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ON THE COMMUNICATION COMPLEXITY OF SOLVING A
POLYNOMIAL EQUATION*

ZHI-QUAN LUOti: AND JOHN N. TSITSIKLISt

Abstract. This paper considers the problem of evaluating a function f(x, y) (x •E ', y E ff) using two
processors P, and P., assuming that processor P, (respectively, P2) has access to input x (respectively, y)
and the functional form of f A new general lower bound is established on the communication complexity
(i.e., the minimum number of real-valued messages that have to be exchanged). The result is then applied
to the case where f(x, y) is defined as a root z of a polynomial equation x, + v,)z'=0 and a lower
bound of n is obtained. This is in contrast to the f7(1) lower bound obtained by applying earlier results of
Abelson.
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1. Introduction. In a computer network where a set of processors wishes to perform
some computational task, communication can sometimes become a bottleneck,
especially when communication resources are scarce. This is particularly so in the area
of parallel and VLSI computation (see, e.g., [BT89], [U84]), where the communication
issues have been studied extensively. In such contexts, it is desirable to design algorithms
that require as little information exchange as possible. Problems- of minimizing the
amount of exchanged information also arise in the context of decentralized signal
processing, where each local processor collects some partial data to be processed
collectively. In this paper, we study the "communication complexity" (i.e., the minimum
possible amount of information exchange) of some particular computational tasks.

Generally speaking, communication complexity depends both on the topology of
a computer network and on the nature of the computational task under consideration.
In this paper, we ignore the topological issues by assuming, that there are only two
processors, say P, and P,. We use the following model of commiunications introduced
by Abelson [A80]. Let there be given a continuously differentiable function f: D, x
D,. -- , where D, and D, are some open subsets of T9" and IT", respectively. It is
assumed that processor P, (respectively, P2) has access to a vector x e D. (respectively,
y E D,) and the formula defining f The processors Pt, P, proceed to evaluate f(x, y)
by exchanging messages, using a two-way communication protocol, in which messages
can be sent in both directions. Let us use 7r to denote a two-way communication
protocol and r(Tr) to denote the number of messages exchanged in 7r. In addition, let
T,-2 (respectively, T2-,) denote the set of indices i for which the ith message is sent
from Pt to P, (respectively, from P2 to PI). The protocol 7r consists of r(Tr) functions

mI, , • *, m,(,,: D, x D, - - , with m,(x, y) being interpreted as the value of the ith
message. These message functions must depend on the inputs x and y in a very special
way. Precisely, for each i, there must exist some real-valued function ri, such that

(1.1) mi(x, y)= rt,(x, m,(x, y), - - -, mi,_l(x, y)) V(x, y)Ec D x D, if ic T z.2,
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or

(1.2) mi(x,y)=rii(y,m,(x,y),.".,m,_(x,y)) V(x,y)eDxxD, ifieT2_,.

Furthermore, we require that either:
(a) There exists a function h such that

(1.3) f(x, y)= h(x, m(x, y), , m,(,,)(x, y)) V(x, y)E Dxx D,,

(this corresponds to the case where processor P, performs the final computation) or
(b) There exists a function h such that

(1.4) f(x, y)= h(y, m1 (x, y), -, m,( )(x, y)) V(x, y) e Dx D,,

which corresponds to the case where processor P2 computes the final result.
Typically, some smoothness constraints are imposed on the functions m,, rh,, and

h. For example, [A80] considers the class of two-way communication protocols
(denoted by II 2(f; D, x D,)) in which the functions mi, rt,, and h are twice continuously
differentiable. In this paper, we consider a more general class of protocols in which
the message functions mi, mf, are once continuously differentiable and the final evalu-
ation function h is continuous. We denote this class of two-way protocols for computing
f by I'I(f; D. x D,). We define the two-way communication complexity of computing
f with protocols in IH2(f; D x D,) as

C2(f; D x D,)= inf r(ir).
r'n2(f; D,.xD,)

We define the quantity C1 (f; D, x D,) similarly. Notice that I 2(f; D.x D,)c
HI1 (f; D. x D,). Thus, C2(f; D, x D, ) - C,(f; D, x D,). As discussed in [L89],
IIH,(f; D, x DY) is, in some sense, the most general class of protocols for which the
notion of communication complexity is well defined for problems involving continuous
variables.

A general lower on C 2(f; D. x Dy) was established in the fundamental work of
Abelson [A80]. In particular, let f: D. x D, -•9t be a twice continuously .difftrentiable
function and let Hfy(f) denote the matrix (of size m x n) whose (ij)th entry is given
by 82f/axjayj. The following result was proved in [A80].

THEOREM 1.1. For any pe D. x Dy, we have

C2(f; Dx x D,) >- rank (H.(f ))(p).

Note that Theorem 1.1 only takes into account the second-order derivatives of f and
ignores the derivatives of other orders. Thus, this bound should not be expected to be
tight, as was shown in [LT89].

In this paper, we derive a new general lower bound. Our result (Theorem 2.1)
makes use of the first-order derivatives of f and is fairly intuitive, but surprisingly
difficult to prove. Our work was motivated from the problem of distributed computation
of a root of a polynomial equation of degree n - 1. We apply our result to this problem
and obtain a lower bound of n, in contrast to the f1(1) lower bound obtained from
Abelson's result. In [L89], a similar C(n) lower bound is established for the same
problem, but under a more restricted class of communication protocols in which the
functions mi, ri, (i = 1, - - - , r(ir)) are assumed to be polynomials. The proof in [L89]
makes use of a result from dimension theory and is algebraic in nature, in contrast to
the analytic approach in the proof given here.

