
August 1986 LIDS-P-1617

COMMUNICATION COMPLEXITY OF CONVEX OPTIMIZATION*

John N. Tsitsiklis
Laboratory for Information and Decision Systems

Massachusetts Institute of Technology
Cambridge, MA 02139

U.S.A.

Zhi-Quan Luo
Operations Research Center

Massachusetts Institute of Technology
Cambridge, MA 02139

U.S.A.

ABSTRACT

We consider a situation where each one of two processors has access to a different convex function
fi, i = 1,2, defined on a common bounded domain. The processors are to exchange a number of
binary messages, according to some protocol, until they find a point in the domain at which fl + f2
is minimized, within some prespecified accuracy E. Our objective is to determine protocols under
which the number of exchanged messages is minimized.

I. INTRODUCTION.

Let 7 be a set of convex functions defined on the n-dimensional bounded domain [0, 1]n. (Typ-
ically, 7 will be defined by imposing certain smoothness conditions on its elements.) Given any
E > 0, and f E 7, let I(f; e) be the set of all x E [0, 1]" such that f(x) < f(y) + c, Vy E [0, 1]n .

Let there be two processors, denoted by P1 and P2. Each processor is given a function fi E 7.
Then they start exchanging binary messages, according to some protocol Ir, until processor P 1

determines an element of I(fl + f2; c). Let C(fl, f2; c, %r) be the total number of messages that are
exchanged; this is a function of the particular protocol being employed and we are looking for an
optimal one. More precisely, let

C(7r;e,7r)= sup C(fl,f 2;e,r) (1.1)
fi,f2E

* Research supported by the Army Research Office under Contract DAAAG-29-84-K-0005 and
by the Office of Naval Research under contract N00014-84-K-0519 (NR 649-003). This paper will
be presented at the 25th IEEE Conference on Decision and Control, Athens, Greece, December
1986.

1

be the communication requirement (in the worst case) of the particular protocol and let

C(7;E) = inf C(7;E,7r) (1.2)

be the communication requirement under an optimal protocol, where II(E) is the class of all pro-
tocols which work properly, for a particular choice of c. The quantity C(F; E) may be called the
E-communication complexity of the above defined problem of distributed, approximate, convex
optimization.

For the above definition to be precise, we need to be specific regarding the notion of a protocol;
that is, we have to specify the set II(c) of admissible protocols and this is what we do next. A
protocol ir consists of
a) A termination time T;
b) A collection of functions Mi,t: 7 x {O, l})t - {0, 1, i= 1, 2, t = 0,1,2,...,T - 1;
c) A final function Q: 7j x {O, 1)T -[0, 1]n.

A protocol corresponds to the following sequence of events. Each processor Pi, receives its
"input" fi and then, at each time t, transmits to the other processor Pj a binary message mi(t)
determined by

mi(t) = Mi,t(fi, mj(),..., m(t- 1)).

Thus the message transmitted by a processor is only a function of the function fi known by it,
together with all messages it has received in the past. At time T the exchange of messages ceases
and processor P1 picks a point in [0,1]"' according to

x = Q(fl, m2(0), , am2 (T - 1)). (1.3)

The number C(fl, f2; E, 7r) of messages transmitted under this protocol is simply 2T. We define
II(e) as the set of all protocols with the property that the point x generated by (1.3) belongs to
I(fl + f2; c), for every fl, f2 E 7.

A couple of remarks on our definition of protocols are in order.
(i) We have constrained each processor to transmit exactly one binary message at each stage. This
may be wasteful if, for example, a better protocol may be found in which P1 first sends many
messages and then P2 transmit its own messages. Nevertheless, the waste that results can be
at most a factor of two. Since, in this paper, we study only orders of magnitude, this issue is
unimportant.
(ii) We have assumed that the termination time T is the same for all fl, f2 E 7, even though for
certain "easy" functions the desired result may have been obtained earlier. Again, this is of no
concern, given that we are interested in a worst case analysis.

Related Research:

2

The study of communication complexity was initiated in [1-2]. Reference [1] deals with problems
of continuous variables, in which an exact result is sought, and allows the messages to be real-
valued, subject to a constraint that they are smooth functions of the input. This is a different type
of problem from ours, because we are interested in an approximate result and we are assuming
binary messages.

