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Abstract. We consider a situation where two processors P, and P, are to evaluate a collection
of functions fi,...,f, of two-vector variables x, v, under the assumption that processor P,
(respectively, P,) has access only to the value of the variable x (respectively, y) and the functional
form of fi,..., f,. We provide some new bounds on the communication complexity (the amount
of information that has to be exchanged between the processors) for this problem. An almost
optimal bound is derived for the case of one-way communication when the functions f,,..., f, are
polynomials. We also derive some new lower bounds for the case of two-way communication that
improve on earlier bounds by Abelson [2]. As an application, we consider the case where x and y
are n X n matrices and f(x,y) is a particular entry of the inverse of x + y. Under a certain
restriction on the class of allowed communication protocols, we obtain an Qn?) lower bound, in
contrast to the Q(n) lower bound obtained by applying Abelson’s results. Our results are based
on certain tools from classical algebraic geometry and field extension theory.

Categories and Subject Descriptors: F.1.2 [Analysis of Algorithms and Problem Complexityl:
Numerical Algorithms

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Algebraic computation, communication complexity, lower
bound

1. Introduction

In several situations of practical interest, there is a set of processors who wish
to perform some computational task and who must communicate because none
of them possesses all of the problem data. Communication resources are often
limited and we are led to the study of the minimal amount of required
information transfer, that is, the “communication complexity” of the problem
under consideration. For example, in parallel computation [5], communication
is often much slower than computation and excessive communication may
create bottlenecks to the speed of an algorithm. A similar argument applies to
computations using special purpose VLSI chips [20] in which communications
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capabilities are constrained by physical and topological considerations. Finally,
there are several applications in signal processing: for example, in decentral-
ized estimation and detection, or in distributed sensor networks [18], data are
collected at geographically distant sites. Then, summaries of the data are
communicated so as to enable a particular processor or sensor to make certain
statistical inferences (see, e.g., [22]). Communication resources are often costly
in such contexts, and it is again natural to minimize the amount of information
exchange.

1.1. COMMUNICATION PrROTOCOLS. In this subsection, we introduce the class
of protocols that will be considered and we formulate the general problem to
be studied.

Let there be two processors P, and P,. Processor P, (respectively, P,) has
access to the value of a vector x € M™ (respectively, y € M"). Let there be a
given a finite collection f of functions f,, f,..... fit D> N, where Dg is some
subset of H™ X H" on which these functions are defined. (For example, if
each f, is a rational function expressed as a ratio of two relatively prime
polynomials, it is natural to let Dy be the set of all vectors at which none of the
denominators of these functions vanishes.)

The objective of the processors is to exchange messages and compute the
values f(x,y),....f.(x,y). It is assumed that both processors know the
formulas defining these functions. (For instance, if each f, is a polynomial,
then each processor knows the coefficients of these polynomials.) Ideally, a
protocol should work for all possible values (x, y) € Dy of the “inputs.” We
occasionally consider, however, protocols that are defined only when (x, y)
belongs to some possibly smaller set D C Dy

In a two-way communication protocol , messages can be exchanged in both
directions. We use r(7) to denote the number of exchanged messages and we
let 7', ., (respectively, T, ) denote the set of is for which the ith message is
transmitted from P, to P, (respectively, from P, to P,). The protocol is
defined in terms of a collection of functions m;....,m,, mapping a set
D ¢ Dy into . (In particular, m,(x, y) is the value of the /th message and the
set D 1s called the domain of the protocol.) Since a message by a processor can
only be a function of the information available to that processor, we impose
the requirement that for for each i, there exists some real-valued function s,
such that

mAx,y) =m(x.mx.y).....m,_ (x,y)),
Y(x.y)eD, if ieT_,, (1.1
and
m(x,y) =m(y,m(x,y).....,m,_(x,y)),
V(x,y) €D it ieT,,,. (1.2

We say that the protocol is legitimate if either of the following conditions is
true:

(a) There exist functions /,...., iz, such that

[, y) =h(x,m(x.y),...om, (%, ¥)),
Y(x,y)eD, i=1,...,s. (1.3)
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(This corresponds to the case where processor P, evaluates the final
result.)
(b) There exist functions A,..., &, such that

flx,y) = hl(y, m(x,y),..., m,(w)(x,y)),
V(x,y) e D, i=1,...,s. (1.4)

Let TI( f_: D, <) denote the class of all legitimate two-way protocols, with
domain D, for computing the functions f,,..., f;, subject to some additional
restrictions to be introduced later. We deflne the two-way communication
complexity C( fiD, <) for computing f on the domain D to be

C(]?;D, <—+) = inf r(r).
mel(f; D, <)

The definition of an one-way communication protocol 7 is identical, except
that messages can only be transmitted by processor P,. That is, the set T, | is
assumed empty. Let TI( f D, —) denote the set of all legitimate one-way
communication protocols with domain D. We define the one-way (from P, to
P,) communication complexity C( f2 D, —) on the domain D to be

C(fiD, =)= inf  r(m).
nell(fiD, —)

Notice that in the above models the protocols are “continuous” in the sense
that the messages to be sent are real numbers. Given that real numbers can
only be encoded with an infinite number of bits, such protocols might seem
impossible to implement in practice. However, parallel and distributed numeri-
cal algorithms are almost always described and analyzed as if real numbers can
be communicated, with the understanding that in practice these numbers will
be encoded with a finite number of bits that is sufficient to obtain a desired
accuracy. Furthermore, if the messages being transmitted are rational func-
tions of the data and if the data consist of rational numbers, then an
implementation using a finite number of bits is clearly possible. Finally, in
practice, it is usually the case that a field of a fixed length is used for
transmifting an encoded version of a real number. For this reason, it is
reasonable to count the number of real-valued messages being transmitted, as
opposed to counting individual bits. Our model is therefore a fairly realistic
way of capturing the communication resources needed in a number of practical
applications. Let us also note that the formal model of real-number computa-
tion introduced by [6] has been motivated by similar considerations.

Typically, some smoothness constraints have to be imposed on the message
functions m,, ..., m,.,. This is because there exist one-to-one functions from
R™ into N, and processor P; could transmit the value of its vector x by using
a single message. In particular, P, can simply interleave the binary expansions
of the components of x and use the resulting number as a message. This is not
a useful protocol, for the purposes of numerical computation, and is unlike any
protocol that is used in practice. In contrast to the above-described interleav-
ing, a good protocol should compress the information in x or y intelligently,
and then transmit only the compressed information. For this reason, we shall
impose some smoothness requirements on the message functions »1,. From a
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TABLE I. VARIOUS RESTRICTIONS ON ALLOWED PROTOCOLS

Restrictions on the message Restrictions on the final
functions 1, ..., m, evaluation functions
Notations (cf. Egs. (1 1)- (l ”)) hy, ..., h {cf Egs (1.3)-(1.4).

1€ f. D) continuously differentiable continuously differentiable
[Iz(fﬁ, D) twice continuously differentiable twice continuously differentiable
Hx(ﬁD) infinitely diffcrentiable infinitely differentiable
m,,.(f.D) rational rational
Hl,(,,y(fﬁ, l?) polynomial rational
0,0 (f. D) linear polynomial

technical point of view, smoothness assumptions prohibit the use of one-to-one
functions from M™ into M, if m > 1. From a practical point of view, such
smoothness is present in the vast majority of practical numerical methods for
algebraic problems. Furthermore, in this paper, we concentrate on the case
where each one of the functions in fi,..., f, is rational. It is then natural to
restrict attention even further to protocols involving only rational functions of
the data. This is equivalent to an assumption that each processor can only
perform the elementary arithmetic operations. Such an assumption is common
in complexity studies for algebraic problems [7].

In the sequel, we use the shorter notations T1(f; D) and C(f D) whenever it
is clear from the context whether we are dealing with one-way or two-way
protocols. Furthermore, we use the notation II(f; D) and C(f: D) whenever
s = 1 and the collection f of functions consists of the single function f.

In this paper, we consider various restrictions on the set of allowed proto-
cols. We indicate these restrictions in our notation, as shown in Table L.

We use notation like C,(f; D), C,(f: D), etc., to denote the communication
complexity under the restrictions on the protocols introduced in Table I.
Notice that, as we go down the table, additional restrictions are introduced
and, therefore, the corresponding communication complexity can only increase.
Finally, assuming that_D is a nonempty open set, we see that the set H,a,(f D)
(respectively, IT,,,...(f> D)) is empty unless f is a rational (respectively, polyno-
mial) function.

All of our definitions can be extended, in the obvious way, to the case where
the real number field N is replaced by the complex field ¢. Here, all the
functions f, are defined on a subset D, of @™ X & and take values in &
Furthermore, a protocol has a domain D € @ X " and the message func-
tions 2, and &, [cf. Egs. (1.1)—(1.2)] are defined on D.

1.2. RELATED RESEARCH. The problem formulation we are using is due to
Abelson [1, 2] who established lower bounds on one-way and two-way commu-
nication complexity, assuming that the message functions are once (respec-
tively, twice) continuously differentiable. (These results are stated and dis-
cussed in Sections 3 and 5, respectively.)

Communication complexity has also been studied under discrete models of
communication. In these models, the messages exchanged are binary and the
functions evaluated are such that a finite number of binary messages are
actually sufficient. For example, Yao [27] and Papadimitriou and Sipser [16]
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consider the computation of Boolean functions using binary messages. The
approach in these references is combinatorial in nature and very different from
ours. A fair amount of research has dealt with extensions of the results of [27]
and with the evaluation of the communication complexity of selected combina-
torial problems [3, 14-17, 20]. A different framework is considered in [19] for
the problem of approximately minimizing (within a desired accuracy) the sum
of two convex functions, with each function known by a different processor.
Here, the objective is to minimize the number of binary messages. as a function
of the desired accuracy of the solution.

