
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING I1, 263-275 (1991)

Optimal Communication Algorithms for Hypercubes*

D. P. BERTSEKAS, C. OZVEREN, G. D. STAMOULIS, P. TSENG, AND J. N. TSITSIKLIS t

Laboratory for Information and Decitson Systems, Room 35-210, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

We consider the following basic communication problems in
a hypercube network of processors: the problem of a single pro-
cessor sending a different packet to each of the other processors,
the problem of simultaneous broadcast of the same packet from
every processor to all other processors, and the problem of si-
multaneous exchange of different packets between every pair of
processors. The algorithms proposed for these problems are op-
timal in terms of execution time and communication resource
requirements; that is, they require the minimum possible number
of time steps and packet transmissions. In contrast, algorithms
in the literature are optimal only within an additive or multi-
plicative factor. © 1991 Academic Press, Inc.

1. INTRODUCTION AND PROBLEM
FORMULATION

When algorithms are executed in a network of processors,
it is necessary to exchange some intermediate information
between the processors. The interprocessor communication
time may be substantial relative to the time needed exclu-
sively for computations, so it is important to carry out the
information exchange as efficiently as possible. There are a
number of generic communication problems that arise fre-
quently in numerical and other algorithms. In this paper,
we describe new algorithms for solving some of these prob-
lems on a hypercube. Algorithms for solving such problems
have been studied in such works as [15, 7], among others.
In this paper, we present some new algorithms for the hy-
percube that are optimal, in the sense that they execute the
required communication tasks in the minimum possible
number of time steps and link transmissions.

To define a hypercube network (or d-cube), we consider
the set of points in d-dimensional space with each coordinate
equal to 0 or 1. We let these points correspond to processors,
and we consider a communication link for every two points
differing in a single coordinate. We thus obtain an undirected
graph with the processors as nodes and the communication
links as arcs. The binary string of length d that corresponds

* Research supported by the NSF under Grants ECS-8519058 and ECS-
8552419, with matching funds from Bellcore Inc., the ARO under Grant
DAAL03-86-K-0171, and the AFOSR under Grant AFOSR-88-0032.

t Laboratory for Information and Decision Systems, M.I.T., Cambridge,
MA 02139.

26.

to the coordinates of a node of the d-cube is referred to as
the identity number of the node. We recall that a hypercube
of any dimension can be constructed by connecting lower-
dimensional cubes, starting with a I-cube. In particular, we
can start with two (d - 1)-dimensional cubes and introduce
a link connecting each pair of nodes with the same identity
number (see, e.g., [l, Sect. 1.3]). This constructs a d-cube
with the identity number of each node obtained by adding
a leading 0 or a leading I to its previous identity, depending
on whether the node belongs to the first (d - 1)-dimensional
cube or the second (see Fig. 1). When confusion cannot
arise, we refer to a d-cube node interchangeably in terms of
its identity number (a binary string of length d) and in terms
of the decimal representation of its identity number. Thus,
for example, the nodes (00. - 0), (00 . 1i), and (l1 .. 1)
are also referred to as nodes 0, 1, and 2 d - I, respectively.

The Hamming distance betweeh tvo nodes is the number
of bits in which their identity numbers differ. Two nodes are
directly connected with a communication link if and only
if their Hamming distance is unity, that is, if and only if
their identity numbers differ in exactly one bit. The number
of links on any path connecting two nodes cannot be less
than the Hamming distance of the nodes. Furthermore, there
is a path with a number of links that is equal to the Hamming
distance, obtained, for example, by switching in sequence
the bits in which the identity numbers of the two nodes differ
(equivalently, by traversing the corresponding links of the
hypercube). Such a path is referred to as a shortest path in
this paper and a tree consisting of shortest paths from some
node to all other nodes is referred to as a shortest path tree.

Information is transmitted along the hypercube links in
groups of bits called packets. In our algorithms we assume
that the time required to cross any link is the same for all
packets and is taken to be one unit. Thus, our analysis applies
to communication problems where all packets have roughly
equal length. We assume that packets can be simultaneously
transmitted along a link in both directions and that their
transmission is error free. Only one packet can travel along
a link in each direction at any one time; thus, if more than
one packet is available at a node and is scheduled to be
transmitted on the same incident link of the node, then only
one of these packets can be transmitted at the next time
period, while the remaining packets must be stored at the
node while waiting in queue.

0743-7315/91 $3 00
Copynght © 1991 by Academic Press, Inc

All rghts of reproduction in any form reserved

BERTSEKAS ET AL.

0001 'Ou

FIG. 1. Construction of a 3-cube and a 4-cube by connecting the cor-
responding nodes of two identical lower-dimensional cubes. A node belongs
to the first lower-dimensional cube or the second depending on whether its
identity has a leading 0 or a leading 1.

Each node is assumed to have infinite storage space.
Moreover, we assume that all incident links of a node can
be used simultaneously for packet transmission and recep-
tion; this is called the Multiple Link Availability (or MLA)
assumption. Another possibility is the Single Link Avail-
ability (or SLA) assumption, where it is assumed that, at
any time, a node can transmit a packet along at most one
incident link and can simultaneously receive a packet along
at most one incident link. Optimal algorithms under this
assumption are considerably simpler than the ones for the
MLA case and are not considered here (see [15, 1, 71). Fi-
nally, we assume that each of the algorithms proposed in
this paper is simultaneously initiated at all processors. This
is a somewhat restrictive assumption, essentially implying
that all processors can be synchronized with a global clock.
For recent research on communication problems where
packets are generated at random times, see [5, 20, 24].

We now describe the communication problems that we
are concerned with.

The Communication Problems

One of the simplest problems is the single node broadcast,
where we want to send the same packet from a given node,
called the root, to every other node. Clearly, to solve this
problem, it is sufficient to transmit the packet along a directed
spanning tree emanating from the root node, that is, a span-
ning tree of the network together with a direction on each
link of the tree such that there is a unique directed path on
the tree from the root to every other node (all links of the
path must be oriented away from the root). This problem
has been discussed extensively under various assumptions
in [15, 12, 7], so we do not discuss it further.

In a generalized version of the single node broadcast, we
want to do a single node broadcast simultaneously from all
nodes (we call this a multinode broadcast). To solve the
multinode broadcast problem, we need to specify one span-
ning tree per root node. The difficulty here is that some links
may belong to several spanning trees; this complicates the
timing analysis, because several packets can arrive simulta-
neously at a node and require transmission on the same link
with a queueing delay resulting.

Another interesting communication problem is sending a
packet from every node to every other node (here a node
sends different packets to different nodes, in contrast with
the multinode broadcast problem, where a node sends the
same packet to every other node). We call this the total
exchange problem. A related problem, called the single node
scatter problem, involves sending a separate packet from a
single node, called the root, to every other node.

Table 1 gives the main results for the preceding three
communication problems. One of the columns gives the
number of time units required to solve the problems. We
show that each of these numbers is a lower bound on the
number of time units taken by any algorithm that solves the
corresponding problem, and we describe an algorithm that
attains the lower bound.-The other column gives the number
of packet transmissions required to solve the corresponding
communication problems. These humbers are lower bounds
on the number of packet transmislioAs taken by any algo-
rithms that solve the corresponding problems, and the lower
bounds are attained by the same algorithms that attain the
corresponding lower bounds for the execution time. Thus,
there are algorithms that are simultaneously optimal in terms
of execution time and number of packet transmissions for
our communication problems.