In related work ([LT89]), Abelson's result has been extended by considering a
more restricted class of communication protocols; in particular, some improved lower
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bounds on one-way and two-way communication complexity have been obtained by
exploiting the algebraic structure present in certain problems. Communication cojn-
plexity has also been studied under discrete communication models (see, e.g., [MS82],
[PS82], [PT82], [Y79]). In these models, the messages are no longer real numbers, but
binary strings. A substantial amount of research has been devoted to the study of the
communication complexity of selected combinatorial problems ([AU831, [PE86],
[U84]). A different model is introduced in [TL87] for the problem of approximately
minimizing the sum of two convex functions under the assumption that each convex
function is known to a different processor.

The rest of this paper is organized as follows. In § 2, we prove our main result
(Theorem 2.1). In § 3, we apply the result of § 2 to establish a lower bound of n for
the problem of computing a root of a polynomial equation of degree n - 1. In § 4, we
compare our result with Abelson's. Finally, the Appendix contains certain results from
multidimensional calculus that are needed in § 2.

2. Main result. Let f: D x D, - 9 be a continuously differentiable function,
where D, and D, are some open subsets of 91" and 91", respectively. We use the
notation Vjf(x, y) (respectively, V,f(x, y)) to denote the m-dimensional (respectively,
n-dimensional) vector whose components are the partial derivatives of f with respect
to the components of x (respectively, y). Also, for any set S c Dx, we use [Vf(x, y); x e
S] to denote the subspace of R" spanned by the vectors Vf(x, y), x e S. Finally, for
any set Sc D,, [Vjf(x, y); ye S] is similarly defined.

ASSUMPTION 2.1. For any ye D,, we let

2)(y) = { Sc D If(S, y) contains an open interval}.'

(For any xE D., Y(')(x) is similarly defined.)
(a) For any ye D, and any nonempty open set S c-D, we have SE Y'2).
(b) For any x D, and any nonempty open set Sc D,, we have SeE &().
(c) For some nonnegative integer nf, we have

(2.1) dim [Vf(x, y); xc S]- n Vy D, VSe E(2) y)

(d) For some nonnegative integer mf, we have

(2.2) dim [V.f(x,y); yeS]; mf VxE D VSe '•"(x).

Our main result is the following.
THEOREM 2.1. Under Assumption 2.1, the following is true

(2.3) C1(f; Dx x D,) z min {nf, mf}.

The proof of Theorem 2.1 is a long and tedious argument based primarily on
elementary differential geometry. Before proving Theorem 2.1, we first give a sketch
of the basic proof ideas.

Consider an optimal protocol described by (1.1)-(1.2). By symmetry, we can
assume that the final evaluation of f(x, y) is performed by processor P1 , in which case
the last message must have been transmitted by processor P2 .

We assume, in order to derive a contradiction, that the number r of messages in
the protocol satisfies r < ns . Let us fix a "crossing message sequence" c = (c,, - - -, c,),

'The notation f(S, y) stands for the set {f(x, y) x S}. Similar notation will be used later without
further comment.
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that is, the values ci = m,(x, y) of the messages under some execution of the protocol.
Fixing c imposes the following constraints on x and y:

(2.4) ci = ,ri(x, c1 , -, c, _), iE T1j2,

(2.5) c, = ri(y, , -c - , c,-), ie T,. 1 .

Note that these constraints decouple and can be expressed in the form x e S,(c) and
y e S,(c). With some technical work (making sure that certain Jacobians are nonsin-
gular), we can show that Sx(c), S,(c) are "smooth" (continuously differentiable)
surfaces, depending smoothly on c.

The equation

(2.6) f(x, y) = h(x, mj(x, y), - ., m,(x, y))

shows that f(x, y) depends on y through at most r functions. Taking derivatives and
using the chain rule, we can show that for any y*, and any crossing sequence c, the
collection of vectors {Vf(x, y*)I x Sx(c)} spans a subspace of dimension at most r.

Note that if y* E S,(c), then f(x, y*) = h(x, c) for all x E Sx(c). We consider two
cases.

Case 1. If there exists some open set of c's in which h(x, c) = h(c) (i.e., indepen-
dent of x), for all x S,(c), then there exists an open ball in which the equation
f(x, y) = h(ml(x, y), - --, m,(x, y)) holds. But this would imply thatf(x, y) could have
been evaluated by processor P2 before transmitting the message m,(x, ;), and we would
have a protocol with r - I messages, a contradiction.

Case 2. If Case -1 does not hold, a technical argument shows that there exists
some particular c for which h(x, c) is not independent of x. By continuity, {h(x, c) x
Sx(c)} contains an open interval. Hence, Sx(c) belongs to 9,(2

)(y*). Therefore, using
Assumption 2.1 (d) and the fact that the subspace spanned by the vectors {V(f(x, y*) x E
Sx(c)} has dimension at most r, we have nf - r, which contradicts our earlier assumption.

To turn the above intuitive argument into a rigorous proof, vwe have to make sure
that all the functions involved are properly defined and have the dedire'd differentiability
properties. The rest of this section is devoted to a formal proof of Theorem 2.1.