1.3. OUTLINE OF THE PAPER. The rest of this paper is organized as follows:
In Section 2, we present some background results from field extension theory
that will be used in our study of one-way communication complexity.

In Section 3, we study the one-way communication complexity of computing
aset fy...., f, of polynomials. The results of [1] (stated in Section 3.1) provide
a complete solution for the case of a single function f, smooth message
functions, and polynomials whose domain is a (possibly very small) open set.
We extend these results to the case of s > 1. We also show that we can restrict
to the class of polynomial protocols while increasing the communication
complexity by at most one. Furthermore, the polynomial protocols we construct
have a domain that is almost all of H” X N" (except for a set of measure
zero). We also consider the special case where m = n and each one of the
polynomials f,: H" X H" is of the form f(x,y) = f(x +y), where f, is a
polynomial in n variables. For this case, we obtain a complete characterization
of the communication complexity, a proof that linear protocols are optimal,
and a constructive procedure for designing such protocols.

In Section 4, we present some background from algebraic geometry (e.g.,
Hilbert’s Nullstellensatz) that will be needed later.

In Section 5, we derive several general lower bounds on two-way communica-
tion complexity of computing a rational function f when the messages are
constrained to be rational functions of the data. OQur results are obtained by
combining an earlier result of Abelson [2] with the tools of Section 4. We also
identify certain instances where the lower bounds of [2] are tight.

In Section 6, we apply the results of Section 5 to the problem of computing a
particular entry of the inverse of x + y, where x and y are n X n complex
matrices. We derive an n?> — 1 lower bound (which agrees with the obvious
upper bound, within one message), while the results of [2] could only provide
an Q(n) lower bound.

2. Preliminaries

In this section, we introduce some algebraic results (see, e.g., [25, pp. 95-125]
or [21]) that will be needed in Section 3.

Notations. Let {a,:i € I} be a collection of vectors in R", where [ is a finite
index set. We use [a,:i € I] to denote the matrix with columns a,, i € L.
Whenever the range of the index variable i (i.e., the index set I) is evident
from the context, we use the simpler notation [a,: {]. For any function f: 3" —
N, we use Vf to denote the vector-valued function whose components are the
partial derivatives of f. We also use Vf( p) to denote the value of Vf evaluated
at some p € R".



1024 Z.-Q. LUO AND J. N. TSITSIKLIS

Let F, be a field and let F, be an extension field of F;. An element A € F,
is called a primitive element of the extension F,/F, if F, = F|(A), that is, if F,
is generated by A over the field F,. The following result (see, e.g., [25, page 84))
is called the theorem of primitive element and will be used in Section 3.

THEOREM 2.1.  Every finite separable algebraic extension F, /F, has a primitive
element. Furthermore, if F, = F((\,,..., A,), then there exists a primitive element
of the form A = Zf:n/]/\] where y, € F| for each j.

Remark. In fact, the proof of Theorem 2.1 given in [25, page 84] shows that
a primitive element A is obtained for an arbitrary choice of the coefficients
Yis--+» Yi»> as long as they do not lie in the zero set of a certain polynomial.

We now turn our attention to the case of transcendental extensions. Let
F,/F, be a field extension. The transcendental degree of F,/F,, denoted by
tr.d.F,/F,, is defined as the smallest number ¢ such that there exist elements
Al As,..., A, in B, with the property that F, is an algebraic extension of
F((Ap, Ays ...y A). The following theorem summarizes some important proper-
ties of the transcendental degree of a field extension.

THEOREM 2.2.  Let F, be a finitely generated extension field of F, and let F, be
a finitely generated extension field of F,. (In particular, Fy is also a finitely
generated extension field of F\.) Suppose that Fy = F/(A,, Ay,..., A,) and that
rd.Fs/F, =t Then, t = tr.d.F,/F, = tr.d.F,/F, + tr.d.F,/F,.

The following is the definition of a derivation over a field, which is a
generalized notion of differentiation.

Definition 2.1.  Let F, be a finitely generated extension field of F, and let F; be
an extension field of F,. A mapping D of F, into F; is said to be an F,-derivation
of F, (with values in F;) if for every X in F, and every x, y in F, the mapping D
has the following three properties: (1) D(A) = 0; (2) D(x +y) = D(x) + D(y);
(3) D(xy) = xD(y) + yD(x).

The well-known chain rules remain true for derivations. We now let
Dy, ,p(F;) stand for the space of all F-derivations of F, with values in F;.
Then Dy, ,r(I3) can be viewed as a vector space over F,. It can be shown (see
[25, pp. 120—127]) that the dimension of the vector space Zj. ,#(F3) does not
depend on the particular choice of F;. It is for this reason that we usually drop
F; from the notation . ,(F;) and use simply 2 ,r, to denote the space of
Fi-derivations of F, with values in any extension field of F,.

Example. We now consider in some detail the space of derivations for an
important special case and derive a result that will be needed in Section 3. Let
F, =N and let Fy; = R(x,, x,,..., x,,), the field of rational functions over N
with indeterminates x|, x,,..., x,. Furthermore, we let F, be the subfield of
F; that is generated by polynomials f, f,,..., f, € F,. In other words, F, is
the set of all rational functions that can be expressed as rational functions of
the f’s. As is well known, we have, for any D € @, ,,(F,),

m d
D=3 D(x)—.
k=1 Ixy
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Hence, D is completely determined by the choice of D(x,) € F;, k=1,
2,...,m,and{d/dx,),...,(d/dx,)} is a basis for @, ,(F;). Now suppose that
D E@F L e(Fs). Slnce F has characteristic 0, it follows that D can be ex-
tended 10 a derivation D in Dy, ,p(F3) (see [25, pp. 125-127]). From the above
discussion, we see that

D= Y D(x,) &- (2.1

k=1 ax,

Therefore, the map D, which is equal to the restriction of D on F,, can be
written as a linear combination of the (9/9x)s (cf. Eq. (2.1)). Conversely, for
each choice of D(x,) € F,, Eq. (2.1) defines a derivation in 9, e (F3).
However, two different chmces of D(x,) may give rise to the same derivation
in 9 , F( F,). As a matter of fact, any f € F, can be expressed in the form of
f= g(fl,fj, .oos f,), where g(z,, z,,..., z,) is a rational function. By the chain
rule, we have

g g
D(f) = —D(fl) + [? D(f7) + - +3;—D(fn)’

R

where dg/dz, is the partial derivative of g with respect to z, defined in the
usual sense. Since the dg/dz’s are independent of D, we see that D is
completely determined by its operatlon on f,, j=1,2,...,n. Moreover, since
the f’s belong to F, we see that different chou‘es of the D( f; Y’s will result in
dlfferent derivations in D, /F,

We now develop an exp11c1t formula for the dimensions of @y ,r (eq. (2. 4)
below), in the context of the particular example we have been con51der1ng This
formula will be crucial for the results of Section 3.

Notice that for every j and any D €9y ,r, one has

D(f) = ( fD(xk) )(f) - ZD(xk)—f

Xy
= (D(x)), D(x,)...., D(x )) V. (2.2)

m

We now rewrite Eq. (2.2) in the matrix form
(D(f)), D(f,),....D(f)) = (D(x,), D(x,),..., D(x,))[Vf,:j €],

where J = {1,2,...,n). Since D(x,) can be taken arbitrarily, we see that the
vector space D, F(F ) is isomorphic to the space spanned by the rows of the
matrix [Vf}: 1. ]. Hence

dim @, = rank[Vf: ], (2.3)
where the entries of [Vf,: j] are polynomials in variables x,, x,,..., x,, and the
rank is evaluated in the field F,. We can now assign real values to rl, X'a, ceea Xy

and calculate the rank in . Let [Vf,(p): j] denote the matrix [Vf: j] evaluated
at the point p € ™. Notice that if Za (pWVf(p) =0, Vp, then, by solving the
lincar system formally with Gaussian climination, we see that each a,(p) can
be chosen as a rational function of p. This implies

max rank([Vf(p) ]]) = rank([Vf,: ] )

peE R



1026 Z.-Q. LUO AND J. N. TSITSIKLIS

Combining this with Eq. (2.3), we obtain the following basic result:

dim @y, = max rank([Vf(p) ]]) (2.4)

e

We close this section with a result that relates the transcendental extension
degree and the dimension of the associated space of derivations (see [25, pp.
125-127)).

THEOREM 2.3. Let F, be a ficld and let F, be a finitely generated extension
field of F; such that tr.d.F,/F, = d and dim 2y ,r =1t. Then t is equal to the
smallest number r such that there exist elements Ay, A, ..., A, with the property
that F, is separable algebraic over F\(A, A+, ..., A). In particular, t = d. Further-
more, if F| has characteristic 0, then the equality t = d holds.

3. One-Way Communication Complexity

In this section, we study the one-way communication complexity of evaluating a
set f,,...,f, of polynomials, when the messages transmitted are restricted to
be polynomial functions of the data. We apply the tools of field extension
theory (presented in Section 2) to obtain a bound for the communication
complexity that is almost optimal (within one message). It will be seen that our
results strengthen earlier results in a number of directions. We also show that
the restriction to polynomial protocols can increase the communication com-
plexity of the problem by at most one message. We then specialize to the case
where the polynomials £, to be evaluated are of the form f(x,y) = f(x +y)h
for some functions f , and we show that there exist optlmal protocols with a
very simple structure: they consist of messages that are linear functions of the
data.