Reference [2] deals with combinatorial problems, in which messages are binary and an exact result
is obtained after finitely many stages. This reference has been followed by a substantial amount
of research which developed the theory further and also evaluated the communication complexity

of selected combinatorial problems [3-8]. The main application of this research has been in VLSI,
where communication complexity constrains the amount of information that has to flow from one
side of a chip to the other; this in turn determines certain tradeoffs on the achievable performance
of special purpose VLSI chips for computing certain functions [8].

Finally, communication complexity has been also studied for models of asynchronous distributed
computation, in which messages may reach their destination after an arbitrary delay [9].

The communication complexity of the approximate solution of problems of continuous variables
has not been studied before, to the best of our knowledge. However, there exists a large amount of
theory on the information requirements for solving (approximately) certain problems such as non-
linear optimization, and numerical integration of differential equations [11-12] ("information based
complexity"). Here one raises questions such as: how many gradient evaluations are required for
an algorithm to find a point which minimizes a convex function within some prespecified accuracy
E? We can see that, in this type of research, information flows one-way: from a "memory unit"
(which knows the function being minimized) to the processor and this is what makes it different
from ours.

Outline:

In Section II we establish straightforward lower bounds such as C(F;e) > O(nlog(1/c)). In
Section III we show that the naive distributed version of ellipsoid-type algorithms leads to protocols
with O(n2 log(1/e)(logn + log(l/E)) communication requirements and we show that this upper
bound cannot be improved substantially within a restricted class of protocols. In Sections IV and
V we partially close the gap between the above mentioned upper and lower bounds by presenting
protocols with O(log(1/E)) communication requirements for the case n = 1 (Section IV) and with
O(n(logn + log(1/E)) communication requirements for the case of general n (Section V), under
certain regularity assumptions on the elements of F. In Section VI, we provide some discussion of
possible extensions and questions which remain open.

II. LOWER BOUNDS ON C(7; E).

Before we prove any lower bounds we start with a fairly trivial Lemma whose proof is omitted.

3

Lemma 2.1: If F c 9 then C(F; c) < C(9; E).

Let YQ be the set of quadratic functions of the form f(z) = IX X- X*112, with x* E [0, 1]n
and where II - II is the Euclidean norm. Also, let 7 M be the set of functions of the form f(x) =
maxi= ,..., lx - x, where I x!l < 1, Vi.
Proposition 2.2: (i) C(rQ; e) > O(n(logn + log(1/e)));
(ii) C(FM; e) > O(nlog(1/e)).
Proof: (i) Consider a protocol 7r E 11(e) with termination time T and let us study its operation
for the special case where fl = 0. Let S be the range of the function Q corresponding to that
protocol (see equation (1.3)), when f, = 0. Given that the minimum of f2 may be anywhere in
[0, 1]n, S must contain points which come within E1/ 2, in Euclidean distance, from every point in
[0, l]r. Now, one needs at least (-7)Bn Euclidean balls of radius e1/2 to cover [0, l]n, where A
and B are absolute constants. (This follows by simply taking into acount the volume of a ball
in n-dimensional space.) Therefore, the cardinality of S is at least (An/El/2)Bn. Given that the
cardinality of the range of a function is no larger than the cardinality of its domain, it follows that
the cardinality of S is no larger than 2 T. Therefore, T > O(n(log n + log(l/E)), which proves part
(i).
(ii) The proof is almost identical to that of part (i) and is therefore omitted. The only difference is
that now [0, 1]" is covered by balls in the supremum norm and 0((1/E)n) such balls are necessary
and sufficient. *

Using Lemma 2.1, we conclude that C(YSC,M,L;) > O(n(logn + log(1/E)), where YSC,M,L is

the set of all continuously differentiable convex functions f with the property

Lllx - yll 2 < (f'(x) - f'(y)Ix - y) < MLIIx - yl[2, (2.1)

and such that the norm of their gradient is bounded by n/ 2.

We also conclude that C(FL;) > O(nlog(1/e), where FL is the set of differentiable convex
functions which are bounded by 1/2 and satisfy

if(x) - f (y)< - max Izi - yii, V, y.2 i

In the proof of Proposition 2.2 we made use of the assumption that the final result is always
obtained by processor P1. Nevertheless, at the cost of minor complications of the proof, the same
lower bound may be obtained even if we enlarge the class of allowed protocols so that the processor
who computes the final result is not prespecified.

