
Appl. Math. Left. Vol. 2, No. 2, pp. 167-170, 1989

Printed in Great Britain. All rights reserved

089%9659/89 $3.00 + 0.00

Copyright@ 1989 Pergamon Press plc

A Comparison of Jacobi and Gauss-Seidel
Parallel Iterations

JOHN N. TSITSIKLIS

Massachusetts Institute of Technology

Abstract. We consider an iterative algorithm in which several components are updated in par-
allel at each stage. We assume that the underlying iteration mapping is monotone and we show

that the speed of convergence is maximized when all components are updated at each iteration.

1. INTRODUCTION.

Consider an iteration of the form t := Ax + b for solving the system of linear equations
x = AZ + b. If A is a nonnegative matrix, it is well-known that the convergence rate of
the Jacobi-type iteration (all components are simultaneously updated) is no better than
the convergence rate of the corresponding Gauss-Seidel iteration (components are updated
one at a time). When it comes to parallel implementation, the Gauss-Seidel iteration could

have certain disadvantages because variables that depend on each other can only be updated
sequentially, whereas each Jacobi-type iteration takes a single step. Using the standard
coloring technique [l], a Gauss-Seidel update of all components can be often performed in a
reasonably small number of stages. In particular, when the matrix A is sparse, the Gauss-
Seidel iteration is often amenable to massive parallelization and its improved convergence

properties suggest that it might be preferable than the Jacobi iteration. Despite that,
Smart and White [2] have recently shown that the parallel implementation of the Gauss-

Seidel iteration cannot be faster than its Jacobi counterpart. In this note, we generalize
their result by considering a) general monotone iterations and b) iterative algorithms that
are intermediate between the Jacobi and Gauss-Seidel methods. Our result is very easy to

derive but seems to have interesting practical implications.

2. COMPARISON RESULTS.

We consider a generic iterative algorithm of the form t := f(z), where f is a function
from 3” into itself, and whose ith component is denoted by fi. Let U be a function defined
on the nonnegative integers and such that u(t) c { 1, . . . , n} for each t. We interpret U(t) as
the set of components of z that are updated (in parallel) at stage t. We are thus concerned
with the iteration

$(t + 1) = fi (x”(t)), i E U(t), (1)

x”(t + 1) = x?(t), i $ u(t), (2)
where ~~(0) is a given initialization.

A Jacobi-type iteration corresponds to the choice U(t) = { 1, . . . , n} for every 1. JVe use
the superscript J to indicate the sequence generated by the Jacobi-type iteration. In par-
ticular, we have zJ(t + 1) = f (x”(t)), f or every t. We notice that a parallel implementation
of a Gauss-Seidel variant of the iteration z := f(x) can be always put in the form of Eqs.
(l)-(2), with a suitable choice of the sets u(t).

Assumption 1: a) There exists a vector I* f !I?” satisfying xc = f(x*) and such that
limt_oo 3?(t)

This research was supported by the NSF under Grant ECS-8552419 with matching funds from Bellcore Inc.

167

168 J.N. TSITSIKLIS

= z* for every choice of ~~(0).
b) The function f is monotone, that is, if t 5 y then f(z) 5 f(y). (All inequalities between

vectors are to be interpreted componentwise.)

Proposition 1: Suppose that z(O) = ~~(0) = ~~(0) and that the inequality f(z(0)) 2

z(0) holds. Then,
z* 5 z’(t) 5 zU(t), vt 2 0. (3)

[A symmetrical result holds if f(z(0)) 1 z(O).]

Proof: We have ~~(1) = f(z(0)) _< z(O) = ~~(0). Using the monotonicity of f, we

obtain ~~(2) = f(zJ(l)) 5 f(zJ(0)) = ~~(1). P roceeding similarly by induction, we obtain

cJ(t + 1) I I”(t), vt > 0. (4

Since d(t) converges to I* (by Assumption 1) we also obtain z* 5 d(t) for all t.
We now prove Eq. (3) by induction on t. It is certainly valid for t = 0. Assuming that it

holds for some t, we prove it for t + 1. We distinguish two cases:

(i) If i 4 U(t), th en zf(t + 1) 5 2$(t) 2 z”(t) = $(t + l), where the first inequality follows

from Eq. (4).
(ii) If i E U(t), we use the induction hypothesis zJ(t) 5 zU(t) and the monotonicity of f to
obtain zf(t + 1) = _fi(zJ(t)) 5 fi(Z’(t)) = $(t + 1). Q.E.D.

Proposition 1 shows that for any initial conditions satisfying f(z(0)) 5 z(O) or z(O) 5

p(z(O)), the Jacobi-type iteration converges faster. The next result considers a more gen-

eral class of initial conditions.

Proposition 2: Suppose that ~~(0) = ~~‘(0) = z(0) > z*. Furthermore, suppose that

there exists some Z > z(O) such that f(Z) 2 I. Then, there exists an integer K [depending

on t(O) and Z] such that z* < tJ(t + K) 5 z’(t) f or all t. [A symmetrical result holds if

2(O) < z’.]