Let r = C,(f; Dx x D,). We first prove that it is sufficient to show the lower bound
(2.3) under the additional assumption

(2.7) r = min C,(f; , x 5,y),
15.4,

where the minimum is taken over all nonempty open subsets Db, D, of Dx, D,,
respectively. Suppose that we have already shown that Theorem 2.1 is true under the
assumption (2.7). Let us now show that (2.3) is valid when (2.7) does not hold. In this
case, there exists some r'< r and some open subsets 5 x x D, of D. x D, such that

r'= Ci(f; 1 x l5y)= min C1(f; 1 x 1),
x. D15

where the minimum is taken over all nonempty open subsets D., D, of /D., 16. Thus
(2.7) holds with r, Dx, and D, replaced by r', Dx, and D,, respectively. Since any
nonempty open subset of Dx (respectively, D,.) is also a nonempty subset of D.
(respectively, D,), we see that Assumption 2.1 remains valid (with the same constants
nf, mf) when Dx, D, are replaced by Dx, D,. Therefore, Theorem 2.1 applies and shows
that r > r'- min (nj, mf}, which shows that Theorem 2.1 holds regardless of assumption
(2.7).
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In the rest of the proof, we will assume that (2.7) holds. Let us consider a protocol
that uses exactly r messages, described by (cf. § 1)

(2.8) m,(x, y)= ni,(x, m,(x, y),- -, mi_(x, y)) V(x, y) Dx x Dy if i Tt- 2 ,

(2.9) m,(x,y)=rh,(y, m(x,y), - ,m,_-(x,y)) V(x,y)eDxxDy ifiE T-,,

where each m, and rh, is a continuously differentiable function. By symmetry, we can
assume that the final evaluation of f is performed by processor P,. Thus there exists
some continuous function h such that

(2.10) f(x, y)= h(x, m(x, y), - , m,(x, y)) V(x, y) Dx x D,.

Before presenting the main line of argument, we derive three lemmas. Let u = (x, y)
and let D = D x D,. Write m(u) = (m (u), - - - , m,(u)) and let Vm(u) be the (m + n) x r
matrix whose ith column is the gradient vector Vmi(u), i = 1, - - , r. Define

(2.11) k = max rank [Vm(u)].

LEMMA 2.1. k= r.
Proof. We show this by contradiction. Suppose that r> k. Consider the con-

tinuously differentiable mapping m: D 91', where D = Dx x D, is an open set and
m(u)= (m,(u),- -- , m,(u)). We claim that Vm,(x, y) is not identically zero on the set
D. Indeed, if this was the case, then m,(x, y) would be equal to a constant on the set
D, and the first message in the protocol would be redundant. Thus, there would exist
a protocol that uses r - messages, contradicting definition of r. We can therefore
apply Theorem A.2 in the Appendix (with the correspondence m -+ F, D t+ Q, r +- s)
to conclude that there exists some positive integer i and some continuously differentiable
function g such that

(2.12) m,+,(u)= g(m 1(u),- ., m,(u)) Vue D,

where 15 is some nonempty open subset of D. By taking a subset of 6 if necessary,
we can assume that 1 is of the product form fI x 5,, where C,x and D, are some
open subsets of D, and D,, respectively. Then, (2.12) would imply that the (i+ 1)st
message mi+1(x, y) is redundant for computing f over D1 x D,, Which contradicts the
definition of r (cf. (2.7)). 0

Loosely speaking, Lemma 2.1 tells us that each message in an optimal protocol
has to contain some "new information" and therefore the corresponding gradient
vectors have to be linearly independent. Before we go on to the next lemma, we
introduce some more notations. Let D1 c Dx, D, c D, be nonempty open sets such
that Vm(u) has full rank for every u e D1 x ),. (Such sets can be taken nonempty due
to Lemma 2.1, and open due to the continuity of Vm(u).) We use b as a short notation
for 5Dx xD,. Furthermore, for any vector -c = (c, - - - , c,) e M' and for i:i- r, we let
c' = (ct, c2 , • , ci). Let also r, (respectively, r2) be the number of messages sent by
processor P, (respectively, P2). In addition, we use the notation [Vxmi(x, y); i T-_2]
to denote the mxr, matrix whose column vectors are Vxm,(x, y)=
(am,(x, y)/axj, - -, ami(x, y)/ax,,), i T,- 2 . The n x r2 matrix [Vy,m(x, y); i T2_ 1] is
defined similarly. As a refinement of Lemma 2.1, we have the following lemma.

LEMMA 2.2. For any (x, y) e D, we have

rank [V.Ai(x, c'-'); i e Tt2] = r1,

and

rank [V,rt,(y, c''•); i T2. 1]= r=
where c = m(x, y).
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Proof. By Lemma 2.1, we see that the matrix Vm(x, y) has full rank (and its rank
is.,equal to r) over the set D. Note that by possibly reindexing the columns of the
matrix Vm(x,y), we can write Vm(x, y) in the form

Vm(x, y)= [A At 1 ,A21 A,,22J

where A, = [Vxmj(x, y); iE T,.2] and A 2 2 = [V,m(x,y); in T_- 1]. From (2.8)-(2.9), it
is easily seen that for each i Tz. 1 , there exists a continuously differentiable function
Mi such that

(2.13) m,(x,y)=M,(y,{m(x, y): l<i, 'i TI-2}), iE T,2,.

(In other words, a message sent by processor P2 can be expressed as a function of y
and the messages already received.) By differentiating (2.13), we obtain

(2.14) V xm(x, y)= d,(x, y)V~xm(x, y), iE T2- 1,
lET.2,,1<i

where each dL(x, y) is a suitable scalar. Thus,

Vxm,(x, y)E pan {Vml(x, y); Ie T.. 2} V(x,y)I / e ViE T.--1.

This means that the columns of At, belong to the span of the columns of Ar and
therefore

rank [A I A 12] = rank (A,,) - r,.

Similarly, one can show that

rank [A 21 A 22] = rank (A,,) - r2.

On the other hand,
r = r, + r2

_ rank (A,) + rank (A22)

=rank[A,, A12]+rank[A2, A-,,].