3.1. GENERAL RESULTS. The main available result on one-way protocols is
due to Abelson [1]:!

THEOREM 3.1. Let f: W™ X N" — N be an infinitely differentiable function.

(a) Let D be a subset of R X WM". There holds C, (f D) < rif and only if there
exist infinitely differentiable ﬁmclzons My, My ..., mt N = N and h: W' *"
— N such that

flx,y) =h(y,m(x),my(x),....m(x)), Y(x,y)eD. (3.1)

(b) Let (x*,y*)} be some element of M™ X M". There exists some open set
D CR™ X" containing (x*,y*) for which CAf; D) < r if and only if

dim(span{g, .+, 8> cvrevvs8m. o)) <7, (3.2)

where g, «(y) = (df/dx x*,y) and where the span is taken in the vector
space of functions of y defined on an open set containing (x*, y*).

''We state this result for the class IL(f; D) of protocols that use infinitely differentiable
functions. The result was actually proved in {1] for the class IT,(f; D) but the proof remains valid
for ILLf; D).



Communication Complexity of Distributed Algebraic Computation 1027

Let us consider protocols whose domain D is all of 9" X M". By varying
(x*, y*) over all possible elements of 9”7 X M" and applying part (b) of the
theorem to each one of these points we obtain

CAfi M X M) > max dim(span{g, ,..., & ,+})- (3.3)
xtemm”

Part (b) of the theorem states that this lower bound is also tight in a local

sense: there exist protocols whose number of messages equals the lower bound
and that evaluate f correctly when (x,y) is restricted to a suitably small
domain D. However, nothing can be inferred on the tightness of this bound
when one considers protocols whose domain is all of "™ X 3", Furthermore,
the message functions m, in Eq. (3.1) are not guaranteed to be polynomials,
even if the function f is a polynomial. Both of these deficiencies will be
remedied in the sequel.
_ Throughout this section, we assume that we are dealing with a given set
f=1A{f,....f) of polynomial functions mapping R” X R" into N and that
only one-way protocols are considered. We start by proving a lower bound
similar to Theorem 3.1(b), but more general, because Theorem 3.1 dealt only
with the case s = L.

Notation. For i = 1,...,s, and for any sequence a = (ay,..., «,) of non-
negative integer indices, we define a function g*: H™*" — N by letting
a“f,
g(x,y) = (x,y). (3.4)

Ay{1dys2 e dy,

(We use the convention g” = f.) Let ./ be the set of all a such that g is not
identically zero for some i. (Clearly, & is a finite set, since each f, is a
polynomial.) For any function g(x, y): H"” X M" — N, we use V,g to denote
the vector-valued function of dimension m whose components are the partial
derivatives of g with respect to the first » coordinates.

THEOREM 3.2. Let D be some open subset of H™ X R".

(a) If CAf, D) <r, then there exist infinitely differentiable functions
my,...,m:MN" >N and h*:RN""" >N, i=1,...,s, a €, such that

gr(x,y) =h*(y,m(x),...,my(x)), Y(x,y) €D, i=1,...,s.
(3.5)
(b) There holds

Cm(f; D) > max rank[V, g (x,y):i=1,2,...,5; a €]. (3.6)
(x.y)eD

PROOF

{(a) Since C( f, D) < r, there exist infinitely differentiable functions m,..., m
and h,,..., h, such that

f.(x,y) =h,(y,m(x),...,mAx)), Y(x,y) €D, i=1,...,s.

We differentiate both sides of this equation, with respect to y. The
left-hand side yields g*(x,y). The right-hand side remains an infinitely

r
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differentiable function of m](x), J=1...,r and y, and A" can be taken
equal to that function.

(b) Suppose that C(f: D) = r. Then Eq. (3.5) holds for some suitable func-
tions A and for all (x, y) € D. By differentiating both sides with respect to
X, we obtain

I3

Vgix,y) =) hiCy,m(x),...,m(x))-V.m,(x),
k=1 91
V(x,y) e D, Yi. (3.7)
Thus, each column of the matrix [V g*(x,y):i =1,2,...,s;a €] is a
linear combination of the vectors V. m (x),...,V.m (x). It follows that the

rank of that matrix is at most r for every (x,y) € D. Q.E.D.

We now notice that any polynomial f, can be written in the form

1

flxoyy = 2 L oOyfys oy, (3.8)

(a),. ,a)ey

where each f,, is a suitable polynomial. By differentiating both sides of (3.8),
setting y = 0, and comparing with Eq. (3.4), we see that for each i, a, there
exists a positive constant c¢,, such that

fialx) =c,g5(x,0), Vx e R, (3.9
Let us define
t = max rank[Vf, (x):i=1,...,s; a0 €¥]. (3.10)
xemm

Using Eq. (3.9), we see that

t = max rank[V,g?(x,0):i=1,2,...,5; 0 €]

xeMmn”

< max rank[V g*(x,y):i=1,2.....s; e €x/]. (3.1

(v, y)eMm <n”
COROLLARY 3.1. C,,, (fiN” X N = CLFN™ X R > 1.

PrOOF. The first inequality is trivial since we are considering a restricted
class of protocols. The second follows from (3.6) and (3.11). Q.E.D.

We make a short digression to verify that the bound ¢ of Corollary 3.1 is a
generalization Theorem 3.1.

THEOREM 3.3.  For the case s = 1, that is, for the problem of computing a
single polynomial f(x,y) = X, _, f.(xX)y{ - y®, the value of t is equal to the
right-hand side of Eq. (3.3).

PROOF. Let us fix some x* € N™. Let r(x*) be the dimension of the span
of {o’ff/(?xj(x*, ¥),j = L,....mJ}, where the span is formed in the vector space
of functions of the variable y. We only need to show that max . _ . 7(x*) = 1.
Notice that

VfF, y) = 2V () yfiyss ey,

a €Y
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Using the definition of r(x*), we see that there exist m — r(x*) linearly

independent Vectors py, ty, ..., My, ey i R with
Z df .
2w, ——(x*,y) =0, i=1,...,m—r(x*), Vy,
j=1 (?x]

where p,, denotes the jth component of . The above relation implies that
iy Moy e ey My (x*) are orthogonal to V f(x*,y) for all y. This is clearly
equivalent to

/‘LITfoa(x*) = 0’ VO{, i’

and implies that rank[V, f,: @ € &] < r(x*). Taking the maximum over all x*,
we have ¢ < r(x*). The proof of the reverse inequality is just the reverse of the
preceding argument. Q.E.D.

We now come to the main result of this section, which shows that the lower
bound of Corollary 3.1 is quite tight.

THEOREM 3.4. There exists an open set Dy € W™ whose complement has
Lebesgue measure zero and such that C,,, (f; Dy X N") <t + 1.

ProOF. We show the existence of an open set D, and of a set of polyno-
mial message functions m,, m,,...,m, , such that each f,, can be expressed
in the form

fox)=h, (m(x),....m, (x)), VxeD,, (3.12)

where £, is a suitable rational function. In light of Eq. (3.8), processor P, is
able, upon receipt of the messages m(x), my(x),...,m, (x), to evaluate
fx,y) for each i, and this will prove that C,, (f; Dy X W") <t + 1, as
desired.

Let F, =N (the field of real numbers). Let F; = F|({f,,}) be the field
generated by the polynomials {f,,:i = 1,...,s; & €%} over F,. Since F; has
characteristic 0 and F,/F, is finitely generated, Theorem 2.3 applies and shows
that

tr.d.F;/F; = dim D¢ . (3.13)

Notice that we are dealing with the situation considered in the example of
Section 2. In particular, Eq. (2.4) shows that

dim @, ,, = max rank[Vf, (x):i=1,....s; ¢ €&]. (3.14)

xemm”

By comparing with Eq. (3.10), we see that = dim 2, ,, and using Eq. (3.13),
we obtain

t =tr.d.F,/F,.
Let us choose a set of indices such that

¢t = max rank[Vf,]al(x),...,Vfiral(x)],

yeW”
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and let F, stand for the ficld generated by f, ,...., f, . over F,. By repeating
the argument in the preceding paragraph we obtain ¢ = dimZ; ,r =
tr.d.F, /F,. We then invoke Theorem 2.2 to obtain

t=trd.F, /I, = ‘[r.d.Fz/F1 + tr.d.Fy/F, =t + tr.d.Fy /F,,

which shows that tr.d.F,/F, =

We notice that F, is a flmtely generated extension of F,, and F, clearly has
characteristic zero. Therefore, we are in a position to apply Theorem 2.3 to
F;/F,, to conclude that F,;/F, is a separable algebraic field extension. Since
every finitely generated algebraic extension is finite (see [25, pp. 60-61]), we
see that F;/F, is also a finite algebraic extension. We can therefore apply the
theorem of primitive element (Theorem 2.1) to F,;/F,. This leads to the
conclusion that F; = F,(f*) where f* is some lincar combination (over the
field F,) of the polynomials {f, : (i, «) # (i,, @), Vk}. More precisely,

s
Y Y et (3.15)
acwx 1=1
where each €, is an element of F, and where €, = 0 for k=1,...,t. In

particular, usmg the definition of Fj, each €, can be expressed as a rational
function of f, ,,.... [,
Since F; = F(f‘) —F(fz]a. cos fiw. f5), it follows that each f,, can be

expressed as a rational function of the functions fiwr-os fons f*. Thus, there
exist rational functions /,, such that
fra = Healfrneos o [5). (3.16)

Note that (3.16) is similar to (3.12) except that it refers to the equality of two
elements in F; and that f* need not be a polynomial. Let S be the set in RN"”
on which the denomlnator of some of the rational functions under considera-
tion vanishes. The set S has measure zero. Let us denote the complement of §
by D,. Clearly, D, is an open set. By evaluating both sides of Eq. (3.16) at an
arbitrary vector x € Dy, Eq. (3.12) is obtained, provided that we can replace f*
by a polynomial.