Related Research

Algorithms for the communication problems of this paper
were first considered in [15], which also discusses the effects

TABLE I

Optimal Times and Optimal Numbers of Packet Transmis-
sions for Solving the Three Basic Communication Problems on
a d-Cube for the Case Where Simultaneous Transmission Along
All Incident Links of a Node Is Allowed (the MLA Assumption)

Number of
Problem Time transmissions

Single node scatter d7 d2-'-
d

Multinode broadcast r•-l 2 d(2
d

- 1)
d

Total exchange 2d-I d22d• 1

Note. We assume that each packet requires unit time for transmission on
any link.

COMMUNICATION ALGORITHMS FOR HYPERCUBES

of the packet overhead and the data rate (denoted by 0 and
r, respectively, in [15]) on the transmission times. The
problems are named somewhat differently in [15] than here.
We essentially follow the communication model of [15],
except that the hypercube links are assumed to be unidirec-
tional in that work; this increases the algorithm execution
times by a factor of 2 for the multinode broadcast and the
total exchange problems. To compare the results of[15] with
those of the present paper, the times of [15] should be used
with 3 = 0, m = 1, and r = 1 and, for the aforementioned
problems, should be divided by 2. A multinode broadcast
algorithm (under the MLA assumption) which is slightly
suboptimal (by no more than d time units) is given in [15].
This algorithm is constructed by specifying a packet trans-
mission schedule at a single node and then properly repli-
cating that schedule at each node, exploiting the symmetry
of the d-cube. In contrast, we obtain optimal multinode
broadcast algorithms starting from a suitable single node
broadcast algorithm and replicating that algorithm at each
node. This approach was used for meshes in general in [14],
where a slightly suboptimal (by no more than d - 3 time
units) multinode broadcast algorithm was given. The same
approach was also used in [7]. The total exchange algorithm,
given in Ref. [151 under the MLA assumption, assumes that
each node has m packets to send to every other node. This
algorithm is optimal only if m is a multiple of d; for m = 1,
it is suboptimal by a factor of d. An algorithm similar to the
total exchange algorithm of [15] is also given in [12]. An
alternative approach to optimal algorithms for the total ex-
change problem was recently presented in [24, 23]. Optimal
algorithms for single node scatter and total exchange were
also given in [15] under the SLA assumption (even though
the SLA assumption does not explicitly appear in [15]).

The problems of this paper have also been considered in
[7], where optimal and nearly optimal algorithms are given
on the basis of a different model of communication. This
model differs from ours in that it quantifies the effects of
setup time (or overhead) per packet, while it allows packets
to have variable length and to be split and be recombined
prior to transmission on any link in order to save on setup
time. In the model of [7 1, each packet may consist of data
originating at different nodes and/or destined for different
nodes. The extra overhead for splitting and combining pack-
ets is considered negligible in the model of[7]. Our model
may be viewed as the special case of the model of [71 in
which packets have a fixed length and splitting and combin-
ing of packets is not allowed. Under the assumptions of our
model, the algorithms given in [7] for single node scatter,
multinode broadcast, and total exchange are not exactly op-
timal, although some of them are optimal up to a small ad-
ditive term, and are exactly optimal when d is a prime num-
ber (they are also optimal if each node has a multiple of d
packets to send to each destination node). In contrast, our
corresponding algorithms are exactly optimal for all d and

are unimprovable as far as time and communication re-
quirements are concerned.

Even if there is no incentive to combine packets into larger
packets to save on setup time, there is sometimes an incentive
for splitting packets into smaller packets that can travel in-
dependently through the network. The idea here is to par-
allelize communication through pipelining the smaller
packets over paths with multiple links and is inherent in
proposals for virtual cut-through and wormhole routing [11,
3]. A little thought shows that (as long as the associated
extra overhead is not excessive) the single node broadcast
time can be reduced by dividing packets into smaller packets
(see also [71). On the other hand this is essentially impossible
for the three basic communication problems considered in
this paper (under the MLA assumption); from Table 1 it is
seen that in an optimal algorithm, there is almost 100% uti-
lization of some critical communication resource (the d links
outgoing from the root in single node scatter and all of the
d2d directed network links in multinode broadcast and total
exchange). Any communication algorithm for these prob-
lems that divides packets into smaller packets cannot reduce
the total usage of the corresponding critical resource and
therefore cannot enjoy any pipelining advantage.

We also note that ifi addition to [15, 12, 7], there are
several other works dealing with various communication
problems and network architectures related to those discussed
in the present paper (see [2, 4, 6, §, 10, 16-19, 21, 22]).

To summarize, the new results of the present paper are
the optimal algorithms for single node scatter, multinode
broadcast, and total exchange (under the MLA assumption).
In all of our algorithms, all packets originating from the same
node are routed through a spanning tree rooted at this node.
Our single node scatter algorithm uses a new perfectly bal-
anced spanning tree construction, that is, a spanning tree
with d subtrees that are as close to being equal in size as
possible. To the best of our knowledge, this is the first span-
ning tree that is provably perfectly balanced. (A spanning
tree proposed in [7] attains this property only when d is a
prime number.) Also, our multinode broadcast algorithm
uses another new and interesting spanning tree construction.
These spanning trees could prove useful in other algorithms;
in general, our algorithms can be used for the optimal so-
lution of various other communication problems, by intro-
ducing appropriate modifications (see [1, Sect. 1.3]). Re-
garding the appropriateness of our assumptions, our view is
that it is important to consider several types of communi-
cation models, given the broad variety of present and future
communication hardware. Our fixed packet length model
has the advantages of simplicity and flexibility; we believe
that algorithms based on our model are likely to be adaptable
with small variations to many types of communication con-
texts. (For such an adaptation and corresponding analysis
of our multinode broadcast algorithm in the case where the
packet lengths are random, see [24].) It is also worth noting

BERTSEKAS ET AL.

that the emerging standard for high-speed communications,
the Asynchronous Transfer Mode (see, e.g., [13]), is based
on fixed packet lengths as well as minimal packet processing
at the nodes, which favors neither splitting nor combining
packets.

2. MULTINODE BROADCAST UNDER
THE MLA ASSUMPTION

We first note that in a multinode broadcast each node
must receive a total of 2 d - I packets over its d incident
links, sof (2d - 1)/dl is a lower bound for the time required
by any multinode broadcast algorithm under the MLA as-
sumption. We obtain an algorithm that attains this lower
bound.

As a first step toward constructing such an algorithm, we
represent any single node broadcast algorithm from node
(00... -0) to all other nodes that takes q time units by a
sequence of sets of directed links A,, A2, ... , A,. Each Ai is
the set of links on which transmission of the packet begins
at time i - 1 and ends at time i. Naturally, the sets A, must
satisfy certain consistency requirements for accomplishing
the single node broadcast. In particular, if S, and Ei are the
sets of identity numbers of the start nodes and end
nodes, respectively, of the links in Ai, we must have S,

= {(00 . 0)} and S, C {(00 . -0)} U (U'- Ek). Fur-
thermore, every nonzero node identity must belong to some
Ei. The set of all nodes together with the set of links
(Uq, Ai) must form a subgraph that contains a spanning tree
(see Fig. 2a); in fact, to minimize the number of packet
transmissions, the sets of links A,, A2, ... , Aq should be
disjoint and should form a spanning tree.