III. NAIVE UPPER BOUNDS.

We consider here a straightforward distributed version of the method of the centers of gravity
(MCG), which has been shown in [11] to be an optimal algorithm for the single-processor case,
in the sense that it requires a minimal number of gradient evaluations. This method may be

4

viewed as a generalization of the well-known ellipsoid algorithm for linear programming [10]. We
start by describing the uniprocessor version of this method and then analyze the communication
requirements of a distributed implementation.
The MCG Algorithm:[11, p. 62] Let f be a convex function to be minimized with accuracy
E. Let Go = [0, 1]" and let xo be its center of gravity. At the beginning of the k-th stage of the
computation, we assume that we are given a convex set Gk-l C [0, 1]" and its center of gravity Xk.

Let zk be a scalar and let Yk be a vector in R' with the following properties:
(i) zk + (Yk, x - Xk) < f(x), Vx E [0, 1]n;

(ii) Zk > f(xk) - (e/2).

(Notice that if the term E/2 was absent in condition 2, then we would have zk = f(xk) and yk

would be a subgradient of f at Xk. The presence of the E/2 term implies that these relations only
need to hold approximately.)
Let ak = minj<k{zj} and let Gk = {x E Gk-1 : (Yk, x - Xk) + Zk > ak}. The algorithm terminates
when the Lebesgue volume of Gk becomes smaller than (e/2)" and returns a point zj which has
the smallest value of zj encountered so far.

The following facts are quoted from [11]:
(a) The volume of Gk is no larger than ak, where ac is an absolute constant, smaller than one and
independent of the dimension n. Thus a total of n lo = O(n log(l/E)) stages are sufficient.
(b) The result xj of the algorithm satisfies f(xj) < infzE[o,l]n f(x) + eV(f), where V(f) =

supxE[o,ll] f(x) - infE[0,l]n f(x).

Notice that V(f) < 1, for f = fl + f2, fl, f2 E YL so that the algorithm indeed produces a result
belonging to I(f; E).

We now consider a distributed implementation of this algorithm. The distributed protocol will
consist of stages corresponding to the stages of the MCG algorithm. At the beginning of the k-th
stage, both processors know the current convex set Gk-1 and are therefore able to compute its
center of gravity xk. The i-th processor evaluates fi(xk) and transmits the binary representation
of a message b(i, k) satisfying b(i, k) E [fi(Xk)- (e/4), fi(xk) - (e/8)]. Clearly, b(i, k) may be chosen
so that its binary representation has at most O(log(1/e)) bits. Also each processor evaluates a
subgradient gi,k of its function fi, at Xk (with components gi,k,j, j = 1, ...,n) and transmits the
binary representation of messages c(i,k,j) satisfying Igi,k,j - c(i,k,j) I< e/(16n). Clearly the
c(i,k, j)'s may be chosen so that they can be all transmitted using O(nlog(n/e)) = O(nlogn +
nlog(1/e)) bits.

Next, each processor lets zk = b(l, k) + b(2, k) and lets yk be the vector with components
c(1, k, j) + c(2, k, j). It then follows by some simple algebra that zk and Yk satisfy the specifications
of the MCG algorithm. Finally, each processor determines Gk, and its center of gravity xk+l and
the algorithm proceeds to its next stage.

We now combine our estimates of the number of stages of the MCG algorithm and of the

5

communication requirements per stage to conclude the following.
Proposition 3.1: C(hrL;E) < O(n2 log(1/E)(logn + log(l/c)). This bound is attained by the
distributed version of the MCG algorithm.

The upper bound of Proposition 3.1 is quite far from the lower bound of Proposition 2.2. We show
next that within a certain class of protocols this upper bound cannot be substantially improved.

We consider protocols which consist of stages. At the k-th stage there is a current point
Xk E [0,1]'" known by both processors. Then, the processors transmit to each other approximate
values of fi and of a subgradient of fi, all evaluated at xk. Using the values of these messages,
together with any past common information, they determine the next point Xk+l, according to
some commonly known rule, and so on. We place one additional restriction: when a processor
transmits an approximate value of fi(xk) it does so by transmitting a sequence of bits of the binary
representation of fi(xk) starting from the most significant one and continuing with consecutive less
significant bits. (So, for example, a processor is not allowed to transmit the first and the third
most significant bits of fi(xk), without transmitting the second most significant bit.) The same
assumption is made concerning the components of the subgradient of fi. Finally, we require that
the same number of bits of fi (k) and of each component of the subgradient of fi gets transmitted.