To see that f* can be replaced by a polynomial, we recall the representation
(3.15) of f*. Since each ¢, is a rational function of fi,apr -+ [i,a,» the function
f* can be expressed as the ratio of two polynomials, f ¥ p /q, where ¢ is a
common multiple of the denominators of each one of the rational functions

- It follows that g is a polynomial function of f, , ,..., f, .. Let us consider
the one-way protocol defined by m, =f, ., .k =1,....tand m,,, = f*. Then,
g is known to a processor who has already recelved the values of f, ..., fiq,-

Consequently, transmitting the value p(x) (as the last message) carries the
same information as transmitting the value f*(x). We have therefore con-
structed a one-way protocol (with m; =f, ., k=1,...,1,and m,, | = p) that
uses ¢ + 1 messages, and all messages are polynomial functions of the input x.
Furthermore, by Eq. (3.16) and the fact that g is a polynomial function of
my,...,m;, we see that Eq. (3.12) holds for some suitable rational functions

h,,. QE.D.

In order to turn Theorem 3.4 into a useful result, one needs a computation-
ally effective method for evaluating * and for constructing a protocol that uses
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t + 1 messages. The solution to this problem is not apparent and depends on
the structure of the field F,. However, our proof does suggest a randomized
procedure, which we now outline. Assuming that the number of functions f,, is
not excessive, we can evaluate the rank of the matrix consisting of the gradients
V. f,., at a random point. Obviously, except for a closed set of zero measure (an
algebraic set) we find the maximum rank ¢, as well as polynomials f, , ..., f, .,
with the desired properties. Moreover, according to the remark following
Theorem 2.2, we know that the overwhelming majority of choices of the
coefficients ¢, in Eq. (3.15) are acceptable.

To summarize the results in this subsection, we have shown that (as long as
we are willing to disregard a set of points of measure zero) the restriction to
polynomial messages can increase the communication complexity by at most
one. This is in contrast to the earlier results (Theorem 3.1) that asserted the
existence of protocols that are not necessarily polynomials and whose domain
is only some (possibly very small) open set.

3.2. COMPUTING POLYNOMIALS OF THE FOrRM f(x +y). In this section, we
consider the special case where all of the polynomials f,: " X " — N to be
computed are of the form

filx,y) = flx +y), i=1,2,....5,

where each f:: M” — N is a polynomial. We exploit this special structure and
show that linear protocols (i.e., the messages are linear functions of the input)
are optimal within the class of protocols that use infinitely differentiable
message functions.

Let, as in the preceding subsection,

g (x,y) = ———(x
(9}11] (9y””

We view f, as a function of a variable x € " and we define
a°f,
. _ (2).
§7(2) Iz e gz 2
Let
t = max rank[V, g*(z):i=1,...,s; a €¥]. (3.17)

zeWm"
THEOREM 3.5. C(f: N" X M) = Cppoar i R X N = 1.
PROOF. We first prove a lower bound. Using Theorem 3.2(b), we have
Cw(]?; R x m") > max rank[V g (x,y); i, al.
(x,y)eR"xM"
We notice that §°(z) = g*(x,y) and V,§*(2) = V. g%(x, y), where z = x +y.
We thus obtain
Cx(f: M7 X ﬂi”) > max rank[V, g% (x + y):i, ]
(x, ))e Rx RN

= max rank[V,5°(z);i, ]
zem”

:t’
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which proves the lower bound. Given that C,(f; %" X R") < C,,,...(f; R" X
1,), the proof of the theorem will be completed once we establish that
Clzncur(f \7 \Rn) <.

We first consider the case where r = n. In this case, we can use the protocol
defined by m,(x) = x,, k = 1,..., n. (That is, processor P, transmits its entire
vector to processor P,.) This is clearly a linear protocol with ¢ messages and
establishes the desired result for the case ¢ = n. Notice also that the case t > n
cannot occur since ¢ is the rank of a matrix with n rows.

The proof of the upper bound for the general case (¢ < n) proceeds by
induction on n. For the basis of the induction, we consider the case where
n=1.1If t = n = 1, then the result is true, by the argument of the preceding
paragraph. If on the other hand ¢ = 0, then V,§,%(z) = 0 for all z € N and all
i, a. By letting a = (0,0,...,0), we see that Vf(z) =0 for all z and i
Therefore, each ﬁ is a constant function. In this case, processor P, can
compute f,(x, y) for each i, without receiving any messages, and Clmw(f N

X N") =0 = ¢, as desired.

We now assume that the result has been proved for n — 1 (n > 2) and we
prove it for n as well. The case ¢ = n has already been dealt with and we
assume that ¢t < n.

LEmMA 3.1, Ift < n, then there exists a nonzero vector ¢ = (¢, C,,...,C,) €
N such that
0 of
Yoo, =—(2)=0, Viz. (3.18)
0z

J=1 J

ProOOF. The left-hand side of Eq. (3.18) is a polynomial, therefore, it
suffices to show that the coefficient corresponding to each term z*'z§? -+ z
is ldentically zero. Let us denote the coefficient corresponding to the term
zMzge ez of Hf/z?z by d,(ij). Then Eq. (3.18) becomes equivalent to
Z”_lc d (z]) = 0 for all 1 and a.

Let H(z) =[V.8(2);i=1,...,5; ¢« €&, and consider the matrix H(0).
Note that the column of H(0) corresponding to indices i, «, is equal to

al(d (i), d,(i2),....d in)),

where «! d=efozlloz2! -+ a,!. (This is because the terms corresponding to ' # «
are either washed out by the differentiations or are set to zero when we let
z =1(0,0,...,0).) We have rank H(0) < max,_y» rank H(z) =t < n. There-
fore, there exists a nonzero vector ¢ = (¢y,...,¢,) € " that is orthogonal to
each one of the columns of H(0). This implies that X7 ;¢ ,d,(ij) = 0 and
concludes the proof of the lemma. Q.E.D.

Without loss of generality, we assume that ¢, # 0, where ¢, is the last
coordinate of the nonzero vector ¢ given by Lemma 3.1. We define an
invertible linear transformation 7: {" — M" by means of the formula

Tz =(z, + €12, 2, F CaZyyevy Zyoy + ChoyZ2,2CnZ,).

no n?»°e n? n=n

We show that this coordinate transformation leads to polynomials that are
independent of the last coordinate of their argument, which will then allow us
to use the induction hypothesis.



Communication Complexity of Distributed Algebraic Computation 1033
Consider the polynomials ﬁ’, e f" and f{,..., f! defined by

F(2) = f(T2) = [z, + C12)se s 2yt + Co1Zyy CuZy)y (3.19)

no nH~hn

fix,y) =f(x +y). (3.20)

Using the chain rule and Eq. (3.18), we see that

Therefore, the polynomials ﬁ’ are independent of the last coordinate of their
argument and can be viewed as mappings defined on "' (instead of N").

Given that T is an invertible linear transformation, it is easily seen that the
rank of the matrix considered in (3.17) does not change if each f, is replaced
by f We now apply the induction hypothesis on the functions f {fi,.... 3
to conclude that

-

Clmeai(fI’ q "X s‘il) <.

Let the linear functions m(x),..., m (x) correspond to a linear protocol for
the problem of evaluating the functions in f'. It follows that there exist
polynomials /), ...,/ such that

fi(x,y) =H(y,m(x),....m(x)), Vix,y.

Therefore,

e y) = flx +y) = (T (x +y) =f (T %, T 'y)
=BTy, m(T'x),...,m(T"'x)), Vi, x,y,

where we have use of the definitions (3.19) amd (3.20). Thus, the functions
m,,...,m, defined by m (x) = m(T"'x), i = .1, define a one-way proto-
col for the problem of evaluatmg fl, foseion fse Furthermore each m, is linear,
since it is the composition of linear functions. Therefore, C,, 0 f R xR
< t. This completes the induction and the proof of the theorem. Q.E.D.

We remark that the proof of Theorem 3.5 actually provides a procedure for
constructing a linear and optimal protocol. Furthermore, the proof shows that
we do not need to evaluate max, _ . rank H(z) but only the rank of H(0). If
the latter rank is equal to n, the problem is trivial, and if it is less than n,
Lemma 3.1 applies and the problem can be reduced to one with a smaller
dimension. Another point worth mentioning is that our proof actually suggests
a deterministic procedure for constructing the optimal linear protocol. In fact,
one can first compute the rank of H(0). If rank H(0) = n, then m (x) = x is
an optimal protocol. If H(0) has rank less than s, then one can use, for
example, Gaussian elimination method to find a nonzero vector ¢ such that
c¢TH(0) = 0. As shown in the proof, the problem is reduced to one with a
smaller dimension by a suitable change of variables. By repeating this process
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at most finitely many times, one will find an optimal linear protocol for
computing functions f,, i =1,...,s.

4. Preliminaries Continued

In this section, we review some results (e.g., Hilbert’s Nullstellensatz) from
algebraic geometry (see, e.g., [4] and [10]) that will be needed in Section 5.