Consider now a d-bit string t representing the identity
number of some node on the d-cube. For any node identity
z, we denote by t @ z the d-bit string obtained by performing
modulo 2 addition of the jth bit of t and z for each j = 1, 2,
.. ., d. It can be seen that an algorithm for broadcasting a
packet from the node with identity t can be specified by the
sets

A,(t)= (t (x, t (y) I (x, y) E Ai}, i= 1, 2, . .. , q,

where Ai(t) denotes the set of links on which transmission
of the packet begins at time i - 1 and ends at time i. The
proof of this is based on the fact that t (x and t G y differ
in a particular bit if and only if x and y differ in the same
bit, so (t G x, t G y) is a link if and only if(x, y) is a link.
Figure 2 illustrates the seis Ai(t) corresponding to all possible
t for the case where d = 3.

A A2 A 3
oo0 101A il

000 3 010 011

00 110

(a)

4A,001 A 2 10011 A 3 (001)

000 100J 110

101 1i1l

e tKJ"J~i

01 1 000 001

10 100

101 001 011

100 110 111

010

010 110 100

01 001 00

11 101
111 010 001

11 100 1

N1-O-o 0

100 000 010

10 0

110 010 000

11 00

FIG. 2. Generation of a multinode broadcast algorithm for the d-cube, starting from a single node broadcast algorithm. (a) The algorithm that
broadcasts a packet from the node with identity (00 .. -0) to all other nodes is specified by a sequence of sets of directed links A,, A2, . .. , A. Each A,
is the set of links on which transmission begins at time i - I and ends at time i. (b) A corresponding broadcast algorithm for each root node identity t is
specified by the sets of links Ai(t) = {(t E x, I G y) I (x, y) E Ai }, where we denote by t 0 z the d-bit string obtained by performing modulo 2 addition
of thejth bit of t and z forj = 1, 2, d. The multinode broadcast algorithm is specified by the requirement that transmission of the packet of node t
starts on each link in Ai(t) at time i - 1. The figure shows the construction for an example where d = 3. Here the set A 2 has two links of the same type
and the multinode broadcast cannot be executed in three time units. However, if the link (000, 010) belonged to A, instead of A2 , the required time would
be the optimal three time units.

COMMUNICATION ALGORITHMS FOR HYPERCUBES

We now describe a procedure for generating a multinode
broadcast algorithm specified by the sets Ai(t) for all possible
values of i and t, starting from a single node broadcast al-
gorithm specified by the sets A,, A2 , . .. , A,. Let us say that
a link (x, y) is of type j if x and y differ in the jth bit. We
make the following key observation: consider a single node
broadcast algorithm specified by the link sets A,, ... , A,.
If, for each i, the links in A, are of different types, then, for
each i, the sets Ai(t), where t ranges over all possible iden-
tities, are disjoint. [If, for t * t', two links (t 0 x, t (y)
EAi(t) and (t' (x', t' 0 y') E Ai(t') were the same, then
the links (x, y) and (x', y') would be different (since t + t'),
and they would be of the same type because (x, y) and (x',
y') are of the same type as (t G x, t G y) and (t' 0 x', t'
O y'), respectively, which contradicts the fact that (x, y) and
(x', y') belong to Ai.] This implies that the single node
broadcasts of all nodes t can be executed simultaneously,
without any further delay. In particular, we have a multinode
broadcast algorithm that takes q time units. We proceed to
give a method for selecting the sets A, with the links in each
Ai being of different types. Furthermore, we ensure that each
one of the sets A , . . . , A,-t has exactly d elements, which
is the maximum possible (since there exist only d link types),
thereby resulting in the minimum possible execution time
of q = [(2 d - 1)/dl units.

Let Nk, k = 0, 1, ... , d, be the set of node identities
having k unity bits and d - k zero bits. The number of
elements in Nk is (f) = d!/(k!(d - k)!). In particular, No
and Nd contain one element, the strings (00... -0) and
(I ... I), respectively; the sets NI and Nd-I contain d ele-
ments; and for 2 < k < d - 2 and d > 5, Nk contains at least
2d elements (when d = 4, the number of elements of N2 is
six, as shown in Fig. 3). We partition each set Nk, k = 1,
... ., d - 1, into disjoint subsets Rki . . . Rknk, which are
equivalence classes under a single bit rotation to the left. We
impose the restriction that Rkl is the equivalence class of the
element whose k rightmost bits are unity. We associate each
node identity t with a distinct number n(t) E {0, 1, 2, ... ,
2 d - } in the order

(00 .. *0)RIR2 "1 *. R2n2 .. Rkl" . Rk•k

" R(d-2)1 . . R(d-2)nd- 2R(d-1)I(I 1 * .1)

[i.e., n(00- • 0) = 0, n(l . I1) = 2d - 1, and the other
node identities are numbered consecutively in the above or-
der between 1 and 2 d - 2]. Let

m(t) = 1 + [(n(t) - 1)(mod d)].

Thus, the sequence of numbers m(t) corresponding to the
sequence of node identities

R 11RI2R 2R22" R(d-.)1

is 1, 2, ... , d, 1, 2, ... , d, 1, 2,... (cf. Fig. 3 for the case
d = 4). We specify the order of node identities within each
set Rkn as follows: the first element t in each set Rk, is chosen
so that the relation

the bit in position m(t) from the right is a 1 (1)

is satisfied, and the subsequent elements in Rk, are chosen
so that each element is obtained by a single bit rotation to
the left of the preceding element. Also, for the elements t of
Rki, we require that the bit in position m(t) - 1 [if m(t)
> 1] or d [if m(t) = 1] from the right be a 0. For i = 1, 2,
... , r(2d - 1)/dl - 1, define

Ei = {t I (i - l)d + 1 < n(t) < id},

and for i = 0 and i = q = f(2d - 1)/dl, define

Eo = {(00 -.. 0)},

E, = {tI(q- l)d+ I < n(t) < 2d - 1}.

We define the set of links Ai as follows:

For i = 1, 2, ... , q, each set A, consists of the links
that connect the node identities t E with the corre-
sponding node identities of U'.~- E, obtained from t by
reversing the bit in position m(t) [which is always a 1
by property (1)]. In particular, the node identities in
each set in Rk, are connected with corresponding node
identities in R(k- 1)1, because, by construction, the bit
in position m(t) lies next to a 0 for each node identity
t in the set Rkl-

To show that this definition of the sets Ai is legitimate, we
need to verify that by reversing the specified bit of a node
identity tE E , we indeed obtain a node identity t' that be-
longs to U'kl Ei, as opposed to Ei. [It cannot belong to Ek
for k > i, because n(t') < n(t).]