_-> rank [A 2 A 12z

= rank [Vm(x, y)]

=r V(x, y) e D.
This implies that

rank (A,,) = rank [Vm (x, y); i E T1-.2]= r
and

rank (A 22) = rank [Vym(x, y); i T2. 1] = r2.

To show that rank [Vxtfi(x, c'-'); ie T2,] = rl, we differentiate (2.8) to obtain

(2.15) Vxm,(x, y)= V.rý,(x, c'-')+ ', (x, c),m(x, y) if i T
1=1 8MI

where c= m(x, y) and (x, y)E D. Using (2.14), we see that
i-i

E (atl/am,)(x, c'-')Vmj(x, y)
1=1

can be written as a linear combination of the vectors {Vxmj(x, y); l< i-1, In T,1 2}.
Therefore, (2.15) shows that

[Vx•r,(x, ci-'); i T. 2 1 = [Vxm,(x, y); i TI.2] C = AII C,
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where C is some upper triangular matrix whose diagonal entries are equal to 1. Hence
rank [Vx&O,(x, c'-'); i E T,•.] = rank (A,,)= r,. The equality

rank [VC,-(y, c'-'); i - T, 1] = r2

can be shown by a similar argument. 0
Let us fix some more notations. For any vector c = (ct, • , c,) E 9•' and 1 -i i 5 n,

we let

S(c) = {(x, y) DX D, I m,(x, y)= c,, i= 1, -, r

S.(c)= {x Dx ti,(x, c' -- ) = c,, Vie T..2},
(2.16)

S,(c) = y E D,I hi,(y, c '- ) = ci, Vi E T,- 1),

R'= {(m,(x, y), . - -, m,(x, y)) I (x, y) D x D,.}.

LEMMA 2.3. For any ce R', we have

(2.17) S(c) = S.(c) x S,.(c).

Proof. We have, using definition (2.16) and (2.8)-(2.9),

S(c)= {(x, y) e D. x D, I r,(x, c '- ) = c,, Vi E T,2, th,(y, c'-')= Ci, Vi E T2-,}

= S(c) x S",(c). 0

We now fix some (x*, y*) •E and let c* = m(x*, y*). Let us d6fine

Fi(x, c)= h,(x, c)-t)-c, Vce R', xe D,, ie T-2,.

Thus FI(x*, c*) =0 for all iE T z.. Moreover, it follows from Lemma 2.2 that the
matrix [VF(x*, c*)] has full rank. It is now clear that we are in a position to apply
Theorem A.3 in the Appendix (with the correspondence that u <- x, and v +4 c) to
conclude that there exist an open subset U, of .t' containing c*, and an open subset
6x of Dx containing x*, such that S,(c) fn D is nonempty and connected for all c e U,.
Following a symmetrical argument, we see that there exist opep subsets U2_, l' and
D, a D, such that c* E UL, y* E D,, and S,(c) fl D, is nonempty and connected for all
c U2 . Let U= U, fL U,. Clearly, U is nonempty, since c* e U. In light of Lemma 2.3,
we see that for all c U,

9(c) S(c) n •(x D,)

= (Sx(c) l ~,) x (S,(c) n n,),
and the set S§c) is nonempty and connected. Let us use §S(c) and S,(c) to denote the
sets S(c) n D,, and S,(c) D,, respectively.

We now proceed to prove Theorem 2.1. Since we have assumed that the final
result is evaluated by processor P,, it follows that the last message m,(x, y) must have
been sent by processor P2. (Otherwise, processor P, would be able to evaluate f(x, y)
on the basis of m,(x,y), - - , m,-_(x, y), and we would have a protocol with r- I
messages, thus contradicting (2.7).) Suppose that there exists some function w: U-'St
such that

(2.18) h(x,c)= w(c) VcEU VxcE (c),

where h is the function given by (2.10). We claim that w is a continuous function of
c in U. In fact, let c be an arbitrary vector in U and let {c, E U; i= 1, 2, - - -} be a
sequence of vectors converging to c. By Theorem A.3 in the Appendix, we can pick a
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convergent sequence of vectors {x, e S(ci); i= 1, 2, - - .} such that lim,, • x,= x for
scidne x Dx. By using (2.18) and the continuity of h, we see that

lim w(ci) =lim h(x,, c,) = h(x, c),

which implies that w is continuous on U. Since for any (x, y) E m-( U) l (Blx x ,)
we have m(x, y)E U, (2.18) yields

f(x, y) = h(x, m(x, y)) = w(m(x, y)) V(x, y) cEx x 6),.
Thus f can be evaluated on the basis of m(x, y) alone over the set m-'(U) n (L5x 6y)
and this can be done by processor P2 before sending the last message. Thus (2.18)
leads to a protocol with r - 1 messages for computingf over m -'(U) (D, x Di). This
will contradict (2.7) once we show that m-'(U) n (Dx x D,) is a nonempty open set.
To this effect, we notice that S(c) is nonempty and that

from which it follows that m-t(U) n (/)x x ,) is nonempty. Furthermore, m-'(U) is
open since it is the inverse image of the open set U under a continuous mapping.
Thus, m-'(U) l (•x x 6,) is open, since Dx x D, is open by construction.

Since no function w can have the property (2.18), we conclude that there exists
some 8E U such that h(x, 0) is a nonconstant function of x on the set Sx(c). Since h
is a continuous function and the set S.(^) is nonempty and connected, we see that
h(Sx(e), 8) must contain an open interval in R. Using the fact f(x, y) = h(x, 4) for all
(x, y) §x((e) x Sy(e), we have

f(9x(), y)= h(x(e), 2) Vy ,(c).