Let #fx,x,,....x,] denote the ring of polynomials of variables x,,..., x,
over &, the field of complex numbers. Let f, g € €1x,, x,.....x,]. We use the
notation f|g and say that f divides g if there exists some 1 € €[x, x,..... x,]

such that g = f-h. We say that a polynomial g € €[x,, x,,...,x,] is irre-
ducible if g = f-h implies that either f or /& is an element of &. As is well
known, #lx,, x,...., x,] 18 a unique factorization ring, that is, each one of its
elements can be expressed as a product of irreducible polynomials. Further-
more, this factorization is unique up to reordering of the factors and up to
multiplication of each factor by an element of &

Let f|,...,f be some polynomials in #[x,, x,,..., x,]. We define the zero
set of f....,f, by

V(fi,o. f) ={(x;,x5,...,x,) € € f(x,x,,...,x,) =0,

We now state a simple version of Hilbert’s Nullstellensatz [4, p. 85] that will
be used in Section 6.

THEOREM 4.1 (HILBERT’S NULLSTELLENSATZ). Lef f|, ..., f. be some polyno-
mials in €{x,,....x,]. Ifg € &{x,..... x,land V(f,..., f.) C V(g), then there
exist some polynomials g, ..., g, € €lx,,....x,] and some positive integer k such
that

gE=gifi+gfat ot (4.1)

Notice that if Eq. (4.1) holds, then V(f,,...,f) € V(g*) = V(g). The fact
that the converse is also true is exactly the content of Hilbert's theorem.

COROLLARY 4.1. Iff,g € €lx....,x,], and if f(x) = O implies that g(x) =
0, that is, if V() C V(g), then there is an integer k and some h € €[x,,..., x,]
such that g© = fh. (In other words, flg*.)

One can assign a topology to the field " by taking the family {F(S)|S is an
ideal} as the closed sets. (It is a simple exercise to check that these sets satisfy
the usual requirements for the closed sets of a topology.) Traditionally, this
topology is called the Zariski topology on #. An important property of Zariski
topology is the following (see [10]).

THEOREM 4.2. Every two nonempty Zariski open sets of @" have nonempty
intersection and every closed set has zero Lebesgue measure.
5. Two-Way Communication Complexity

In this section we study the two-way communication complexity of evaluating a
function f: Dy = #, where D;, the domain of f is an open subset of @™ X &".
Throughout, we assume that f is twice continuously differentiable on D,.

5.1. ABELSON'S LOWER BOUND

Definition 5.1. We let H, (f) be the matrix (of size m X n) whose (i, j)th
entry is given by ¢°f/dx,dy,. We use the alternative notations (H,,( /)X p) and
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H, (f)l, to denote the value of H, (f) at some vector p € D;. Also, we let V, f
and \Y% f stand for the vectors of dimensions m and n (respectlvely) with the
part1a1 derivatives of f with respect to the components of x and y, respectively.

The following basic result has been established by Abelson [2]:*

THEOREM 5.1.  For any open set D C D; and any p € D, we have
C,(f; D) = rank(H, ,(f))(p). (5.1)
Theorem 5.1 has an obvious corollary:

COROLLARY 5.1. For any open set D C D, we have

C,(f;D) = max rank(H, ,(f))(p). (5.2)
pe

The matrix H,(f) is defined in terms of the cross derivatives of f and in
some sense prov1des information on how x and y are interrelated in the
formula for f(x, y). On the other hand, Eq. (5.1) only takes into account the
second order derivatives of f and ignores the higher-order derivatives or the
first-order derivatives of f. Thus, this bound should not be expected to be tlght
in general. As an example, let f be a linear function, that is, f(x,y) = a’x +
bTy (ae ™ be@" a0, b=0).Itis clear that C,(f; D) =1, for any
nonempty open set D, while Eq. (5.1) gives a vacuous lower bound of zero. The
following corollary strengthens Eq. (5.1) somewhat, by incorporating the first
order derivatives of f as well. It is only a minor improvement because it can
increase the lower bound by at most 1.

COROLLARY 5.2.  For any open set D C Df, we hate

C,(f: D) > max max rank[(Hw(f))(p) + ¢V, f(p)-V,f(p) ]

(e peD

ProoF. We notice that C,(f: D) > C,(g © f; D), for any twice continuously
differentiable function g:% — &, where geo f denotes the composition of f
and g. Forany p € D, and ¢ € %, consider a function g such that g'(f(p)) # 0
and ¢ = g"(f(p))/g'(f(p)). The result then follows by applying Theorem 5.1 to
the function geo f. Q.E.D.

In the remainder of this section, as well as in the next section, we investigate
the extent to which Abelson’s bound is tight and we derive some tighter
bounds. We mostly restrict attention to the case where f is a rational function
and we require the messages to be rational functions of the input. In the next
section, we identify two instances where Abelson’s lower bound (Theorem 5.1)
is tight. Then, in Section 5.3, we establish some new general lower bounds by
making use of Hilbert’s Nullstellensatz.

5.2. SOME CASES WHERE ABELSON'S BOUND Is TIGHT. We consider here
two particular cases in which Abelson’s bound (Theorem 5.1) can be shown to
be tight. This is in contrast to the results in Section 6 in which it will be shown
to be far from tight.

* This result was actually proved in [2] for real-valucd functions defined on ”*" but the proof
remains valid when M is replaced by &
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THEOREM 5.2. Suppose that f(x,y) =x"Qy, where Q is a matrix of size
mXnandx € X", ye M". Then C,(f; W) = rankH, () = rank(Q). In
fact, the lower bound can be attained by an one-way protocol with linear messages.

ProoF. Let rank(Q) = r. By Theorem 5.1, we see that C,(f; R"*™) >
rank(H, (f) = rank(Q) = r. To prove the other direction of the inequality, we
present an one-way linear protocol that uses exactly r messages. Using the
singular value decomposition of Q, there exist vectors u,,...,u, € R"™ and
Uy,...,0, € N" such that

Q=uup| +upl + - +uu!,

from which we obtain

xTQy =x"uply + xTu,0ly + - +x"upy. (5.3)

Notice that in Eq. (5.3) each one of the expressions x’u, and vy is a scalar.

Thus, the one-way protocol with r linear messages, defined by m (x) = x"u,,
i =1,...,r, is adequate for computing f. Q.E.D.

Theorem 5.2 states that Abelson’s bound is tight for homogeneous quadratic
polynomials. What happens for polynomials of degree greater than 2? In what
follows, we show the tightness of Abelson’s bound for computing functions of
the form: f(x, y) = g(x + y), where g is a nonlinear homogeneous polynomial
in no more than four variables. Although this result determines a case for
which C,(f; %?") can be determined completely, it is of little use in practice.
This is because we have n < 4 and the naive protocol m(x) =x,i=1,...,n,
uses at most four messages and cannot be too far from being optimal. Our
result makes use of the following theorem proved by Gordan and Noether in
1876 [9].

THEOREM 5.3. Let f: " = N be a nonlinear homogeneous polynomial in
n < 4 variables and let H(f) be its Hessian matrix, that is, the matrix with entries
(0%f/dx, dx,). If detH(f) = 0, then there exists a linear mapping T from R" onto
M1 and a homogeneous polynomial g: "' —> N such that f(x) = g(Tx).

Our result is the following:

THEOREM 5.4. Let g: N — W be a nonlinear homogeneous polynomial and
let the polynomial f: W*" > W" be defined by f(x,y) = g(x +y). If n < 4, then

Co(f; M) = max  rankH, ()i yy = Cripear (f3 N7,

(x,y)en?n

PROOF. Let z=x+y. We regard g as a nonlinear polynomial in the
variable z € N". Let k& be the smallest integer such that there exists some
linear mapping 7 from " onto M* and some homogeneous polynomial
&: M5 > N such that g(z) = g(Tz), Vz. Since g is nonlinear and T is linear,
we see that ¢ is also nonlinear. We claim that there exists some vector
2 =(%,,...,2) € R* at which H(g) is nonsingular. Indeed, if this is not so,
then by Theorem 5.3, there exists another linear mapping 7 from M* onto
ME-! and some homogeneous polynomial g: R*~1 — M such that g(2) =
g(T%), for all Z. But this implies that g(z) = g(T7z). Since the composition of
T and T maps N" onto M*~, this contradicts the definition of k.
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A simple calculation shows that H(g)l, = T"H($)|r,T. Since T maps N”
onto N, the matrix 7 has full column rank and we obtain rank H(g)|, =
rank H(g)|7.. Since the range of T is all of M*, we have

max rank H(g)|, = max rank H(g)l: = k.
zem" zent
Since H, ,(fx.y) = H(g)|;=1+y, we obtain that max, rank H (f) =k. It
then follows from Theorem 5.1 that C,(f; W*") > k. To establish the reverse
inequality, we present a protocol for computing f that uses exactly k messages.
Let m(x)=Tx,i=1,...,k, where T, is the ith row of the matrix 7. Then,

1

flx,y) =glx+y) =g(T(x +y)) =T (x+y),....T,{x +y))
=g(m(x) + Tyy,...,m(x) + T, y).

This last formula shows that f can be computed using the one-way protocol
with messages m(x) = T.x, i = 1,...,k In particular, C,(f; ") <
Crneal f; B2 < k, which completes the proof. Q.E.D.

Unfortunately, Theorem 5.4 is not true for the case n > 4, for the simple
reason that Theorem 5.3 fails to hold. Historically, Hess had published a paper
in which he gave an erroneous proof of Theorem 5.3 for all n. It was later
discovered by Gordan and Noether that Hess’ proof was incorrect and proved
that the largest value of n for which Theorem 5.3 holds is 4.