To see this in the exceptional case where t = (11 • * 1),
note that by the preceding rule, t' is the element of R(d-1l)
with a zero bit in position m(t) from the right. The elements
of R(d-1)I are ordered so that the bit of t' in position m(t')
- I (if m(t') > 1) or in position d(if m(t') = 1) is a 0. Since
2d - I is not divisible by d(see the appendix), we have m(t)
* d. Thus, the zero bit of t' cannot be in position d, so it
must be in position m(t') - I, implying that m(t) = m(t')
- 1. The set R(d-1)l has d elements, and as a result, its first
element t'" satisfies m(t") = m(t), so t' must be the second
element of R(d-l)l. Since m(t) * d, E, has at most d - 1
elements, and thus, we obtain the desired conclusion t'

In the case where t # (11 ... 1), it is sufficient to show
that n(t) - n(t') > d. We consider two cases: (a) Ift E Rk,
for some n > I, then all of the d elements of Rkt are between

268 BERTSEKAS ET AL.

N, N1 N2 N3 No , N N3001 101r-o^* , , , '-' 000 010 011
4000) (001) (010) (100) (011) (110) (101) (1)11

100 110 111
Oil, R21

A1 A2 A3
(a)

NO N2 N3 N4

(0000) (0001) (0010) (0100) (1000) 0011) (0110) (1100) (1001) (0101) (1010) (11011 (1011) (01111 (11103(1111)
1 -----------

ii,, i) iiR22

p

EEl]

A.

N, N,

(00000) (00001) (00010) (00100) (01000) (10000)

N2

(00011) 001o10) (01100) (11000) (10001) (00101) (010101 (10100o (01001) (10010)

N3

(00111) (01110) (11100) (11001) (10011) (01011) (101101 (01101) (11010) (10101)

N, N,

(01111) (11110) (11101) (11011) (10111) (11111)

R.,

00001 10001 01001 11001 01101 11101

00010 11 10010 10011 11010 11011

00000 00100 00110 00101 00111 10101 10111 L

01000 01100 01010 01110 01011 01111

10000 11000 10100 11100 10110 11110 11111

(c)

FIG. 3. Construction of a multinode broadcast algorithm for a d-cube that takes f(2d - I)/dl time.

t' and t, and the inequality n(t) - n(t') > d follows. (b) If verified that (akf) - d > d, and we are done. The cases d
t E Rkl, then t' E R(k-1)0, and all the elements of the sets = 3 and d = 4 can be handled individually (see Fig. 3). The
R(k-L)2, -... R(k-1)k-, are between t' and t. There are cases k = 1, 2 create no difficulties because R,1 = El,
(k dl) - d such elements. If 2 < k < d and d > 5, it can be R21 = E 2 .

A3

COMMUNICATION ALGORITHMS FOR HYPERCUBES

We have thus shown that the sets Ai are properly defined,
and we also note that any two links in each set Ai are of
different types, implying that the corresponding multinode
broadcast algorithm takes q = r(2d - 1)/dl time units. Thus,
the algorithm attains the lower bound of execution time over
all multinode broadcast algorithms under the MLA as-
sumption and is optimal.

The preceding algorithm requires 2d(2d - 1) packet
transmissions. This is also a lower bound on the number
required by any multinode broadcast algorithm, since each
of the 2 d nodes must receive a total of 2d - I different packets
(one from each of the other nodes). Therefore the algorithm
is also optimal in terms of total required communication
resource.

3. SINGLE NODE SCATTER UNDER THE
MLA ASSUMPTION

Consider the d-cube and the problem of single node scatter
with root node s. Since 2d - I different packets must be
transmitted by the root node over its d incident links, any
algorithm solving these problems requires at least F(2 d - 1)/
dl time units under the MLA assumption. This time can be
achieved by modifying the corresponding optimal multinode
broadcast algorithm of the previous section, thereby justifying
the entries of Table I for single node scatter.

The modified multinode broadcast algorithm is not; how-
ever, optimal for the scatter problem with respect to the
number of packet transmissions. To see this, note that a
packet destined for some node must travel a number of links
at least equal to the Hamming distance between that node
and the root. Therefore, a lower bound for the optimal num-
ber of packet transmissions is the sum of the Hamming
distances of all nodes to the root. There are (k) = d!/
(k!(d - k)!) nodes that are at distance k from the root, so
this bound is

Z k = d2- . (2)
k=1

The lower bound of Eq. (2) is much smaller than the 2d(2d
- I) packet transmissions required by a multinode broadcast.
While it is possible to extract from the optimal multinode
broadcast algorithm a single node scatter algorithm which
attains the lower bound of Eq. (2), such an algorithm is
quite complex to visualize and to implement. The following
alternative algorithm is much simpler.

For any spanning tree Tof the d-cube, let r be the number
of neighbor nodes of the root node s in T, and let Ti be the
subtree of T rooted at the ith neighbor of s. Consider the
following rule for s to send packets to each subtree Ti:

Continuously send packets to distinct nodes in the sub-
tree (using only links in T), giving priority to nodes
furthest away from s (break ties arbitrarily).

With this rule, s starts transmitting its last packet to the sub-
tree Ti no later than time N, - 1, where N, denotes the num-
ber of nodes in Ti, and all nodes in Ti receive their packet
no later than time N,. (To see the latter, note that all packets
destined for the nodes in T, that are k links away from s are
sent no later than time Ni - k, and each of these packets
completes its journey in exactly k time units.) Therefore, all
packets are received at their respective destinations in
max { N1 , N2 , .N. ., N,} time units. Hence, the above algo-
rithm attains the optimal time if and only if T has the prop-
erty that s has d neighbors in T and that each subtree T,, i
= 1, . . . , d, contains at most r(2 d - I)/dl nodes. If Tis in
addition a shortest path tree from s, then each packet travels
along the shortest path to its destination and this algorithm
also attains the optimal number of packet transmissions.

We assume without loss of generality that s = (00 ... 0)
in what follows. To construct a spanning tree T with the
above two properties, let us consider the equivalence classes
Rkn introduced in Section 2 in connection with the multinode
broadcast problem. As in Section 2, we order the classes as

(00- . O)RI R 21 .. R2n2 .. Rkl- . Rknk

. " R(•-2)1 " " R(d-2)nd_2R(d-)l()1 (I I 1)

and we consider the numbers n(t) and m(t) for each identity
t, but for the moment, we leave the choice of the first element
in each class Rkn unspecified. We denote by mkn the number
m(t) of the first element t of Rk, and we note that this number
depends only on Rk,, and not on the choice of the first element
within Rk,.

We say that class R(k-)n' is compatible with class Rkn if
R(k-1)n' has d elements (node identities) and there exist
identities t' E R(k-)n' and t E Rkn such that t' is obtained
from t by changing some unity bit of t to a 0. Since the
elements of R(k-1),n and Rk, are obtained by left shifting the
bits oft' and t, respectively, it is seen that for every element
x' of R(k-1)n' there is an element x of Rkn such that x' is
obtained from x by changing one of its unity bits to a 0. The
reverse is also true, namely that for every element x of Rkn
there is an element x' of R(k- ,)n' such that x is obtained from
x' by changing one of its zero bits to unity.