Proof: We define F(t) by letting Z(O) = Z and F(t + 1) = f@(t)). Using the monotonicity

of f, the inequality ~~(0) < F, and an easy induction, we obtain

zJ(t) _< f(t), vt 2 0. (5)

Let K be such that Z(K) < z(0). Such a I< exists because x* < x(0) and Z(K) converges

to x* [Assumption l(a)]. Let g(t) be the sequence generated according to Eqs. (l)-(2)
but with x(0) replaced by T(K). Since E(K) 5 x(O), the monotonicity of f implies that
~(1) 5 z?(l) and, proceeding inductively, we obtain

c(t) < zU(t), vt > 0. (6)

Similarly with the proof of Eq. (4), we have ?F(t + 1) 5 Z(t) for all t. In particular,

f w>> = V(K + 1) < Z(K). Notice that the sequence {F(t + K) 1 t = 0, 1,. . .} is
generated by the Jacobiiteration starting (at t = 0) at the vector Z(K). The sequence g(t)
is initialized at the same vector but components are updated as determined by U. Since

f (WI) I W)t P rop. 1 applies and shows that T(t+ K) < g(t). Combining this inequality
with Eqs. (5) and (6), we obtain

zJ(t + K) 5 z(t + K) I z(t) 5 x’(t), vt 1 0.

Q.E.D.

Proposition 2 shows that if i(O) satisfies x(0) > t* or x(0) < x* then xJ(t) can ‘lag
behind” d’(t) by at most a constant number I< of steps. An easy corollary is that the

A Comparison of Jacobi and Gauss-Seidel Parallel Iterations 169

asymptotic convergence rate of zJ(t) is no worse than that of am, if z(0) is as above.
For example, if we assume that zJ(t) converges at the rate of geometric progression and, in
particular, that

/i& (IV@) - Z’llm) 1/t = p,

it is easily shown that

$rnnf (]]r”(t) - z’]]~)
i/t

2 p.

3. APPLICATIONS.

Suppose that f is of the form f(z) = Ax + b where A is an n x n irreducible nonnegative
matrix and b E ?I?‘, and let xc satisfy x* = Ax’ + b. Under the assumption that the
Jacobi-type algorithm converges, the spectral radius p(A) of A is less than 1 and (by the
Perron-Frobenius theorem) there exists a positive vector w such that Aw = p(A)w < w. It
is seen that Assumption 1 is satisfied and, if the initialization x(0) = w + x* is used, we
have f (x(0)) = A(x* + w) + b = x* + Aw = x* + p(A)w < x* + w = x(O). Therefore, Prop.

1 applies and yields x”(t) - x* 2 xJ(t) - Z* = p(A)‘w. In particular, the convergence rate
of xv(t) can be no better than the convergence rate p(A) of the Jacobi-type iteration and
we have recovered the result of [2].

There are several situations in which the iteration mapping f is nonlinear and satisfies our
assumptions, e.g. in dynamic programming or nonlinear optimization [l]. One example is a
variant of the “nonlinear Jacobi” algorithm (incorporating an underrelaxation parameter) for
the solution of the dual of a strictly convex network flow problem (see [l] for a description
of the algorithm and its properties). A Gauss-Seidel variant of this algorithm has been
studied in [3] and has been tested in a parallel environment [4]. Our result shows that the
Jacobi variant is actually preferable, and this is consistent with what was observed in the
experiments reported in [4].

Another interesting example is the Bellman-Ford algorithm for finding shortest paths in
networks. Here, we are given a directed graph G = (V, E), with node set V = { 1,. . . , n)
and edge set E. Also, for each (i, j) E E, we are given a scalar aij representing the length
of arc (i, j). Let 1 be a destination node, and we are interested in finding the length of a
shortest path from any node i # 1 to node 1. The Bellman-Ford algorithm finds the shortest
distances (assuming that they are finite) by means of the iteration

while xl is fixed to 0. The algorithm is guaranteed to converge starting from any initial
conditions, the iteration mapping is clearly monotone, and Assumption 1 holds. The stan-

dard initialization of the algorithm is to let z(O) = f, where Ti = co for every i # 1, and
Fi = 0. The inequality f(F) 5 F is trivially true and Prop. 1 applies. (There is a minor issue
because the vector Z does not belong to !R”. However, the proof of Prop. 1 goes through
verbatim for this case.) We conclude that the parallel Jacobi version of iteration (7) is no
slower than any parallel Gauss-Seidel variant of that iteration. This is in sharp contrast to
what happens in serial computing environments in which Gauss-Seidel variants are known
to substantially outperform the Jacobi iteration.

All of our discussion has been based on the implicit assumption that there are n processors
available so that an iteration of the Jacobi algorithm can be performed in parallel, in a single
step. It should be emphasized that our results are not relevant to the case where fewer than
n processors are available; in particular, when the number of processors is sufficiently small
the Gauss-Seidel variant can be shown to be preferable. Similarly, no general statement
can be made for the case of non-monotone iterations. For instance, there are numerous
algorithms whose Jacobi variant fails to-converge but their Gauss-Seidel variant converges
and is therefore preferable.

170 J.N. TSITSIKLIS

REFERENCES

1. D.P. Bertsekas, J. N. Tsitsiklis, “Parallel and Distributed Computation: Numerical Methods,” Prentice

Hall, Englewood Clifi, NJ, 1989.
2. D. Smart, J. White, Reducing the Parallel Solution Time of Sparse Circuit Matrices Using Reordered

Gaussian Elimination and Relaration, Proceedings of the 1988 INCAS, Espoo, Finland.
3. S.A. Zenioa, J.M. Mulvey, A Distributed Algorithm for Conver Network Optimization Problems, Par-

allel Computing 6 (1988), 45-56.
4. S.A. Zenios, R.A. La&en, Nonlinear Network Optimization on a Massively Parallel Connection Ma-

chine, Annals of Operations Research 14 (1988).

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