5.3. SoME NEw Lower Bounps. Throughout this subsection we assume
that f: D; — & is a complex rational function, where D, C & X & is the set
of vectors (x, y) at which f is finite. In this context, it is natural to consider
“rational” protocols, in which the messages transmitted are rational functions
of the input data (x, y).

We present two new methods for establishing lower bounds on the two-way
communication complexity in this setting. The first method provides lower
bounds on C,,(f; D) for any open subset D & D,. The second method
requires that D = D, but usually gives sharper lower bounds.

Our first method (Theorem 5.5-5.7) exploits the fact that any rational
protocol can be converted into a protocol in which the messages are polyno-
mial function of (x, y) and that uses at most twice as many messages:

THEOREM 5.5.  Let f be a rational function and let D be an open subset of D;.
Then there holds
C.,.(f;D)<C

poly

(f; D;) < 2C,o(f; D).

The idea behind the proof of Theorem 5.5 is that each rational message of a
rational protocol can be replaced by two polynomial messages consisting of the
numerator and denominator polynomials (respectively) of the original message.
The proof can be found in [12] and is omitted because it is relatively straight-
forward and also because Theorem 5.5 will not be invoked in subsequent

roofs.
P Suppose that f(x,y) = p(x,y)/q(x,y) where p and g are two relatively
prime polynomials. Let D; = {(x, y)ig(x, y) # 0} and let D C D; be an open
subset. Consider some rational protocol 7 € I1,,,(f; D) with r messages,
where r = C_(f; D) (cf. Section 1). Then, by Theorem 5.5, there exists a

rat
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polynomial protocol 7’ € Il (f: D) that uses 2r messages. Let my,..., m,,
be the message functions of the protocol #'. Assuming that processor P
performs the final evaluation of f(x,y), we must have f(x,v) =
h(x,m(x,y),...,m, (x, y) for all (x, y) € D, where h is a rational function.
Since 4 is rational, we must have f(x,v) = p'(x, y)/q'(x, y), where p’ and ¢’
are some polynomials whose values (on the set D) are completely determined
by the values of message functions m,,..., m,, and x. This implies that
C,o{p's D) <2r and C,, (¢'; D) < 2r. Notice that p/q = p'/q". Using the
unique factorization property of rational functions over # (cf. Section 4), we
sec that p' = pg and ¢’ = gg for some nonzero polynomial g. We conclude
that there exists some nonzero polynomial g such that

1
Culfi D) 2 5C,01,(pg; D)
and
1
C.(fiD) = EC,N,Z}qu: D).

This shows that we can bound from below the communication complexity of f
by bounding from below the communication complexity of pg or gg. The
difficulty, however, is that the polynomial g is not known and we are forced to
develop a bound which is valid for an arbitrary choice of g. Ideally, we would
like to be able to say that if p has high communication complexity then the
same is true for pg. Although this does not seem to be true in general, the
following result makes a step in that direction:

THEOREM 5.6. Letf, g € €1x,...., X, Y|s- .., ¥, | be two nonzero polynomi-
als that are relatively prime. Then,

C(fg: &™) = max  rankH ()l o — 2,
(x,y)elif) i !

where V() = {(x, y)I f(x, y) = 0} is the zero set of polynomial f.
Proor. By Theorem 5.1, we have

C,(fg. &™) max rank(H”(fg))l(x,))

(x,y)EZV"H'"

= max rank(f(x, WIH () yy + gl I H (i

, Zomtn
(x,y)ye®m

+(V fC (Vg y))| + (Vg ey (Ve ) )
=  max rank(f(x,y)H”(g)!(“y) +g(x’y)H‘y(f)|(x,y») -2

(x, v)En*m

2

>  max rank(g(x, ) H (fl..,) 2, (5.4)
(x,)EV(f) ’
where the third step follows from the fact (V f(x, y)NV g(x,y))” and
(V,g(x, YUV, f(x, y))" have rank at most 1. Choose some (x,, y,) € V(f) such
that

rank( H, (i, ) = max rank H (., =r.
(x.v)yel(N ’ ’
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Then, there exists a submatrix M of size r X r embedded in H, (f), which is
nonsingular at (x,, y,). We view this submatrix as a function of (x y) and we
consider its determinant det(M), which is a polynomial in (x, y). We have just
shown that V(f) is not contained in ¥(det(M)). In other words, if we write f as
a product of irreducible polynomials, then at least one of the irreducible
factors of f, call it f,, does not divide det(M). But since f and g are relatively
prime, it follows that f, does not divide g either. We conclude that f, does not
divide g - det{ M). We now claim that V(f) ¢ V(g - det(M)). If the claim is not
true, then V(f) c V(g - det(M)). Hilbert’s Nullstellensatz applies and shows
that (g - det(M))* = fh for some positive integer k and some polynomial 4. By
the unique factorization property, we see that the irreducible polynomial f,
would have to be a factor of ecither g or det(M), which is a contradiction and
establishes our claim.

Since V(f) ¢ V(g - det(M)), there exists some (x*, y*) € V(f) such that
g(x*, y*)det(M)l.,  ,», # 0. Consequently,

max ) rank(g(x, y)H, ()l ) = rank(g(x*, y* ) H_ (=)
(x.y)ely ; ]

p— r
= max rank(H, ().
(x,el(f) :
which when combined with (5.4) completes the proof of the theorem. Q.E.D.

The above theorem states that if rank H, (f) is large for some (x, y) € V(f),
then fg also has large communication complexity for any polynomial g which
is relatively prime to f. Unfortunately, Theorem 5.6 is not always sufficient for
proving tight lower bounds for fg because there exist functions f for which
rank H (f) is small for every (x, y) € V(f) even though H, (f) has high rank
when the restriction (x, y) € V(f) is removed. A specific example will be seen
in the next section.

The following is a result from algebraic geometry that gives a sufficient
condition on f under which H, (f) has high rank at some point belonging to
V(f). V

THEOREM 5.7. Let f be a nonlinear homogeneous polynomial in n variables
such that Vf(x) + 0 for every x € V(f) Let the polynomial f: @*" > & be
defined by f(x, y) = f(x + y). Then,

max rank(HU.(f)I(,‘.v)) >n— 1.
(L WEVS) '

The proof of the above theorem can be found in [24] and [11]. As an
immediate consequence of Theorems 5.6 and 5.7, we have the following:

COROLLARY 5.3. Let fand f be as in Theorem 5.7. Then,
C.(f-g;")>n—3
for any polynomial g that is relatively prime to f.

Unfortunately, the above corollary is not easy to apply, because the set M f3
is usually hard to determine. Accordingly, the condition Vf(x) # 0 on the set
V(f) cannot be casily tested. In fact, it scems a lot casier to just compute
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the rank of H (f) at a random point of V(f) because max, , <y
rank H, ()l is attained at the majority of points on V(f) (a Zariski open
set of I .

We have so far shown that lower bounds on the communication complexity
of a rational function f = p/q (p and g are relatively prime) can be obtained
by developing lower bounds on the communication complexity of pg or gg,
where g is an arbitrary nonzero polynomial. We now develop our second
method for establishing lower bounds by exploiting the fact that if the domain
of a protocol is the set D, on which f is finite, then the polynomial g is not
entirely arbitrary. We have shown earlier that if f can be evaluated by a
rational protocol with domain D, then there exist polynomials p’ and g' such
that f(x, y) = p'(x, y)/q'(x,y) for all (x,y) € D, and C,, (f; D) =

p(,,v(q D;)/2. The polynomial g’ must certamly satisfy g’ = qg, for some g,
but it must also be nonzero at every point in the domain D, of f because
otherwise the expression p'(x, y)/q'(x, y) will be meaningless for some (x, y)
€ D;. This additional constraint is used in an essential way in the following
result.

THEOREM 5.8.  Suppose that f is a rational function and that f = p /q, where p,

qeFlx), . X Vinenns v, 1 are relatively prime polynomials. If q is irreducible,
then
(a)
C..lf:Dp) = max  rankH, (@), — 1. (5.5)
(x,y)e&"x&"
(b)
C.,. f:D) ! kH, ,(p)l > (5.6)
; > = max ankH, oy = .
rail 3 Dy 2 (x,y)Eg””Xg”r v Pllen 3

ProoOF

(a) Consider a rational protocol for computing f on D, that uses r =
C,.(f; D¢) messages and let my,...,m,: D, — & be the correspondmg mes-
sage functions. We first consider the special case where each one of the
message functions is a polynomial. Without loss of generality, we assume that
the final evaluation of the function f is performed by processor P,. By the
definition of a rational protocol (cf. Section 1), there exists a rational function
h such that f(x, y) = h(x,m(x, y),...,m,(x, y)) for all (x, y) € D,. Note that
i1 can be expressed in the form

hilx.m(x,y)....,m(x.y))
hyx,m(x,y),....,m(x,y))’

hx,mx,y),...,m (x,y)) =

where 4, and h, are relatively prime polynomials. Let #\(x, y) =
hy(x, m(x,y),...,m,(x,y)). The functions m,,..., m, were originally defined
on D;. On the other hand, since they are polynomials they can be uniquely
extended to polynomial functions on the entire of &”*". Furthermore, the
representation A%(x, y) = h,(x,m(x, y),...,m(x, y)) must be also valid over
&"*" and this 1mphes that C,,,(h5; &™"") < r. We now notice that we must
have #,(x, y) # 0 for all (x, y) € Dy, because the function /2 must be defined
for all (x,y) € D;. Equivalently, V(hq) C V(q), where g is the denominator
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polynomial of f, assumed irreducible. Hilbert’s Nullstellensatz shows that
q* = n,g, for some polynomial g and some positive integer k. We factor the
polynomial 4, g as a product of irreducible factors. Since g is irreducible, it
follows that each one of these factors must be equal to g. We conclude that
W, = cq® for some nonzero constant ¢ € @ and some positive integer K, and
therefore r > C,,, (Wy; " *") = C,,, (g% &™),

