined. clearly, Df is the same as the set of all

(x, y) such that det(x + y) # O. Our main result is the following:

THEOREM 6.2

The proof is based on two lemmas:

LEMMA 6.1. The polynomial g(x, y) = det(x + y) is irreducible.

LEMMA 6.2. Suppose that H > 1 and let g(x, y) z det(x + y). Then the rank

of H, Y(g) evaluated at (I, O) (I is the identiv matrix) is n2.

Once these two lemmas are proved, the desired result is obtained as follows:

If n = 1, then Eq. (6.2) holds trivially. For n > 1, we have f(x, y) = detll(x +

y)/ det(x + y) = detll(x + y)/g(x, y), where detll(x + y) is the cofactor of
the (1, I)th entry of x + y. It is seen that g(x + y) does not divide detll(x + y),

because otherwise [(x + y) - i ],, would be a polynomial in the entries of x and

y, which is easily shown not to be the case. Since g is irreducible (Lemma 6.1),

we conclude that the polynomials det ~I(x + y) and g( x, y) are relatively prime.

Then, Theorem 5.8 applies and shows that

Cra,(f; Df) 2 max Hty(g)l(t,,, – 1 2 n2 – 1,

(.K,Y)E’Z”2”2

where the last inequality has made use of Lemma 6.2. Thus, it only remains to

prove the two lemmas.

PROOF OF LEMMA 6.1. In n = 1, then g(x, y) = x + y, which is obviously

an irreducible polynomial. For n > 1, we assume, in order to derive a contra-

diction, that g(x, y) = A(x, y)ll(x, y) where A, B are nonconstant polynomial

functions of the entries of x, y. Let x,, (respectively, y,,) denote the (i, j)th

entry of x (respectively, y). Let us restrict x and y by letting X1, = –yll = 1,

i= 2,..., n. WitAh suchA a restriction, g, A, and B can be expressed as

polynomials ~, A, and B, respectively, of the unrestricted variables. Note that

i(x, y) = (x,, +y,l)detll(x +y) =~(x, y) fl(x, y).

By the unique factorization }roperty ofApolynomials, we see that (xl, + y], )

must be a factor of either A(x, y) or B(x, y). Since det(x + y) is a linAear

f~nction of xl, + yll, we conclude that xl,, yl ~ appear together in either A or

B, but not in both. It then follows that x I 1, Y11 aPPear together in either
A(.x, y) or B(x, y), but not in both. Repeating our argument for all (i, j)

(1 s i, j s n), we see that either x,] and y,] both appear only in A(x, y) or

they both appear only in B(x, y). Therefore, the set {(i, j), i, j = 1,2,. ... n}

can be partitioned into two subsets R,, Rz (with R, being nonempty) such that

A(x, y) depends only on the entries ~,,, y,, with (i, j) = RI and B(.~, y)

depends only on the entries x,,, y,j with (z, j) = Rz. Let us express each one of

the polynomials A and B as a sum of products and then carry out the

cross-multiplications to expand A(x, y)B( x, Y) as a sum of products. Since A

and B depend on different entries, it is seen that this expansion leads to no

cancellations. Hence, if (i, j) is in R,, then (i, k) and (k, j), k = 1, . . . . tz, also

belong RI, since otherwise there would be a term in the expansion of
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FIGURE 1

A(x, y)ll(x, y) = det(x + y) with two entries from the same row or column.

This implies that all of the entries must be in I?,, and Rz is empty. Conse-

quently, B(x, y) is a constant polynomial, which contradicts our original

assumption. Q.E.D.

PROOF OF LEMMA 6.2. An easy calculation yields

~ ?g

-[

1 if i=j, l=mandi+l

— –1
~x,] ‘Ylm (f,{))

if i=m, j=landi+l

o otherwise.

Thus, if the rows and columns of H,y(g)l( ~,~, are suitably rearranged, the

matrix ~: ~(g)l(~, O, has the structure shown in Fig. 1. It is not hard to see that
this matrui is nonsingular and therefore has rank nz. Q.E.D.