An important fact for the subsequent spanning tree con-
struction is that for every class Rkn with 2 < k < d - 1, there
exists a compatible class R(k-)n'. Such a class can be obtained
as follows: Take any identity t E Rk. whose rightmost bit is
a I and leftmost bit is a 0. Let a be a string of consecutive
Os with maximal number of bits and let t' be the identity
obtained from t by changing to 0 the unity bit immediately
to the right of a. [For example, if t = (0010011), then t'
= (0010001) or t' = (0000011), and if t = (0010001), then
t' = (0010000).]1 Then the equivalence class of t' is compatible
with Rkn, because it has d elements [t' * (00 ... -0) and t'
contains a unique substring of consecutive Os with maximal

BERTSEKAS ET AL.

number of bits, so it cannot be replicated by left rotation of
less than d bits].

The spanning tree T with the desired properties is con-
structed sequentially by adding links incident to elements of
the classes Rk as follows (see Fig. 4):

Initially T contains no links. We choose arbitrarily the
first element of class RI, and we add to T the links
connecting (00... 0) with all the elements of R 1 . We
then consider the classes Rk, (2 < k < d - I) one-by-
one in the order indicated above, and for each Rkn, we
find a compatible class R(k-1)n' and the element t' in
R(k-t),' such that m(t') = mk" (this is possible because
R(k-1)n' has d elements). We then choose as the first
element of Rk, an element t such that t' is obtained
from t by changing one of its unity bits to a 0. Since
R(k-1)n' has d elements and Rk, has at most d elements,
it can be seen that, for any x in Rkn, we have m(x')
= m(x), where x' is the element of R(k-.)n' obtained
by shifting t' to the left by the same amount as that
needed to obtain x by shifting t to the left. Moreover,
x' can be obtained from x by changing some unity bit
of x to a 0. We add to Tthe links (x', x), for all x E Rkn
(with x' defined as above for each x). After exhausting
the classes Rkn, 2 < k < d - 1, we finally add to T the
link (x,(11 . 1)), where x is the element of R(d-1)1
with m(x) = m(l l .. 1).

The construction of T is such that each node x
(00 ... 0) is in the subtree T,,(x). Since there are at most
F(2d - 1)/dl nodes x having the same value of mr(x), each
subtree contains at most r(2d - I)/dl nodes. Furthermore,
the number of links on the path of T connecting any node
and (00. -. 0) is the corresponding Hamming distance.
Hence, T is also a shortest path tree from (00- .. 0), as
desired.

Note that for the spanning tree constructed above, each
of the subtrees Ti, contains either L(2d - 1)/d] orr(2d - 1)/

001 Oil "I1

000 m(tl-2

100 m

d-5

0001 0011 0101 101l

0000 0100 1100 1110 l .l . EII.FI1............. m....00ooo• so 1 o t o 0 110

. mt(-4

FIG. 4. Spanning tree construction for optimal single node scatter under
the MLA assumption for d = 3 and d = 4.

dl nodes. (This follows from the discussion above and from
the fact that there are at least L(2d - I)/dj nodes x having
the same value of m(x).) Hence, T is perfectly balanced in
the sense that the T,'s are as close to being equal in size as
possible.

4. TOTAL EXCHANGE UNDER THE
MLA ASSUMPTION

Consider the total exchange problem under the MLA as-
sumption. We showed in the preceding section that for any
single node scatter algorithm in the d-cube, the number of
packet transmissions is bounded below by d2d - l, and it is
equal to d2d-1 if and only if packets follow shortest paths
from the root to all other nodes. Since a total exchange can
be viewed as 2 d separate versions of single node scatter, a
lower bound for the total number of transmissions is

d2d2 d-I

Since each node has d incident links, at most d2d transmis-
sions may take place at each time unit. Therefore, if Td is
the execution time of a total exchange algorithm in the d-
cube, we have

Td > 2d- •1

For an algorithm to achieve this lower bound, it is necessary
that packets follow shortest paths and that all links are busy
(in both directions) during all of the 2 d-l time units. In what
follows, we present an algorithm for which Td = 2 d-1. In
light of the above, this algorithm is optimal with respect to
both the time and the number of packet transmissions criteria
and achieves 100% link utilization.

We construct the algorithm recursively. We assume that
we have an optimal algorithm for total exchange in the d-
cube with certain properties to be stated shortly, and we use
this algorithm to perform an optimal total exchange in the
(d + 1)-cube. The construction is as follows: we decompose
the (d + 1)-cube into two d-cubes, denoted C, and C2 (cf.
the construction of Fig. 1). Without loss of generality we
assume that C, contains nodes 0, ... , 2d - 1, and that their
counterparts in C2 are nodes 2 , 2d+l - 1, respectively.
The total exchange algorithm for the (d + 1)-cube consists
of three phases. In the first phase, there is a total exchange
(using the optimal algorithm for the d-cube) within each of
the cubes C1 and C2 (each node in C, and C2 exchanges its
packets with the other nodes in Ct and C2, respectively). In
the second phase, each node transmits to its counterpart node
in the opposite d-cube all of the 2 d packets that are destined
for the nodes of the opposite d-cube. In the third phase,
there is an optimal total exchange in each of the two d-cubes
of the packets received in phase 2 (see Fig. 5). Phase 3 must

COMMUNICATION ALGORITHMS FOR HYPERCUBES

Nd(i, n) < 2 d-1 + n - 1,

Vn = 1,... ,2d- , i = 0, ... , 2 d - 1.

Total excha
within hype
during phas

during phase 2
between hypercubes
C, and C2

FIG. 5. Recursive construction of a total exchange algorithm for the d-
cube. Let the (d + 1)-cube be decomposed into two d-cubes denoted C,
and C2 . The algorithm consists of three phases. In the first phase, there is a
total exchange within each of the cubes C, and C2. In the second phase,
each node transmits to its counterpart node in the opposite d-cube all of
the 2 d packets that are destined for the nodes of the opposite d-cube. In the
third phase, there is a total exchange in each of the two d-cubes of the
packets received in phase 2.

be carried out after phase I because during phase 1 all the
links of the cubes C, and C2 are continuously busy (since
the d-cube total exchange algorithm is assumed optimal).
On the other hand, phase 2 may take place simultaneously
with both phase 1 and phase 3. In an algorithm presented
in [I], phase 3 starts after the end of phase 2, resulting in an
execution time of 2 d - 1 units. Here, we improve on this
time by allowing phase 3 to start before phase 2 ends. To
illustrate how this is possible, consider the packet originating
at some node i E C, and destined for its counterpart node
in C2, namely i + 2", and the packet originating at i + 2d

and destined for i. These packets are not transmitted at all
during phase 3. Therefore, if they are transmitted last in
phase 2 then phase 3 can start one time unit before the end
of phase 2. This idea can be generalized as follows: clearly,
if it were guaranteed that packets going from C, to C2 and
from C2 to C, arrive sufficiently early at C2 and at C1 , re-
spectively, then phase 3 may be carried out just after phase
1, without completing phase 2. In such a case, the first half
of phase 2 would be carried out simultaneously with phase
1, while the second half would be carried out simultaneously
with phase 3, and we would have Td+1 = 2Td. Since, by
assumption, Td is equal to the lower bound 2d -

1 of Eq. (4)
for a total exchange in the d-cube, we would have Td+l = 2 d,
implying that such an algorithm would achieve the lower
bound of Eq. (4) for the (d + 1)-cube. We prove that this
is indeed feasible.