We now consider the case where there exists some i such that the message
function m, is not a polynomial and let us choose, in particular, the first such
index i. Suppose w1thout loss of generality, that i € T, _,,. We have m(x, y)
=mx,m(x,y),...,m,_(x)) for some rational function 7, and each one of
the functlons m],... m,._1 is a polynomial. We write 7, in the form m, =
h,/h,, where h, and h, are relatively prime polynomials, so that

h(x,m(x,y),....,m,_(x,y))
hy(x,m(x,y),...,m,_(x,y))

mx,m(x,y),....m,_(x,y)) =

Let Ay(x,y) = ho(x,m(x,y),...,m,_(x,y)). We now repeat the argument of

the preceding paragraph. Smce the domam of the protocol is all of D,

follows that V(4,) < V(g) and #, = cq® for some nonzero constant c¢ e ff

and some positive integer K. Notlce that /', can be expressed as a polynomlal

function of x, ml(x y),.. _«x,y), and this implies that r >i— 1 >
pOIy(hz’gmw‘—n) — 01,(4 gm+n)

To summarize, we have shown that in both cases that there exists a posmve
integer K for which C.(f;D ) =r=C,,(g";&"*"). It now remains to
derive a lower bound on Coonlq %’“") To thls effect, we apply Theorem
5.1. We have

C qK;ngrn) ZCZ(QK;%M-Hl)

pol_v(

>  max rankH, (¢,
(x’y)egvm+n

=  max rank(KqK“l(x,y)ny(q)l(x,y)
(x‘y)eg"n‘f’”

+K(K — 1)qK“2(x,y)(qu(x,y))(qu(x,y))T) (5.7)

> max rank( K=Yx,y)H, (q)l(_‘,y,) -1 (5.8
(X,y)€%7m+l

> max rankH, (@) ;) — 1, (5.9
(x7y)Eg'mf‘n -

Here, the first equality (5.7) is a simple calculation and the next step (5.8) is
due to the fact (V,¢)(V,q)" has rank at most 1. The last step is obtained as
follows: The set {(x, y)fq(x y) # 0} is a Zariski open set. Furthermore, the
maximum rank of H, (g) is attained at the set of pomts where the determinant
of a suitable submatrix of H,(g) does not vanish and is also a Zariski open set.
Since every two nonempty Zariski open sets have nonempty intersection
(Theorem 4.2), it suffices to consider a vector (x, y) in the intersection of these
two sets.
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(b) Let (x, y) be an arbitrary vector of D,. Note that
p 1 p 2 2p
ny(g) = g[‘[_‘y(p) - ?HU‘(([) - 7(pr)(V‘,q)T + ?(qu)(qu)T.

By evaluatmg the rank of both sides at (x,y) and noticing that both
(V, p)X(V, @) |2y and (V,gX(V,q)" .,y have rank at most 1, we see that

rank HW( E)

> rank H, (p)li.. vy — rank H, (@)l — 2.
p )

(x,y)
Therefore,

(f; D)) = Co(f: D))

rank HXV( 2)
NG

rank H (p)l ., ) — rank H, ,(q)|(m-> -2
= rank H, (p)io.,) — (f;Dy) — V(x,y) € Dy,

rat

Y

%

vV

lat

where the last step follows from Eq. (5.5). After rearranging the above
inequality, we see that

1
C.o.lf; Dy) > ~ranLH PNy — =, Vilx,y) D, (5.10)

o] W

Since max, e - rank H, ,(p) is attained at a Zariski open set and D, is
also a Zariski open set, by Theorem 4.2, there exists some vector (x*, y*) € D,
such that

max  rank H,(p) = rank H,_(p)l+ )

(x »)ngnwn

Now Eqg. (5.6) becomes evident when one considers (5.10) at (x*, y*). Q.E.D.

6. An QUn*) Lower Bound for Computing [(x + y)™ '],

Let x and y be n X n matrices. As an application of the results of Section 5,
we consider the communication complexity of the function f(x,y) =
[(x +y) ', (the (1, Dth entry of (x + y)‘l) within the class of rational
protocols. Although Abelson’s lower bound is only Q(n), we derive a 10wer
bound of n* — 1, which is almost equal to the obvious upper bound of n*. In
particular, this example will show that Abelson’s bound can be far from tight.

We motivate our choice of the problem. The value of [(x + y) '], can be
thought of as the first entry of the solution of the system of linear equations:
(x +y)u = b, where b = (1,0,...,0) and u is the unknown. Thus, the problem
under consideration captures the essential difficulties of a distributed solution
of a system of the form (x + y)u = b, when x and y are possessed by different
processors. Since the solution of linear systems of equations is the most basic
problem in numerical computation, the problem we are studying is an interest-
ing paradigm.

It is easy to see that n* messages would be needed if we had required that a
particular processor, say P,, should eventually evaluate all entries of the
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inverse matrix (x + y)~'. (This is because P, could then invert (x +y)~! to
obtain x + y and use its knowledge of x to infer the value of y, and this is
possible only if at least n> messages have been exchanged.) However, the fact
that the evaluation of the whole inverse matrix (x + y)~' is hard does not
imply that the computation of a particular entry is also difficult. In fact, we
shall see that the derivation of tight bounds on the communication complexity
of [(x +y)~'], is surprisingly hard. As a first indication, we show that
Abelson’s result (Theorem 5.1) gives only an Q(n) lower bound.

THEOREM 6.1. Let f(x,y) = [(x +y)'],,. Then

max  rankH, (f)l ) < 3n. (6.1)
(x.y)eD,

PrROOF. Let us fix a pair p = (x,,y,) € D; of n X n matrices. We show
that the rank of H,(f)l, is at most 3n. Let A;, A, be two 1 X n perturbation
matrices. We consider the Taylor series expansion of f at the point p:

FOx+ Ay + A5) = [((xy + ) + (8, + 8,
= [(xo +YO)_1]11 - [(xo +YO)7](A1 + A,)(x, +y())]11
Gy +30) AL + Ay + 9]+

Notice that the value of H _(f)l, is completely determined by the second-order
terms of this expansion. Thus, if we let

g(ALAy) = [(xo +Y())~1((A1 + A;)(x, +y0))2]11’

then H, (i, v, = Hy s (8)lo.0) Therefore, we only need to show that
rank H, , (¢)lo.0) < 3n. We present a two-way polynomial protocol for com-
puting g that only uses 37 messages.

Notice that as far as the computation of g is concerned, the matrices x,, y,
are constant and the matrices A, (i = 1,2) are the inputs. Let e = (1,0,..., 0)7.
The protocol proceeds as follows:

(1) Processor P, sends the vector A,(x, + y,)e to processor P, (n messages).
(2) Processor P, computes (A, + A,)x, + y,)e and sends the following two
vectors (2n messages) to P;:

(A, + A x, +y,)e
and
As(xy +y)(A; + A (xy + yy)e.

(3) Once processor P, receives these messages, it can use its knowledge of A,
to evaluate ((A, + A,)Xx, + y,)%. It follows that g(A, A,) = [(x, +
yo) TH(A, + A))(x, + yo )7l can also be evaluated by P,.

By Abelson’s result (Theorem 5.1), we see that for any open set D contain-
ing (0, 0), we have

rank Hy » (8)lw.0) < C,,,(8: D) < 3n,
which completes the proof. Q.E.D.
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Let D; be the set of all (x,y) € &" X " at which the rational function
flx,y) = [(x +y) '], is well defined. Clearly, D, is the same as the set of all
(x, y) such that det(x + y) # 0. Our main result is the following:

THEOREM 6.2
Co(fs Dy) = n® — 1. (6.2)

The proof is based on two lemmas:
LEMMA 6.1.  The polynomial g(x, y) = det(x + y) is irreducible.

LEMMA 6.2. Suppose that n > 1 and let g(x,y) = det(x + y). Then the rank
of H, (g) evaluated at (1,0) (I is the identity matrix) is n*.

Once these two lemmas are proved, the desired result is obtained as follows:
If n = 1, then Eq. (6.2) holds trivially. For n > 1, we have f(x,y) = det;,(x +
y)/ det(x +y) = det, (x + y)/g(x, y), where det,(x + y) is the cofactor of
the (1, Dth entry of x + y. It is seen that g(x + y) does not divide det, (x + y),
because otherwise [(x + y)~'];; would be a polynomial in the entries of x and
y, which is easily shown not to be the case. Since g is irreducible (Lemma 6.1),
we conclude that the polynomials det,,(x + y) and g(x, y) are relatively prime.
Then, Theorem 5.8 applies and shows that

Crat(f; Df) max H‘y(g)l(x,v) - 1= nz - 1,
(x.y)eg?”

where the last inequality has made use of Lemma 6.2. Thus, it only remains to
prove the two lemmas.

PrROOF OF LEMMA 6.1. In n = I, then g(x,y) = x + y, which is obviously
an irreducible polynomial. For # > 1, we assume, in order to derive a contra-
diction, that g(x, y) = A(x, y)B(x, y) where A, B are nonconstant polynomial
functions of the entries of x, y. Let x,, (respectrvely, y,,) denote the (i, j)th
entry of x (respectively, y). Let us restrlct x and y by letting x,, = —y,, = 1,
i =2,...,n. With such a restriction, g, A, and B can be expressed as
polynomrals g. A, and B, respectively, of the unrestricted variables. Note that

g(x,y) = (x;, +y,)det, (x +y) = A(x, y)B(x, y).