Therefore, f(Sx(6), y) contains an open interval, or equivalently, S()E•SP(2
)(y) for

all y E Sy(6) (cf. definition 2.1). Let us fix some 9e Sy,(). Then, using the definition
of nf (2.1), there exist x', ---, x"f E x(8) such that Vf(x', 9), .. , V,f(x", .) are
linearly independent. Meanwhile, we observe that

§,(e)={ye 6l,r?,(y, 8"-')=~ ' Vie T24,

and that, for any fixed x E Sx(e),f(x, y) = h(x, e) is a constant function of y on the set
S,(e). Moreover, by Lemma 2.2, we have

(2.19) rank [Vir,(y, ci-'); iE T2,,] = r2 Vy E~,.

Thus we are now in a position to apply Theorem A.4 (with the correspondence
A<--t Sy(), Fe- {ri,(y, '-')- &; i- Tz2 }1 ) and conclude that

V,f(x, 9) E span {Vti,(9, 'i-'), i E T2-_1  Vx ().*

Since each x (E §~(), we see that VBf(x' , 9) is the span of the vectors {V,~it,(, i-'),
iE T2- 1}, for j= 1,-- , nf. Using the fact that the vectors Vf(x', ý) are linearly
independent, we conclude that r-= r2z n -f min m {m, nf}, which is the desired result,
under the assumption that processor P, performs the final evaluation of f A similar
argument yields r - r,• n mf min {mf, nf} for the case where processor P2 performs the
final evaluation of f This completes the proof of the theorem.

As a remark, we note that in the preceding proof we have actually shown that
r2 - n, in the case where processor P, performs the final computation and r, _ mf if
processor P2 performs the final computation. Therefore, if C ,(f; D. x D,)=
min {mf, nf,, then either r, = m, and r. = 0, or, r, = 0 and r2 = nf. This means that our
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lower bound is tight only for those problems for which one-way communication
protocols are optimal.

COROLLARY 2.1. If C,(f; Dr x D,) = min {ny, mf}, then any optimal communication
protocol for computing f over Dx x D, is necessarily a one-way communication protocol

3. Computing a root of a polynomial. We now apply Theorem 2.1 to the distributed
computation of a root of a polynomial. We shall demonstrate that in this case Abelson's
result is far from optimal.

Let x = (xo, - - , x,,) r3 " and y = (yo, - " ", Y-I) aE R; let F(z; x, y) be the poly-
nomial in the scalar variable z defined by

n-I

(3.1) F(z; x, y)= (x,+yJ)z'.
I=0

Processor Pt (respectively, P,) has access to the vector x (respectively, y); and the
objective is the computation of a particular root of the polynomial F(z; x, y). In order
for the problem to be well defined, we must specify which one of the n - 1 roots of
the polynomial is to be computed. This is accomplished as follows. We fix some
(x*, y*) e 2" such that one of the roots (call it z*) of the polynomial F(z; x*, y*) is
real and simple. This root will vary continuously and will remain a real and simple
root as x and y vary in some open set containing x*, y*. We formulate this discussion
in the following result.

LEMMA 3.1. Suppose that z* is a real and simple root of F(z; x*, y*). Then, there
exist open sets Dx, D, c 91" such that (x*, y*) E •, x D, and an infinitely differentiable
function f: D x D1,W--9 such that f(x*, y*) = z* and

(3.2) F(f(x,y); x,y)=O V(x,y)e D xD,.

Proof. Note that (OF/8z) (z*; x*, y*) $ 0, since z* is a simple root. By the implicit
function theorem ([S65, p. 41]), we see that there exists an open set D containing
(x*, y*) and an infinitely differentiable function g: D--T. such that g(x*, y*) = z* and
F(g(x, y); x, y) = 0 for all (x, y) e D. Now by the continuity of (aF/laz) (z; x, y) Iz=g(x,y)
at the point (x*, y*), there exist open sets Dx, D, such that (x*, y*) E D. x D, cD and
such that (aF/az) (z; x, y) I=g,( .,, • 0 for all (x, y) E D, x D,. As a result, g(x, y) is a
simple root of the polynomial equation F(z; x, y) = 0 for all (x, y) e D, x D,. Let f be
the restriction of g on D x D,. Clearly, f has all the desired properties. 0

By Lemma 3.1, we see that f(x, y) is a root of F(z; x, y) and is a well-defined
smooth map from D. x Dy to 91. We are interested in the communication complexity
C,(f; D. x D,) of computing f(x, y) as (x, y) varies in the set D, x D,. We start by
pointing out that Abelson's tower bound (Theorem 1.1) is rather weak.

LEMMA 3.2. The rank ofthe matrix Hxy(f), whose (i, j) th entry is equal to2 flaxiayj,
is at most 3, for any (x, y) E D, x D,.

Proof We have

E (xv+y)(f(x,y))'=O V(x,y)e Dx D,.
i=O

We differentiate both sides of the above equation, with respect to y,,, to obtain

n- y

Z i(x,+y,)(f(xy))_ f(Xy)€(f(xy)) =O V(xy)ED,,xD
-J 0y_

(3.3)
05m : n-1.
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We differentiate (3.3) further, with respect to xt, to obtain

n--Iaf(x, Y) f(x, y)

Y i(i-l)(xi+y,)(f(x, y))-2
i=t axi Sym

n-I |af(xy)
+ E i(x,+ y,)(f(x, y))', af(x Y

(3.4) i= dxay,,,

+m(f(x, y)) ' - af(x, y) a(f(x,)) f(x y)=0,
ax, aym

V(x, y)E D, X D,, O5 m, 15n - 1.