Suppose that an optimal total exchange algorithm has al-
ready been devised for the d-cube. Let Nd(i, n) denote the
number of its own packets that node i has transmitted up
to and including time n, for n = 1, . . , 2d- [Nd(i, n) ranges
from I to 2d - 1]. We can use Nd(i, n) to express the re-
quirement that phase 3 packets originating at nodes of CI
are available in time at the appropriate nodes of C2 , so that
phase 3 begins right after phase I and continues without
delay. In particular, it is necessary that

To see this, note that the left-hand quantity in Eq. (5) is the
number of packets of node i E CI that must be transmitted
by node i + 2d during the first n time units of phase 3, while
the right-hand quantity in Eq. (5) is the number of available
time units within phase 2 for transferring these packets from
node i to node i + 2

d. There is also a requirement analogous
to Eq. (5) for the nodes i of C2.

We proceed by induction, using the requirement of Eq.
(5) as part of the inductive hypothesis. In particular, we
prove that for every d, there exists a total exchange algorithm
for the d-cube satisfying

Td = 2d - I and Nd(i, n) _ 2 d - I + n - 1,

Vn = 1,...,2 d- 1, i = 0,..., 2 d - 1.

We have TI = 1 and N1(i, 1) = 1, for i = 0, 1, which
proves the inductive hypothesis for d = 1. Assume that for
some d, we have a total exchange algorithm for the d-cube
that satisfies the inductive hypothesis (6), and let s(i, j, d)
denote the time unit in this algorithm during which node i
transmits its own packet that is destined for nodej. We con-
struct a three-phase total exchange'algorithm for the (d + 1)-
cube of the type described above tilat satisfies the inductive
hypothesis. Suppose that packets are transmitted in phase 2
according to the following rules (in view of the symmetry
of the transmissions of nodes of the d-cubes C, and C2 , we
describe the rules for phase 2 packet transmissions for only
the nodes of CI):

(a) Each node i E C, transmits its packets to node i + 2d
in the order in which the latter node forwards them in phase
3 (ties are broken arbitrarily); i.e., the packet destined forj
E C2 , j # i + 2d, is transmitted before the packet destined
forj' E C2 ,j' # i + 2d, if

s(i,j - 2d, d) < s(i,j' - 2d, d).

(b) Each node i E C, transmits its packet destined for
node i + 2d last.

We claim that, under the above rules, phase 3 can proceed
uninterrupted after phase 1. To show this, consider any i
E C, (the case of i E C2 can be treated analogously). At the
end of phase I node i has received exactly 2 d

-d packets from
node i + 2d(since phase 1 lasts 2d -d time units by induction).
Hence, n time units after the end of phase 1, node i has
received exactly 2 d -

1 + n packets from node i + 2d. On the
other hand, the total number of packets of node i + 2 d that
node i forwards after n + I time units of phase 3 is exactly
Nd(i, n + 1). Since [cf. Eq. (6)] Nd(i, n + 1) < 2d-1 + n
for all n = 0, 1, ... , 2 d-1 - 1 and node i + 2d transmits its

BERTSEKAS ET AL.

packets to node i according to the above rules, node i always
has enough packets from node i + 2d for transmission if
phase 3 begins immediately after phase 1. Since i E C, was
chosen arbitrarily, this holds for all i E C,.

Consider the total exchange algorithm for the (d + 1)-
cube whereby phase 3 proceeds uninterrupted immediately
following phase I as described above. Since according to the
inductive hypothesis, each of phases I and 3 takes time Td
= 2 d-1, this algorithm takes time 2Td = 2

d . There remains
to show that the second part of the inductive hypothesis is
satisfied for d + 1. For any node i, let Nd+1(i, n) denote the
number of node i's own packets that i has transmitted up to
and including time n in this algorithm. Since, in the first
2 d-1 time units of this algorithm, phases I and 2 execute
simultaneously, we obtain

Nd+l(i, n) = Nd(i, n) + n, Vn = 1, ... , 2d- .

By combining this equation with the inequality Nd(i, n) < 2d

- 1, which holds for all n, we obtain

Nd+I(i, n) < 2d + n - 1, Vn = 1..... 2d-

Since, in the next 2 d-1 time units of this algorithm, phases
3 and 2 execute simultaneously (and i does not transmit any
packet of its own in phase 3), we have

Nd+I(i, n) = 2 d - 1 +n, Vn = 2d-1 + 1,.... 2 d

By combining the last two relations, it follows that Nd+I(i,
n) satisfies

through its kth incident link, for k = 1, ... , d. The last
packet to be transmitted in this group is the one destined for
node i ® ek. For i = 0, the exact order in which i transmits
its packets on each of its incident links may be derived by
using a sequence of d tables, which may be constructed it-
eratively. The kth table consists of k columns, the mth of
which contains the destinations of the packets transmitted
through link m. The first table contains only el. For k = 2,
S. .. , d, the first k - I columns of the kth table are identical

to those of the (k - 1)st table, whereas its last column consists
of ek and the entries of the (k - 1)st table with their kth bit
being set to I. In the last column, entries corresponding to
the same row of the (k - 1)st table appear one after the
other, ordered (arbitrarily) from left to right; entries corre-
sponding to different rows of the (k - I)st table are ordered
from top to bottom. The last element of the last column is
ek. This scheme follows from the recursive construction of
the algorithm. As an example, we present the scheme for d
= 4 in Fig. 6.

For any other node i, the corresponding order of destin-
ations may be obtained by forming the 0 operation of each
entry of the dth table of 0 with i.

Time Link 1

1 0001

Time Link 1

1 0001

2

Link 2

0011

0010

Since the choice of i was arbitrary, this implies that the in-
ductive hypothesis (6) holds for the (d + 1)-cube.

Implementation of the Optimal Algorithm
In what follows, we present the rules used by the nodes

of the d-cube for transmitting their own packets and for-
warding the packets they receive from other nodes, whenever
they require further transmission. We write the identity of
node i as (id, ... , i), where each ik, k = 1, ... , d, is a O
or a 1. Moreover, we denote by ek the identity of node 2

k- ,
for k = 1,. .. , d. The link between i and i 0 ek is called the
kth link incident to i. Finally k denotes the reverse of bit ik;
namely i = (ik + 1) mod 2.

We first describe the order in which an arbitrary node i
transmits its own packets. It can be seen that during time
units 1, ... , 2k -

1, node i transmits all its packets destined
for nodes

(id, . i , Lk+L, ik, Xk-1, -. X0l),

where xm = 0 or 1, for m = 1, ... , k - 1,

Time

I1

Time

1

2

3

Link I

0001

Link 1

0001

Link 2 Link 3

0011 0101

0010 0111

0110

0100

Link 2 Link 3 Link 4

0011 0101 1001

0010 0111 1011

0110 1101

0100 1010

1111

1110

1100

1000

FIG. 6. Implementation of the total exchange algorithm for d = 4.