By the unique factorization property of polynomials, we see that (x; + y,,)
must be a factor of either A(x,y) or B(x,y). Since det(x +y) is a linear
function of x;; + y;, we conclude that x,, y;; appear together in either 4 or
B, but not in both. It then follows that x,,, y,, appear together in either
A(x,y) or B(x,y), but not in both. Repeating our argument for all (i, )
(1 <i,j < n), we see that either x,, and y, both appear only in A(x, y) or
they both appear only in B(x, y). Therefore the set {(i, /), i,j = 1,2,...,n}
can be partitioned into two subsets R;, R, (with R, being nonempty) such that
A(x,y) depends only on the entries x, ,y, wrth (i,j) € R, and B(x,y)
depends only on the entries x, , y,, with (i, /) € R,. Let us express each one of
the polynomials 4 and B as a sum of products and then carry out the
cross-multiplications to expand A(x, y)B(x, y) as a sum of products. Since 4
and B depend on different entries, it is seen that this expansion leads to no
cancellations. Hence, if (i, j) is in R,, then (i, k) and (k, ), k = 1,..., n, also
belong R, since otherwise there would be a term in the expansion of
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A(x, y)B(x, y) = det(x + y) with two entries from the same row or column.
This implies that all of the entries must be in R, and R, is empty. Conse-
quently, B(x,y) is a constant polynomial, which contradicts our original
assumption. Q.E.D.

PROOF OF LEMMA 6.2. An easy calculation yields

9% 1 if i=j,l=mandi+]
P ={-1 if i=m,j=1landi =]/
u?Yim (1 0 0 otherwise.

Thus, if the rows and columns of H, (g)l., are suitably rearranged, the
matrix H, (g)li.0, has the structure shown in Fig. 1. It is not hard to see that
this matrix is nonsingular and therefore has rank n*>. Q.E.D.

We would like to be able to strengthen Theorem 6.2 in a number of
directions. First, Theorem 6.2 refers to the computation of [(x + y)~'],;, where
x, y are complex matrices. This does not lead to a lower bound when we
restrict x and y to be real, even though this is the case of main practical
interest. A related deficiency is that the lower bound applies only to protocols
whose domain is equal to all of D,. It would be interesting to know whether
the communication complexity of the problem can be reduced by an order of
magnitude when we restrict to real matrices, or if we only consider the
evaluation of f in an open set of real matrices. We conjecture that this is not
the case, but we are not aware of any proof technique that could lead to such a
result.

One possible approach for proving a stronger lower bound is based on
Theorem 5.6 of Section 5. This result shows that an Q(n?) lower bound will be
established if we manage to find a pair (x, y) of matrices such that g(x,y) =0
and rank H, (gl = Q(n?), where g(x, y) = det(x + y). Unfortunately, the
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determinant function is particularly nasty in that respect. It can be shown [12]
that the rank of H, (g) is n” at each point (x, y) such that x + y is invertible
but it is no more than 3n + 3 at each point (x, y) at which g(x,y) = 0.

Finally, let us mention that an Q(#n?) bound can also be obtained for the
special case where x and y are restricted to be symmetric matrices. The proof
is similar to the proof of Theorem 6.2.

7. Conclusions and Extensions

We have presented a variety of new results on the one-way and two-way
communication complexity for algebraic problems. We have used, in several
occasions, the results of [2], but our results are often stronger because they
exploit the algebraic structure of the problem.

There are several directions for further research on the subject. One
direction concerns the derivation of lower bounds on two-way communication
complexity that involve information other than the second order derivatives.
(One such result can be found in [13].) Another direction concerns two-way
protocols for computing a collection {f;..... f.} of functions, with s > 1. Here,
even if one assumes that the functions f, are quadratic, the evaluation of the
communication complexity is surprisingly hard and leads to problems with a
combinatorial flavor. (Some partial results can be found in [12]) A final
direction concerns “multi-party” protocols in which more than two processors
are involved. There is very little literature on this subject [8] and it is not
completely clear what are the interesting problems in this area.

ACKNOWLEDGMENTS. We are indebted to Professors Steve Kleiman and
Michael Artin and Mr. Siye Wu of MIT for several stimulating discussions. We
also wish to thank Professor Peter Olver of University of Minnesota for
suggesting the reference [9]. Thanks are also due to an anonymous referee for
a careful reading of the manusecript.

REFERENCES

1. ABeLsoN, H. Towards a theory of local and global computation. Theoret. Comput. Sci. 6
(1978), 41-67.

2. ABELSON, H. Lower bounds on information transfer in distributed computations. J. ACM
27, 2 (1980), 384-392.

3. AHO, A. V., ULLMAN, J. D., AND YANNAKAKIS, M. On notions of information transfer in
VLSI circuits. In Proceedings of the 15th Annual Symposium on Theory of Computing (Boston,
Mass., Apr. 25-27). ACM, New York, 1983, pp. 133-139.

4. ATIYAH, M., AND MACDONALD, 1. [Introduction to Commutative Algebra. Addison-Wesley,
Reading, Pa., 1969.

5. Bertsekas, D. P.. ano Tsrrsikws, J. No Parallel and Distributed Computation. Numerical
Methods. Prentice-Hall, Englewood Cliffs, N.J., 1989.

6. BLuMm, L., SHUB, M., AND SMALE, S. On a theory of computation and complexity over the real
numbers: NP-completeness. recursive functions and universal machines. Bull. AMS 21. 1
(1989), 1-47.

7. BORODIN, A., aND MuUNRO, 1. The Computational Complexity of Algebraic and Numeric
Problems. American Elsevier, New York, 1975.

8. CHANDRA, A. K.. FURST, M. L., AND LipTON, R. J. Multi-party protocols. In Proceedings of
the 15th Annual Svmposwum on Theory of Computing (Boston, Mass., Apr. 25-27). ACM, New
York, 1983, pp. 94-99.

9. GORDAN, P., AND NOETHER, M. Ueber die Algebraischen Formen, deren Hesse’sche Deter-
minante Identisch Verschwindet. Math. Ann. 10 (1876), 547-568.

10. HARTSHORNE, R.  Algebraic Geometry. Springer-Verlag, New York, 1977.



Communication Complexity of Distributed Algebraic Computation 1047

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

KLEIMAN, S. L. Tangency and duality. In Proceedings of the CMS Summer Institute in
Algebraic Geometry (Vancouver, B.C., Canada), 1984.

Luo, Z. Q. Communication complexity of some problems in distributed computation. Ph.D.
dissertation. Operations Research Center, Tech. Rep. LIDS-TH-1909. Laboratory for Infor-
mation and Decision Systems. MIT, Cambridge, Mass., 1989.

Luo, Z. Q., aND TsITSIKLIS, J. N, On the communication complexity of solving a polynomial
equation. SIAM J. Comput. 20, 5 (1991), 936-950.

MEHLHORN, K., AND ScuMiDT, E. M. Las Vegas is better than determinism in VLSI and
distributed computing. In Proceedings of the 14th Symposuun on Theory of Computing (San
Francisco, Calif., May 5-7). ACM, New York, 1982, pp. 330-337.

PangG, K. F.,, anp EL GamaL, A.  Communication complexity of computing the hamming
distance. SIAM J. Comput. 15, 4 (1986), 932-947.

PapabpiMITRIOU, C. H., AND SIPSER, M. Communication complexity. In Proceedings of the
14th Symposium on Theory of Compunng (San Francisco, Calif., May 5-7). ACM, New York,
1982, pp. 196-200.

PapapiMITRIOU, C. H., AND TSITSIKLIS, J. N.  On the complexity of designing distributed
protocols. Inf. Cont. 53, 3 (1982), pp. 211-218.

TeNNEY, R. R., AND SANDELL, N. R., JR. Detection with distributed sensors. /EEE Trans.
Aerospace Electronic Syst. AES-17. 4 (1981), pp. 501-510.

TsitsikLis, J. N., AND Luo, Z. Q. Communication complexity of convex optimization. J.
Complex. 3 (1987), 231-243.

ULLMAN, J. D.  Computational Aspects of VLSI. Computer Science Press, Rockville, Md..
1984.

21. VAN DER WAERDEN, B. L. Modern Algebra, Vol. 1 & 2. Ungar, New York, 1953.

23.

24,
25.

. WILLSKY, A. S., BELLO, M. G., CasTaNON, D. A., LEvY, B. C., AND VERGHESE, G. C.

Combining and updating of local estimates and regional maps along sets of one-dimensional
tracks. IEEE Trans. Autom. Cont. AC-27. 4 (1982), 799-812.

Yao, A. C. Some complexity questions related to distributed computing. In Proceedings of
the 11th Symposiumn on Theorv of Computing (Atlanta, Ga., Apr. 30—May 2). ACM, New York,
1979, pp. 209-213.

ZAK, F.  Projection of algebraic varieties. Math. U.S.S.R. Sbornik 44 (1983), 535-554.
ZARISKI, O., AND SAMUEL, P.  Commutative Algebra, vol. 1. Van Nostrand, New Jersey. 1965.

RECEIVED MARCH 1989: REVISED AUGUST 1992; ACCEPTED FEBRUARY 1992

Journal of the Association for Computing Machinery, Vol 40, No 5. November 1993,