We would like to be able to strengthen Theorem 6.2 in a number of

directions. First, Theorem 6.2 refers to the computation of [( x + y) ] ]1~, where

x, y are complex matrices. This does not lead to a lower bound when we

restrict x and y to be real, even though this is the case of main practical

interest. A related deficiency is that the lower bound applies only to protocols

whose domain is equal to all of D~. It would be interesting to know whether

the communication complexity of the problem can be reduced by an order of

magnitude when we restrict to real matrices, or if we only consider the

evaluation of f in an open set of real matrices. We conjecture that this is not

the case, but we are not aware of any proof technique that could lead to such a

result.

One possible approach for proving a stronger lower bound is based on

Theorem 5.6 of Section 5. This result shows that an Q(n2) lower bound will be

established if we manage to find a pair (x, y) of matrices such that g(x, y) = O

and rank H, Y(g)l(X, ~, = Q(n2), where g(x, y) = det(x + y). Unfortunately, the
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determinant function is particularly nasty in that respect. It can be shown [12]

that the rank of H,)(g) is nz at each point (x, y) such that x + y is invertible

but it is no more than 3n + 3 at each point (x, y) at which g(x, y) = O.

Finally, let us mention that an Q( HZ) bound can also be obtained for the

special case where x and y are restricted to be symmetric matrices. The proof

is similar to the proof of Theorem 6.2.

7. Conclusions and Extensions

We have presented a variety of new results on the one-way and two-way

communication complexity for algebraic problems. We have used, in several

occasions, the results of [2], but our results are often stronger because they

exploit the algebraic structure of the problem.

There are several directions for further research on the subject. One

direction concerns the derivation of lower bounds on two-way communication

complexity that involve information other than the second order derivatives.

(One such result can be found in [13].) Another direction concerns two-way

protocols for computing a collection {~1,. . . . ~,} of functions, with s >1. Here,

even if one assumes that the functions ~, are quadratic, the evaluation of the

communication complexity is surprisingly hard and leads to problems with a

combinatorial flavor. (Some partial results can be found in [12].) A final

direction concerns “multi-party” protocols in which more than two processors

are involved. There is very little literature on this subject [S] and it is not

completely clear what are the interesting problems in this area.

ACKNOWLEDGMENTS. We are indebted to Professors Steve Kleiman and

Michael Artin and Mr. Siye Wu of MIT for several stimulating discussions. We

also wish to thank Professor Peter Olver of University of Minnesota for

suggesting the reference [9]. Thanks are also due to an anonymous referee for

a careful reading of the manuscript.

REFERENCES

1. ABELSON, H. Towards a theory of local and global computation. Theoret. Comput. Set. 6

(1978), 41-67.

2. ABELSON, H. Lower bounds cm information transfer in distributed computations. J. ACM
27, 2 ( 1980), 384–392,

3. AHO, A. V.. ULLMAN, J. D., AND YANNAK.WS, M. On notions of information transfer in
VLSI circuits. In Proceedings of the 15flz,4ztzua[ ,Jy~tzposuanon Tlzeov o~ Computing (Boston,
Mass., Apr. 25-27). ACM, New York, 1983, pp. 133-139.

4. ATIYAH, M., AND MACDONALD,I. Introduction to Comzwzz{tatu!e Algebra. Addison-Wesley,
Reading, Pa., 1969.

5. BERTSEKAS, D. P.. AND TSITSIKLIS,J. N. Parallel and Distributed Computation. Nun,erica[

Methods. Prentice-Hall, Englewood Cliffs, N.J., 1989.
6. BLLJM, L., SHUB, M., ANDS~MLE, S. On a theory of computation and complexity over the real

numbers: NP-completeness, recursive functions and universal machines. Bu1l. AMS 21. 1

(1989), 1-47.
7. BORODIN, A., .~ND MUNRO, I. The COr71plLfUt10?ZUl Cornplexily of Algebraic and Nzo?zenc

Problems. American Elsewer, New York, 1975.
8. CHANDR& A. K.. FURST, M. L., AND LIPTON, R. J. Multi-party protocols. In Proceedzrzg~ of

the 15tlz ~~wzuul ,$ympostwn on Tlzeo?y of Cot?zputztzg (Boston, Mass., Apr. 25–27). ACM, New
York, 1983, pp. 94-99.