The above restrictions turn out to be quite severe.
Proposition 3.2: There exists a constant A such that for any protocol 7r E 11(E) satisfying the
above restrictions, there exist fl, f2 E rL such that C(fl, f2; E, r) > An 2 log2 (1/E). This is true,
even if we restrict fl to be equal to the identically zero function.
Proof: Using Lemma 2.1, it is sufficient to prove the result under the restriction that fl = 0 and
under the restriction that f 2 is differentiable and bounded, together with every component of its
derivative by c1/2. Using the results of [11], for processor P1 to determine a point which is optimal
within e, it must acquire nontrivial information on the values and the derivatives of f2 for at least
Anlog(1/e1/2) different points. Notice that the O(log(E1/2)) most significant bits of f2 and each
component of its derivative, evaluated at any point, are always zero. Thus, for processor P1 to
obtain nontrivial information at a certain point at least O(n log(1/c1 /2)) bits have to be transmitted.
This leads to a total communication requirement of O(n21 og2 (1/e1/ 2)) = O(n2 log2 (1/e)) bits,

which proves the result. -

If we relax the requirement that the same number of bits is transmitted for each component
of the subgradient, at each stage, then the same proof yields the lower bound C(f l, f2;e, r) >

An log2 (1/C).

IV. AN OPTIMAL ALGORITHM FOR THE ONE-DIMENSIONAL CASE.

We prove here a result which closes the gap between upper and lower bounds for the one-
dimensional case. The proof consists of the construction of an optimal protocol.
Proposition 4.1: If n = 1 then C(TL; e) < O(log(1/E)).

6

Proof: The protocol consists of consecutive stages. At the beginning of the k-th stage, both
processors have knowledge of four numbers ak, bk, Ck and dk with the following properties:
(i) The interval [ak, bk] contains a point xz* which minimizes fl + f2.

(ii) The derivative of fl at any minimizer of fl +f2 and the derivative of fi and of -f2 at (ak+bk)/2

belong to the interval [ck, dk]. (Notice that the derivative of each fi has to be constant on the set
of minimizers of fl + f2.)

At the first stage of the algorithm we start with al = 0, b1 = 1, cl = -1 and d1 = 1. At
the k-th stage, the processors do the following: processor Pi transmits a message mi,k = 0 if

(-1)i-1'f((ak + bk)/2) < (Ck + dk)/2; otherwise it transmits mi,k = 1.

If ml,k = 0 and m2,k = 1, then f ((ak + bk)/2) + f2((ak + bk)/2) < 0. We may then let

ak+l = (ak + bk)/2 and leave bk, Ck, dk unchanged. Similarly, if ml,k = 1 and m2,k = 0, we let
bk+l = (ak + bk)/2 and leave ak, ck, dk unchanged.

We now consider the case ml,k = m2,k = 1. Let x* be a minimizer of fl + f2 belonging to
[ak, bk] . If x* > (ak + bk)/2, then f (z*) > f~ ((ak + bk)/2) > (Ck + dk)/2. If x* < (ak + bk)/2, then

f1 (x*) > -2fI(x*) > -f2 ((ak + bk)/2) > (ck + dk)/2. In either case, we may let Ck+1 = (cak + dk)/2
and leave ak, bk, dk unchanged. Finally, if ml,k = m2,k = 0, a similar argument shows that we
may let da+l = (Ck + dk)/2 and leave ak, bk, ck unchanged.

For each one of the four cases, we see that ak,...,dk will preserve properties (i), (ii) that were
postulated earlier. Furthermore, at each stage, either bk - ak or dk - ck is halved. Therefore,

after at most k = 21og(1/E) stages, we reach a point where either bk - ak < E or dk - ck < c.