Since f(x, y) is a simple root, it follows that CZ=t i(x 1+yj)(f(x, y))'_ # 0. Equation
(3.4) shows that a2f(x, y)/axtaym is of the form ul(l)v,(m) + u,(l)v,(m) + u3(l)v 3(m),
where ui(l), v,(m) are some real numbers depending on x, y. Therefore the rank of the
matrix Hx,.(f) can be at most 3, for any point (x, y)E Dx x D,. 0

We now illustrate the power of our general results by deriving a lower bound that
matches the obvious upper bound.

THEOREM 3.1. Let Dx, D, be as in Lemma 3.1. Then, C,(f(x, y); D. x D,) = n.
Proof The upper bound C,(f; D, x D,) ! n is obvious, so we concentrate on the

proof of the lower bound. To this effect, we will employ Theorem 2.1 and it suffices
to verify that Assumption 2.1 holds with nf = mf = n. Since the roots of a polynomial
equation cannot remain constant when the coefficients vary over an open set, it follows
that the continuous function f(x, y) given by Lemma 3.1 satisfies parts (a) and (b) of
Assumption 2.1. Now we fix some ye D, and some Se 9( 2

)(y), that is, Sc Dx and
f(S, y) contains an open interval. Let c,,- -, c, be some distinct real numbers in
f(S, y) and x', -, x"' eS such that

(3.5) f(x' y) = c, i = 1, -- -, n.

Let xf be the jth coordinate of x'. Using (3.3), we see that

(3.6) aiVf(x', y)= - c,

where ai =C,,:j(xI+yi)cf- '. If we form a matrix whose columns are the vectors

(1, ci, • • , c-'), i = 1, - , n, this matrix is a Vandermonde matrix and is nonsingular,
because the values ct, - , c, are chosen to be distinct. Then, (3.6) implies that the
vectors Vf(x', y), i = 1, • • •, n, are linearly independent. This proves that nrf = n. The
proof that mf = n is similar. 0

As a remark, we point out that Theorem 3.1 is in some sense the strongest result
possible. The only assumptions we used in showing Theorem 3.1 are that (a) the
message functions are continuously differentiable; (b) the final evaluation function is
a continuous function; (c) the protocol computes a root of a polynomial on some open
set. As discussed in [L89], assumption (a) is necessary since its removal could lead to
unreasonable conclusions. Assumption (b) is basic and natural since the function to
be computed, i.e., a particular real simple root of some polynomial, is continuous,
while assumption (c) is minimal. Finally, we note that no truly two-way communication
protocol can be optimal. In other words, if each processor transmits at least one
message, then at least n + 1 messages have to be exchanged. This is a simple consequence
of Corollary 2.1 of § 2.
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4. Comparison with Abelson's bound. In the previous section, we saw that Theorem
2.1 can yield a much better bound than Abelson's result (Theorem 1.1). However, it
is not true, as we shall see next, that Theorem 2.1 always provides a stronger lower
bound. The reason is, loosely speaking, that our result only places a constraint on the
minimum number of messages that has to be sent by a single processor, while Abelson's
result is a bound on the total number of messages sent by both processors. As pointed
out at the end of § 2, any two-way communication protocol that attains the lower
bound in Theorem 2.1 is necessarily a one-way protocol. Notice that our result makes
use of information about the first-order derivatives of function f This is in contrast to
Abelson's result which uses only the second-order derivatives of f In what follows,
we provide an example where Abelson's bound is more effective than our bound.

Let f(x, y) = xrQy, where Q is some m x n matrix, x e '• and ye 9". By Theorem
1.1, we see that C2(f; 9'" xN") - rank (Q). Using the singular value decomposition
of Q, one can construct a protocol that uses exactly rank(Q) messages (see [LT89]).
Therefore, we conclude that C2(f; 'J" x N") = rank(Q). To see what lower bounds
are provided by Theorem 2.1, we need to calculate the values of mf and nf.

Suppose that rank (Q)= r> 0. Let Dx, D, be some convex open subsets of 1'
and W", respectively. We assume that 0 Dx and O0 D,, in which case f(x,y) is
nonconstant as x or y vary in an open subset of Dx or D,, respectively. Thus parts
(a) and (b) of Assumption 2.1 are satisfied. We now show that Assumption 2.1 can
only hold with min {mf, nf} 1- 2. By the singular value decomposition, there exist two
linearly independent families of vectors ul, - - -, u, in 9 1

' and v, - - v, Iv n 9t", such
that

(4.1) Q = uv+ uvT+ .. + u,v

It follows that x'Qy = :=, (ufx)(vfy). Since r> 0, there exists some point (xo, yo)E
Dx x D, such that xoTQyo # 0. Hence, we can, without loss of generality, assume that
(u'xo)(vryo) $ O. Let S = {x E D,1 u Tx = uTxo, 1 5 i -r - 1}. Clearly, S is nonempty
since x E S. We claim that if r> 1, then f(S, yo) contains an open interval. In fact,
(4.1) shows that

x'Qyo= E (ufx)(vfyo)
f='

(4.2)

= C (uIxo)(vfyo)+(uTx)(vTyo) Vx ES.
9=L

.Since u, is linearly independent from u,. - , ur 1 , we see that ur x is a nonconstant
function of x on S. Using (4.2) and the fact that-vryo#0, we see that xTQyo is also
a nonconstant function of x on the set S. Note that S is connected because Dx is
assumed to be convex. It follows that f(S, yo) contains an open interval. To see that
nf < 2, we note that

r-1
V,f(x, yo)= (UTxo)vi+(uTx)r , VxeS.

i=1

Hence, dim [V,f(x, yo); x e S] - 2. Thus Assumption 2.1 can only hold with n,_- 2. The
relation m -5 2 can be established in a symmetrical fashion. As a result, we have shown
that min {mf, nfI} - 2.