Nd+I(i,n) <2d+n- 1, Vn = 1,...,2d

COMMUNICATION ALGORITHMS FOR HYPERCUBES

We now consider the packets arriving at some node i and
present the rules under which these packets are forwarded
by i (whenever necessary). Packets arrive in i, through the
kth link, in groups of 2 k- , for k = 1, ... , d. Each group
contains all the packets originating from the same node (yd,

Y.... yk+I, 1 , k-I, i1) (where ym = 0 or 1, for m = k
+ 1, ... , d) and destined for all nodes of the form (id, ...
ik, Xk-1, * -. xi) (where xm = 0 or 1, for m = 1, . . . , k - 1).
The order of group arrivals is lexicographic on (yd id -. .i ,
yk+l (ik+). Routing is accomplished as follows:

A packet destined for node (id, ... ik , kk- 1....

xI) is placed in the queue which contains packets to be
transmitted by i through the koth link, where

ko = max {mlx,,=i }).
ICm.k-1

Packets originating from different nodesj,j' and placed
in the same queue are ordered according to the lexi-
cographic order between j ® i andj' ® i. Packets orig-
inating from the same node and placed in the same
queue preserve their order of arrival. Forwarding pack-
ets in the kth link starts at time 2 k-1 + 1, for k = 1,
... , d - 1; no forwarding takes place in the dth link.

The rules presented above follow from the recursive con-
struction of the algorithm. Our earlier analysis guarantees
that packets are always in time at the intermediate nodes (if
any) of the paths they have to traverse. Note that the traveling
schedule of each packet may be locally determined at the
intermediate nodes of its path by examining the packet's
origin and destination, so packets do not have to carry timing
information.

5. CONCLUSIONS

Excessive communication time is widely recognized as
the principal obstacle for achieving large speedup in many
problems using massively parallel computing systems. This
emphasizes the importance of optimal communication al-
gorithms. In this paper, we have shown that a very strong
form of optimality can be achieved for some basic com-
munication problems in the hypercube architecture.

Our methodological ideas may find application in other
related contexts. In particular, variations of our algorithms
can be investigated under different and possibly less restric-
tive assumptions. Furthermore, some of our algorithmic
constructions can be applied in other architectures to obtain
optimal or nearly optimal algorithms for the communication
problems of this paper. Finally, it is worth considering the
potential existence of optimal algorithms for specialized
communication tasks, arising in the context of specific nu-
merical and other methods.

APPENDIX: INDIVISIBILITY OF 2d - 1 BY d

The proof of the following result is due to David Gillman
and Arthur Mattuck of the M.I.T. Department of Mathe-
matics and is given here with their kind permission.

PROPOSITION. For any integer d > 2, 2d - 1 is not di-
visible by d.

Proof For any positive integers a, b, and d we use the
notation a = b (mod d) to indicate that a and b give the
same remainder when divided by d; this remainder is denoted
a mod d or b mod d. We note that for all positive integers
a, b, d, and t we have

a-b (modd) =ta tb (modd). (Al)

(Write a = pad + w, b = pbd + w, tw = pd + r, where w
= a mod d = b mod dand r = (tw) mqd d, and note that r
= (ta) mod d = (tb) mod d.)

It suffices to consider odd d > 2. We argue by contradic-
tion. If the claim does not hold, let d be the smallest odd
integer which is larger than 1 and is such that

2 d I (mod d). (A2)

Let m be the smallest positive integer for which

2" = I - (mod d). (A3-)

We claim that m < d. To see this, note that the numbers

2 mod d, 2 2 mod d, - • -, 2d mod d

belong to { 1, ... , d - I }. Since there are d such numbers,
some of them must repeat; i.e., for some integers r and s
with I < r < s d,

2' - 2s (modd).

Using Eq. (Al) with a = 2', b = 2s, and t = 2d-
s , and using

also Eq. (A2), we obtain

2d- s+' - 2 d
_ 1 (mod d).

Since m is the smallest positive integer for which Eq. (A3)
holds, we obtain m < d - s + r, so finally m < d.

Let us now express d as d = pm + r, where r = d mod m.
By multiplying by 2" in Eq. (A3) and using Eq. (Al), we
obtain

22 • 2 2" 1 (mod d).

By multiplying again by 2" and using Eq. (A3) and (AI),
we have

BERTSEKAS ET AL.

23m = 2m - I (mod d),

and by continuing similarly,

2 P = 1 (mod d).

By multiplying by 2' in this equation and again using Eq.
(Al) together with Eq. (A2), we obtain

2' - 2P"+m r 2 d d (mod d).

Since r < m, our hypothesis on m implies that r = 0. Thus,
d is divisible by m. This implies that m is odd (since d is
odd) and that 2m I (mod m) (since Eq. (A3) holds). In
view of the definition of d and the fact d > m, we must have
m = 1, which contradicts Eq. (A3). Q.E.D.

REFERENCES

1. Bertsekas, D. P., and Tsitsiklis, J. N. Parallel and Distributed Compu-
tation: Numerical Methods. Prentice-Hall, Englewood Cliffs, NJ, 1989.

2. Bhatt, S. N., and Ipsen, I. C. F. How to embed trees in hypercubes.
Res. Rep. YALEU/DCS/RR-443, Department of Computer Science,
Yale University, 1985.

3. Daily, W. J., and Seitz, C. L. Deadlock-free message routing in multi-
processor interconnection networks. IEEE Trans Comput. C-36 (1987),
547-553.

4. Dekel, E., Nassimi, D., and Sahni, S. Parallel matrix and graph algo-
rithms. SIAM J Comput 10 (1981), 657-673.

5. Greenberg, A. G., and Hajek, B. Deflection routing in hypercube net-
works. Unpublished report, 1989.

6. Hedetniemi, S. M., Hedetniemi, S. T., and Liestman, A. L. A survey
of gossiping and broadcasting in communication networks. Networks
18 (1988), 319-349.

7. Johnsson, S. L., and Ho, C. T. Optimum broadcasting and personalized
communication in hypercubes. IEEE Trans. Comput. 38 (1989), 1249-
1268.

8. Johnsson, S. L. Cyclic reduction on a binary tree. Comput. Phys. Comm.
37 (1985), 195-203.

9. Johnsson, S. L. Communication efficient basic linear algebra compu-
tations on hypercube architectures. J. Parallel Distrib. Comput. 4 (1987),
133-172.

10. Krumme, D. W., Venkataraman, K. N., and Cybenko, G. The token
exchange problem. Tech. Rep. 88-2, Tufts University, 1988.

11. Kermani, P., and Kleinrock, L. Virtual cut-through: A new computer
communicating switching technique. Comput. Networks 3 (1979), 267-
286.

12. McBryan, O. A., and Van de Velde, E. F. Hypercube algonthms and
their implementations. SIAMJ. Sci. Stat. Comput. 8 (1987), 227-287.

13. Minzer, S. E. Broadband ISDN and asynchronous transfer mode (ATM).
IEEE Comm. Mag. (Sept. 1989), 17-57.

14. Ozveren, C. Communication aspects of parallel processing. Rep. LIDS-
P-1721, Laboratory for Information and Decision Systems, MIT, Cam-
bridge, MA, 1987.