If bk - ak < E, then there exists a minimizer which is within c of ak; given that the derivative of

fA + f2 is bounded by one, it follows that f (ak) + f2 (ak) comes within c of the optimum, as desired.
Alternatively, if dk - ck c, then If((ak + bk)/2) + f2((ak + bk)/2)1 • dk - Ck < e. It follows that

for any x E [0,1], we have fl(x) + f 2 (z) > fl((ak + bk)/2) + f2((ak + bk)/2) - Ix - (ak + bk)/2 1,
which shows that (fl + f2)((ak + bk)/2) comes within E of the optimum. *

V. AN OPTIMAL PROTOCOL FOR STRONGLY CONVEX PROBLEMS.

We consider here the class YSC,M,L of strongly convex problems, defined in Section II. However,
we prefer to deal with unconstrained optimization and for this reason, we limit ourseleves to to the
subset Yu of YSC,M,L which contains only functions for which there exists a (necessarily unique)
x* E [0, 1]n at which fI(x*) = 0. This assumption is not unrealistic; in practical unconstrained
optimization problems one is able to obtain a priori bounds on the region in which the optimum
is lying. Then, by rescaling, this region may be assumed to be [0, 1]'. We show below that an
appropriate inexact implementation of the classical gradient algorithm turns out to lead to an
optimal protocol, as far as the dependence on n and c is concerned.

The protocol produces a sequence {xk}k=o of points according to the iteration

xk+1 = Xk - 8sk; Xk = 0, (5.1)

where Sk is an approximation to 9k, the gradient of Af + f2, evaluated at Xk. In particular, we will
require that the inequality

IIsk - 9k1 <• nl/2 ak (5.2)

holds for all k < T, with some a E (0, 1). (Throughout this section I |II will stand for the Euclidean
norm.) We first estimate the number of iterations required to reach an E-optimal point.
Proposition 5.1: If the stepsize y is small enough, and if a is sufficiently close to 1, then there
exist A > 0, B > 0, depending only on M, L, such that
(a) f (Xk)- f* < •Antc, (5.3)
(b) IIXk+l - xkII < Bnl/2CZk. (5.4)
Proof: We state without proof the following properties of functions in 'SC,M,L [11, pp. 254-255]:
(i) Ilf'(x)- f'(y)ll < MLIIx- YII- (5.5)
(ii) f (+ y) > f(x) + (f'(x)ly) + (L/2)1ly112. (5.6)
(iii) f (x + y) < f(x) + (f'(x)ly) + (LM/2)IIy112. (5.7)
Using inequality (5.7) together with (5.1) and (5.2) we obtain

f(xk+l) < f(xk) - -(SkAgk) + 2 - llSk112 <

f(Xk) - YIIg9I 12 + ynl1/2 ak + r2 (I gk|12 + na 2 k). (5.8)

Let x* be the minimizer of f. Using (2.1) we obtain Ilgkll > Lllxk - x*ll and using (5.7) we obtain

f(xk) - f(X*) < ll Xk - X*112 < (M/2L)IIgkI12 .

Combining this with (5.8) we conclude that

f(Xk+l)-f(x*) < f(zk)-f(x*)-(72L/M)(1--'LM/2)(f(xk)-f(x*))+-nl/ 2 a k+n'12(LM/2)a2 k.

Taking 'y small enough so that P = 1 - 2('yL/M)(1- yLM/2) E (0, 1), and assuming that ac was
chosen larger than /f, part (a) is easily proved by induction. (To start the induction, we use the
inequality (5.7).) For part (b) we use inequality (5.6) to obtain

IIXk - X*112 < (f(Xk) - f(x*))

and the result follows. -

As an immediate corollary of Proposition 5.1, we see that after A(log(1/e)+log n) iterations of the
approximate gradient algorithm (5.2), we have reached an E-optimal point. Next we show how this
algorithm may be implemented in a distributed manner with only O(n) bits being communicated
at each stage. All we need to do is to make sure that the processor share at each stage enough
information to compute a vector sk satisfying the bound (5.2). This is accomplished by having each
processor know a set of scalars sk(i,j), i = 1,2, j = 1,...,n such that 1sk(i,j) - gk(i,j)l < nl/2 ak,

8

where gk(i,j) is the j-th component of fl(xk). At stage k = 0 this is easy: go(i,j) is bounded by
n1/ 2 and therefore the choice so(i,j) = 0 will do. Suppose that quantities sk(i,j) with the desired
properties have been shared at stage k and let us now consider stage k + 1. We have Jgk+1(i,j) -