Thus, for the problem f(x, y) = xTQy, Theorem 2.1 provides a lower bound of at
most 2, as opposed to the lower bound of rank(Q) provided by Abelson's result.
Hence, Theorem 2.1 can be quite far from optimal, in general. Furthermore, the above
example and the results of § 3 illustrate that Theorems 1.1 and 2.1 are incomparable.
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Appendix. This appendix contains some results concerning multivariable functions
that are used in § 2.

Let F: Ux V--~9 be a continuously differentiable mapping, where U and V are
open subsets of ,?' and ', respectively. We assume that r>s and that
rank [V,F(u*, v*)] =s, for some (u*, v*)¶l Ux V. Then, the matrix VF,(u*, v*) has s
linearly independent rows and we can find a set J c {1, - --, rJ of indices, of cardinality
s, such that the vectors (aF1 (u*,v*)/au,,---,aF,(u*,v*)/au1 ),ieJ are linearly
independent. We define the projection TI:?-• t'- ' by letting 1(u) be the vector
with coordinates u,, i J. We have the following lemma.

LEMMA A.1. There exists a connected open subset R of U x V, and a connected open
set Sc •'"', and a continuously differentiable function g: Sw-- R such that (u*, v*) E R,

.S= {(F(u, v), I(u), o)l(u, V)E R},

and such that

(A.1) (u, v)= g(F(u, v), I(u), v) V(u, v) R.

Proof Consider the mapping q: Ux V-,'' defined by q(u, v)=
(F(u, v), Il(u), v). We claim that Vq(u*, v*) has full rank. To see this, let us permute
the rows of Vq(u*, v*) so that the last r + t - s rows correspond to the partial derivatives
with respect to the variables v and ui, i i J. Then, Vq(u*, v*) will have the structure

Vq(u*, v*) = 0,

where A, B are suitable submatrices of V F(u*, v*) and I is the (r + t - s) x (r+ t - s)
identity matrix. Each one of the s rows of matrix A is a vector of the form
(aF,(u*, v*)/u,,. . .-, aF,(u*, v*)/auJ), i E J, and these vectors are linearly independent
by construction. Thus det (Vq(u*, v*)) = det (A) # 0. The result then follows from the
inverse function theorem [S65, p. 35]. 0

THEOREM A.1. Let Q be an open subset of N'. Let F: Q-• ' be a continuously
differentiable mapping such that

(A.2) max rank (V F(z)) = s.

Suppose that f: Q -- is a continuously differentiable function with the property

Vf(z)e span {VF(z)} Vze Q.

Then, there exists some continuously differentiable function h such that f(z) = h(F(z))
for all z e R, where R is some open subset of Q.

Proof Suppose that z* E Q is a vector at which the maximum in (A.2) is attained.
By taking t = 0 and dropping the set V, we see that all the assumptions of Lemma A.1
are satisfied2 , and thus Lemma A.1 applies. Let R, S, and g be as in Lemma A.1. By
assumption, Vf(z) span {VF(z)}, for all ze R. Thus, for every zE R, there exists a
vector d(z) e 9S such that

(Ak3) Vf(z)=VF(z)d(z) Vz R.

2 We have assumed that r > s here. The proof for the case r s is essentially the same except that nl
is redundant.
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Using Lemma A.1, we have

F(z) = F(g(F(z), 11(z))) Vze R,

or

(A.4) u = F(g(u, v)) V(u, v) e S.

Let V,g be the (r - s) x r matrix of the partial derivatives of g, with respect to the
components of v. Since the left hand side of (A.4) does not depend on v, the chain
rule yields

(A.5) 0 = Vg(u, v)- VF(g(u, v)) V(u, v)e S.

We use Lemma A.1 once more to obtain

f(z)= f(g(F(z), I7(z))) Vze R.

We define a function h: S-+9. by letting

(A.6) (u, v) =f(g(u, v)) V(u, v) e S.

Note that h is continuously differentiable. Using the chain rule,

Vk(u, v)= Vdg(u, v) - Vf(g(u, v)) V(u, v)ES,

where Vh•(u, v) is the vector of partial derivatives of h with respect to the components
of v. Using (A.3) and (A.5), we conclude that Vh(u, v) = 0, for all (,u, v) e S. Since S
is open and connected, it is easily shown that E is independent of v and there exists
a continuously differentiable function h: V'-- such that

h(u, v)=h(u) V(u,v)eS.

Here V = F(R), which is obviously open and connected. For any z e R, we have

f(z) =f(g(F(z), fl(z)))= =(F(z), II(;)) = h(F(z)),

as desired. 0
THEOREM A.2. Let F: Q-•t be continuously differentiable,.Yhe're Q c 9"' is open.

We assume that rank (VF(z)) <s, for all z e Q, and that VF,(z) (the first component
mapping of F) is not equal to zero on the set Q. Then, there exists some positive integer
i and some continuously differentiable function h such that

F,(z)= h(F,(z), - - , F,(z)) Vze R,

where R is some nonempty open subset of Q and Fi denotes the ith component mapping
ofF.

Proof. We let i be the largest index such that there exists some , E Q with the
property

dim span {V F,(£), - --, V FF()} = i.

Clearly, 1:Ii<s. By continuity, there exists some open subset Qdof Q containing 2
such that VF,(z), - - , V F(z) are linearly independent for all z e Q. By our choice of
the index i, we have

VF,,,(z)Espan {VF,(z), - - -,VF(z)} VzeO.