15. Saad, Y., and Schultz, M. H. Data communication in hypercubes. Res.
Rep. YALEU/DCS/RR-428, Yale University, Oct. 1985 (revised Aug.
1987).

16. Saad Y., and Schultz, M. H. Data communication in parallel architec-
tures. Yale University Report, Mar. 1986.

17. Saad Y., and Schultz, M. H. Parallel direct methods for solving banded
linear systems. Linear Algebra AppL 88/89 (1987), 623-650.

18. Saad Y., and Schultz, M. H. Topological properties of hypercubes. IEEE
Trans. Comput 37 (1988). 867-872.

19. Saad, Y. Communication complexity of the Gaussian elimination al-
gorithm on multiprocessors. Linear Algebra Appl. 77 (1986), 315-340.

20. Stamoulis, G. D., and Tsitsiklis, J. N. Efficient routing schemes for
multiple broadcasts in hypercubes. Proc. 29th IEEE Conf Decision and
Control. Honolulu, Hawaii, 1990, pp. 1349-1354.

21. Stout, Q. F., and Wagar, B. Passing messages in link-bound hypercubes.
Proc 1986 Hypercube Conference SIAM, Philadelphia, 1987, pp. 251-
257.

22. Topkis, D. M. Concurrent broadcast for information dissemination.
IEEE Trans. Software Engrg- 13(1983), 207-231.

23. Varvarigos, E. A., and Bertsekas, D. P. Communication algorithms for
isotropic tasks in hypercubes and wraparound meshes. Rep. LIDS-P-
1972, Laboratory for Information and Decision Systems, MIT, Cam-
bridge, MA, Mar. 1990: submitted for publication.

24. Varvarigos, E. A. Optimal communication algorithms for multiprocessor
computers. M.S. thesis. Department of Electrical Engineering, MIT,
Cambridge, MA, Rep. CICS-TH-192, Center for Intelligent Control
Systems, MIT, Cambndge, MA, Jan. 1990.

DIMITRI P. BERTSEKAS was born in Athens, Greece, in 1942. He
received a combined B S.E.E. and B.S.M.E. from the National Technical
University of Athens, Greece, in 1965, the M.S.E.E. degree from George
Washington University in 1969, and the Ph.D. degree in system science
from the Massachusetts Institute of Technology in 1971. Dr. Bertsekas has
held faculty positions with the Engineering-Economic systems Department
of Stanford University (1971-1974) and the Electrical Engineering De-
partment of the University of Illinois, Urbana (1974-1979). He is currently
a professor of electrical engineering and computer science at the Massachu-
setts Institute of Technology He consults regularly with pnvate industry
and has held editorial positions in several journals. He was elected Fellow
of the IEEE in 1983. Professor Bertsekas has done research in the areas of
estimation and control of stochastic systems, linear, nonlinear, and dynamic
programming, data communication networks, and parallel and distributed
computation and has written numerous papers in each of these areas. He is
the author of Dynamic Programming and Stochastic Control, Academic
Press, 1976, Constrained Optimization and Lagrange Multiplier Methods,
Academic Press, 1982, and Dynamic Programming. Deterministic and Sto-
chastic Models, Prentice-Hall, 1987 and coauthor of Stochastic Optimal
Control The Discrete-Time Case. Academic Press, 1978, Data Networks,
1987, and Parallel and Distributed Computation: Numerical Methods,
Prentice-Hall, 1989.

CONEYT OZVEREN was born in Istanbul, Turkey, on July 20, 1962.
He received the B.S. and M.S. degrees in electrical engineering and computer
science, the Electrical Engineer degree, the M.S. degree from the Sloan School
of Management, and the Ph.D. degree in electrical engineering, all from the
Massachusetts Institute of Technology, Cambridge, in 1984, 1987, 1987,
1989, and 1989, respectively. He is currently a senior engineer at Digital
Equipment Corp., working on the design and the implementation of a high-
speed communications switch. From January to August 1988 he conducted
research at the Institut de Recherche en Informatique et Systimes Alatoires,
France. and from September to December 1989 he was a postdoctoral re-
search associate at the Laboratory for Information and Decision Systems at
M.I.T. His interests are in the analysis and control of large-scale dynamic
systems, including applications to communications systems, manufactunng
systems, and economics. Dr. Ozveren is a member of Sigma Chi, Tau Beta

COMMUNICATION ALGORITHMS FOR HYPERCUBES

Pi, Eta Kappa Nu, and IEEE. In 1989 he was a finalist for the 28th IEEE
Conference on Decision and Control Best Student Paper Award. He is also
the 1989 recipient of the Pugh-Roberts Associates Prize in Computer Sim-
ulation Applied to Corporate Strategy.

GEORGE D. STAMOULIS was born in Athens, Greece, in 1964. He
received a diploma in electrical engineering (with highest honors) from the
National Technical University of Athens, Greece, in 1987, and the M.S.
degree in electrical engineering from the Massachusetts Institute of Tech-
nology, Cambridge, Massachusetts, in 1988. He is currently completing his
Ph.D. degree in electrical engineering at M.I.T. His research interests are in
the areas of routing and performance evaluation of multiprocessing systems,
communication networks, and queueing theory. Mr. Stamoulis was among
the winners of the Greek Mathematic Olympiad in both 1981 and 1982.
He also participated in the 23rd International Mathematic Olympiad, in
Budapest, in July 1982. He is a member of the Technical Chamber of Greece
and Sigma Xi.

PAUL Y. TSENG received the engineering degree in mathematics from
Queen's University, Kingston, Canada, in 1981 and the Ph.D. degree in
operations research from the Massachusetts Institute of Technology in 1986.
From 1986 to 1987, he served on the faculty of the University of British

Received February 21, 1989; revised August 23, 1990; accepted September
12, 1990

Columbia, and from 1987 to 1990, he was a Postdoctoral Associate at M.I.T.
He is currently an assistant professor in the Department of Mathematics,
University of Washington, Seattle. His research interests are in optimization
algorithms.

JOHN N. TSITSIKLIS was born in Thessaloniki, Greece, in 1958. He
received the B.S. degree in mathematics (1980) and the B.S. (1980), M.S.
(1981) and Ph.D. (1984) degrees in electrical engineering, all from the Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts. During the
academic year 1983-1984 he was an acting assistant professor of electrical
engineering at Stanford University, Stanford, California. Since 1984 he has
been with the Electrical Engineering and Computer Science Department at
the Massachusetts Institute of Technology, where he is currently associate
professor. His research interests are in the areas of parallel and distributed
computation, systems and control theory, and applied probability. Dr. Tsi-
tsiklis is the coauthor, with Dimitri Bertsekas, of Parallel and Distributed
Computation: Numerical Methods (1989). He has been a recipient of an
IBM Faculty Development Award (1983), an NSF Presidential Young In-
vestigator Award (1986), an Outstanding Paper Award from the IEEE Con-
trol Systems Society (for a paper coauthored with M. Athans, 1986), and
the Edgerton Faculty Achievement Award from M.I.T. (1989). He is an
Associate Editor of the Applied Mathematical Letlers and the IEEE Trans-
actions on Automatic Control.