9. GORDAN, P., ANDNOETHER,M. Ueber die Algebraischen Formen, deren Hesse’sche Deter-
minant Identisch Verschwindet. Math. Arm. 10 (1876). 547–568.

10. HARTSiIORNE,R. Algebralc Georrzctty. Springer-Verlag, New York, 1977.



Conununication Complexity of Distributed Algebraic Conzputation 1047

11. KLEIMAN, S. L. Tdngency and duahty. In Proceedings of the CA4S Summer Institute in

Algebraic Geometry (Vancouver, B. C., Canada), 1984.
12. LUO, Z. Q. Communication complexity of some problems in distributed computation. Ph.D.

dissertation. Operations Research Center, Tech. Rep. Ll[DS-TH-1909. Laboratory for Infor-

mation and Decision Systems. MIT, Cambridge, Mass., 1989.
13. Luo, Z. Q., ANDTSITSIKLIS,J. N. On the communication complexity of soh’ing a polynomial

equation. SIAM J. Comput. 20, 5 (1991). 936–950.
14. MEHLHORN, K., AND SCHMIDT,E. M. Las Vegas is better than determinism in VLSI and

distributed computing. In Proceedings of the 14th S’mpostLori on Theov of Computing (San
Francisco, Calif., May 5-7). ACM. New York, 1982, pp. 330-337.

15. PANG, K. F., AND EL G.AMAL, A. Communication complexity of computing the hamming

distance. SIAM J. Comput. 15, 4 (1986), 932-947.
16. PAPADIMITRIOU,C. H., AND S[PSER,M. Communication complexity. In Proceedir+y of the

lJfh $vmposizm on Theory of Computmg (San Francisco, Cal if., May 5-7). ACM, New York,
1982, pp. 196-200.

17. PArADIMITRIOU, C. H., AND TSITSIKLIS,J. N. On the complexity of designing distributed
protocols. Znf. Cont. 53, 3 (1982), pp. 211-218.

18. TENNEY,R. R., AND SANDELL,N. R.. JR. Detection with distributed sensors. IEEE Trans.

Aerospace Electronic Swt. AES-I 7.4 ( 1981). pp. 501-510.
19. TSITSJICLIS,J. N., AND Luo, Z. Q. Communication complexity of convex optimization. J.

Comp/ex. 3 (1987), 231-243.
20. ULLMAN, J. D. Compafationd Aspects of VLSI. Computer Science Press, Rockville, Md..

1984.
21. VAN DER WAERDEN,B. ~. kfodcrn Algebra, Vol. 1 & 2. Ungar, New York, 1953.
22. WILLSKY, A. S., BELLO, M. G., CASTANON,D. A., LEVY, B. C., .4ND VER~HEsL G. C.

Combining and updating of local estimates and regional maps along sets of one-dimensional

tracks. IEEE Trans. Autom. Cont. AC-27. 4 (1982), 799–8 12.
23. YAO, A. C. Some complexity questions related to distributed computing. In Proceedings of

the llth Symposiam on Theory of Compating (Atlanta, Ga., Apr. 30–May 2). ACM, New York,
1979, pp. 209-213.

24. ZAK, F. Projection of algebraic varieties. Math. U.S.S.R. Sbormk 44 (1983), 535-554.

25. ZARISKI,O., ANDSAMUEL,P. Cornmatati~e Algebra, vol. 1. Van Nostrmd, New Jersey, 1965.

RECEIVEDMARCH1989: REVISEDAUGUST1992; ACCEPTEDFEBRUAR1’1992

Jcmrmil of the Awmdtkun tor Computing Mdchlncry, Vol 4[1, No 5. Novcmhcr 19Y3.