Sk(i,j)l _ lgk+l(ij)-9gk(i,j)[+[gk(i,j)-Sk(i,j)I < LMIIxk+l-xkll+nl/2 a k < (LMB+l)nl/2a k,

where the last inequality follows from part (b) of Proposition 5.1. We require that sk+l(i,j) be an
integer multiple of n 1/ 2 ak+ l. This requirement does not prohibit the satisfaction of the constraint
(5.2); furthermore, with this requirement, there are at most (LMB + 1)a-l + 1 possible choices
for sk+l(i,j). Therefore, processor Pi may choose sk+l(i,j) as above and transmit its value to the

other processor while communicating only a constant number of bits. This has to be done by each
processor Pi and for each component j, for a total of O(n) bits of communication per stage. We
have thus proved the following result.
Proposition 5.2: C(Yu; c) < An(logn + log(1/E)), where A is a constant depending only on M,
L.

Notice that this result attains the lower bound of Section II.

VI. POSSIBLE EXTENSIONS AND OPEN QUESTIONS.

1. The protocol of Section V is likely to be far from optimal concerning the dependence on
the parameters M and L. The gradient algorithm tends to be inefficient for poorly conditioned
problems (large M), whereas a version of the conjugate gradient method requires an optimal number
of iterations [11]. It remains to be seen whether a suitable approximate version of the conjugate
gradient method admits a distributed implementation with low communication requirements.

2. In Section V we dealt essentially with unconstrained problems for which the optimal solution
may be a priori localized into a bounded region. If we consider true constrained problems, we
expect that a similar approximate version of the gradient projection method will have the same
communication requirements as the gradient method.

3. For the class FL, gradient methods do not work and the gap between the lower bound of
Section II and the upper bound of Section III remains open. We believe that the factor of n2 in
the upper bound cannot be reduced. The reason is that any conceivable algorithm would need to
consider at least O(n log(1/E)) points and it is hard to imagine of any useful transfer of information
concerning the behavior of the function in the vicinity of a point which does not require O(n). On
the other hand, it may be possible to reduce the factor log 2(1/e) to just log(l/e) although we do
not know how to accomplish this.

4. Another extension concerns the case of K > 2 processors minimizing the function f, +... + fK.
The protocols of Propositions 4.1 and 5.2 may be adjusted to obtain protocols with communication
0 (K log K), as far as the dependence on K is concerned. It is an open question whether this may
be reduced to just O(K).

9

REFERENCES.

1. Abelson, H., "Lower Bounds on Information Transfer in Distributed Computations", Journal of
the ACM, 27, 2, 1980, pp. 384-392.
2. Yao, A.C., "Some Complexity Questions Related to Distributed Computing", Proceedings of the
11th STOC, 1979, pp. 209-213.
3. Papadimitriou, C.H. and Sipser, M., "Communication Complexity", Proceedings of the 14th
STOC, 1982, pp. 196-200.
4. Papadimitriou, C.H., and Tsitsiklis, J.N., "On the Complexity of Designing Distributed Proto-
cols", Information and Control, 53, 3, 1982, pp. 211-218.
5. Aho, A.V., Ullman, J.D., and Yannakakis, M., "On Notions of Information Transfer in VLSI
Circuits", Proceedings of the 15th STOC, 1983, pp. 133-139.
6. Pang, K.F., El Gamal, A., "Communication Complexity of Computing the Hamming Distance",
1985 International Symposium on Information Theory, Brighton, England, 1985.
7. Mehlhorn, K., Schmidt, E.M., "Las Vegas is Better than Determinism in VLSI and Distributed
Computing", Proceedings of the 14th STOC, 1982, pp. 330-337.
8. Ullman, J.D., Computational Aspects of VLSI, Computer Science Press, 1984.
9. Awerbuch, B., Gallager, R.G., "Communication Complexity of Distributed Shortest Path Algo-
rithms, Technical Report LIDS-P-1473, Laboratory for Information and Decision Systems, M.I.T.,
Cambridge, MA, 1985.
10. Papadimitriou, C.H., Steiglitz, K., Combinatorial Optimization: Algorithms and Complexity,
Prentice Hall, 1982.
11. Nemirovsky, A.S., Yudin, D.B., Problem Complexity and Method Efficiency in Optimization,
Wiley, 1983.
12. Traub, J.F., Wozniakowski, H., A General Theory of Optimal Algorithms, Academic Press,
1980.

10