By Theorem A.1, we see that there exists a continuously differentiable function
h: U--!t such that

F+.,(z)= h(F,(z), - , Fj(z)) VzE R

where R is some open subset of Q and U= F(R). 0
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THEOREM A.3. Let F: U x VýH- Y' be a continuously differentiable mapping, where
U and V are open subsets of gi' and .)', respectively. Let (u*, v*) U x V be such that
rank [VF(u*, v*)] = s and F(u*, v*) = 0. Then, there exists some nonempty open subsets
Wc U, Pc Vsuch that u* W, v*E V, and

{uIF(u, v)= O}n w

is nonempty and connectedfor all v V. Furthermore, if { v, E V; i = 1, 2,- --} is a sequence
of vectors such that lim,•. vi = v and v E V, then there exists a sequence {u, r W} such
that F(ua, vv) = 0 and limr ui = u for some u E W.

Proof We are in a situation where the assumptions of Lemma A.1 hold.' Let
q, g, R, S be given as in Lemma A.1. Thus (u, v)= g(q(u, v)) = g(F(u, v), I1(u), v), for
all (u, v) a R. Let gu, g, be the corresponding component mappings of g such that
u = g,(q(u, v)) and v= g,(q(u, v)). Since S is open, we can take a connected open
subset of S with the form W, x W2 x V such that W c 9S', W2c r'-', and q(u*, v*) E
W, x W, x V. It is easy to check that W2 is nonempty and connected and that v* E V.
Since g is a diffeomorphism, it follows that the set g( W, x W, x V) is open. Moreover,
we claim that g has following properties:

(a) gv,(w, w2, v) = v for all (w,, w2, v)) W, x W,x V;
(b) l(g,(w 1, v)) = w2 for all (w,, w2, v)E W1 x Wx V.
To prove the first property, let us write (w,, w,, v)= q(u, v') for some (u, v')E R.

This is possible since (w1 , w2 , v) E S. Hence, (w1 , w2, v) = (F(u, v'), Hl(u), v'). It follows
that v = v' and (w,, w,, v) = q(u, v). Thus, g,(w,, w,, v) = g,(q(u, v)) = v, which proves
(a). We now show the second property. As we have just seen, there exists some u such
that (w,, w,, v)= q(u, v) and (u, v)E R. Thus, (w,, w2 , v)=(F(u, v), HI(u), v), from
which it follows that w2 = 1(u). On the other hand, we have

fl(gu(w., w,, v))= lI(g,(q(u, v)J) = I-(u),

from which it follows that w 2 =H(gu(w1 , w2, v)).
Now let W= g( W, x W2 x W ) and S,(v) = {u E U F(u, v5 = 0}, Since W is the

projection of the open set g( W, x W, x V), it follows that W is'open in W'. Also, it
can easily be seen that Wc U and u*e W. Furthermore, we claim that

(A.7) S,(v)n W={g,(0, w2, v)lw 2 E W2 } Vve V.

In fact, let us fix some vE V and let E(v) be the set in the right-hand side of (A.7).
We will show that E(v)c S.(v)n W Clearly, E(v) W. Thus, we only need to show
that E(v)c S,(v). Let u be an element of E(v). Then, there exists some w2 W2 such
that u = g,(0, w2, v). Since q(u*, v*) = (F(u*, v*), Hl(u*), v*) = (0, II(u*), v*) and
q(u*, v*) e W x W2 x V, we see that 0 E W,. Thus, (0, w2, v) e W1 x W, x V. In light of
property (a), we see that v = g,(0, w2 , v). Consequently,

F(u, v) = F(gu(0, w2, v), g,(O, w2, v)) = F(g(0, w2, )) =0.

It follows that E(v)c S,(v) f W.
For the reverse inclusion, given any u E Su(v) f W, we have F(u, v) = 0. Further-

more, there exists some (w1 , W2 , v') W,x W2 x V such that u = g,(wI, w2 , v'). By
property (b), we see that II(u)= w2 . Thus (0, w,, v)= (F(u, v), Il(u), v)= q(u, v).
Hence, u = g(q(u, v))=g,(0, w2, v). This implies that u e E(v), and (A.7) has been
established. As a result, the set S,(v) f W is connected because, according to (A.7),

3 Here we have assumed that r> s. The same argument works for the case r = s except that HI should
be dropped in the remaining proof.

'I



Z.-Q. LUO AND J. N. TS[TSIKLIS

it is the image of the connected set W, under a continuous mapping. Since E(v) i"
nonempty for each v V, (A.7) also shows that S,(v)n W is nonempty.

Given a sequence of vectors {v, E V; i = 1, 2, - - - } such that limj,_ v, = v and v E V,
let us pick u, =g,(0, w,, v,), i= 1, 2, - - -, where w, is some fixed vector in W. Hence,
u, e E(v,) for all i. According to (A.7), we see that F(ui, vi)= 0. Furthermore, by the
continuity of gu, we see that

lim u, = lim gU(0, w2, v) = gu(0, w2_, v),
i-00 i0O0

which is clearly in W. 0
THEOREM A.4. Let Q be an open set in 9'. Let also F: Q'- •l be a continuously

differentiable mapping such that

(A.8) rank (VF(z))= s Vz EA,

where A = {z I F(z) = 0}. Suppose that f: Q-- is continuously differentiable and is a
constant function of z on A. Then,

(A.9) Vf(z)espan {VF(z)} Vze A.

Proof. Consider the following constrained optimization problem:

(A.10) minf(z).
zEA

By assumption, each z in A is an optimal solution to (A.10). Since tfie regularity
condition (A.8) ensures the existence of a set of Lagrange multipliers, the necessary
condition for optimality gives the desired result ([L84, p. 300]). 0
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