MATHEMATICS OF OPERATIONS RESEARCH
Vol. 12, No 3, August 1987
Printed in US.A.

THE COMPLEXITY OF MARKOV DECISION PROCESSES* ¥

CHRISTOS H. PAPADIMITRIOU* AND JOHN N. TSITSIKLIS?

We investigate the complexity of the classical problem of optimal policy computation in
Markov decision processes. All three variants of the problem (finite horizon, infinite horizon
discounted, and infinite horizon average cost) were known to be solvable in polynomial time
by dynamic programming (finite horizon problems), linear programming, or successive ap-
proximation techniques (infinite horizon). We show that they are compiete for P, and therefore
most likely cannot be solved by highly parallel algorithms. We also show that, in contrast, the
deterministic cases of all three problems can be solved very fast in parallel. The version with
partially observed states is shown to be PSPACE-complete, and thus even less likely to be
solved in polynomial time than the NP-complete problems; in fact, we show that, most likely,
it is not possible to have an efficient on-line implementation (involving polynomial time
on-line computations and memory) of an optimal policy, even if an arbitrary amount of
precomputation is allowed. Finally, the variant of the problem in which there are no
observations is shown to be NP-complete.

1. Introduction. In the past, Complexity Theory has been applied with consider-
able success to separate optimization problems with respect to their computational
difficulty [GJ, PS]. Such results are valuable in that they succeed in formalizing the
intuitive feeling by researchers in the area about the impossibility of certain ap-
proaches in solving some hard problems, and in some cases give a clear separation
between the easy and the hard versions (special cases or generalizations) of important
problems. In most of this work, NP-completeness is the main notion of complexity
used. The important distinction here is between problems that are in P, that is, can be
solved in polynomial time (linear programming, max flow, minimum spanning tree)
and those that are NP-complete, and thus presumably cannot be so solved (examples
are integer programming and the traveling salesman problem).

Recent research in parallel algorithms [Co] has succeeded in pointing out some
important differences between problems that are in P, that is, can be solved in
polynomial time. Some of these problems can be solved by algorithms that use
cooperating processors so that the time requirements are reduced tremendously (such
problems include, from the optimization point of view, minimum spanning tree
problem, the shortest path problem, and others), whereas certain other problems (first
of all linear programming, but also some special cases of it, such as maximum flow) do
not appear to be susceptible to such massive parallelization. NC is the class of
problems that have algorithms using a polynomial number of processors, and time
delay which is polynomial in the logarithm of the input size. The question then arises, is

*Received June 10, 1985; revised February 21, 1986,
AMS 1980 subject classification. Primary: 90C7. Secondary: 68C25.
TAOR 1973 subject classification. Main: Programming: Markov Decision.
OR/MS Index 1978 subject classification. Primary: 117 Dynamic programming/Markov. Secondary: 568
Probability/Markov processes.
Key words. Markov decision processes, dynamic programming, computational complexity, parallel computa-
tion,

Y This research was supported by an IBM faculty development award, and ONR contract N00014-85-C-
0731.

*Stanford University.

$Massachusetts Institute of Technology.

441

0364-765X /87/1202/%01.25
soms Research Society of Amer

Copyright © 1987, The Institute of Management Scicaces /Op



442 CHRISTOS H. PAPADIMITRIOU & JOHN N. TSITSIKLIS

NC = P? In other words, is it true that all problems that can be solved satisfactorily by
sequential computers can also take the maximum possible advantage of parallel
computers? Most researchers believe that the answer is negative.

The notions of reductions and completeness offer some important evidence here:
Linear programming, maximum flow, and some other problems have been shown to be
P-complete [DLS, GSS]. This means, intuitively, that such problems are as hard as any
problem in P; thus, they can be massively parallelized only if NC = P, that is, if all
problems in P can, and thus there are no inherently sequential problems. Since this
event is considered unlikely, P-completeness is tdken as evidence that a problem is not
in NC, and thus cannot be satisfactorily parallelized.

The design of optimal strategies for Markov decision processes (say, for the
discounted infinite horizon case) has been a very central and well-solved optimization
problem. There are basically two approaches to its solution. First, the problem can be
expressed as a linear program and thus solved (either by generic techniques, or
specialized “policy improvement” routines [Ho]); this technique appears to be
unpromising from the parallel algorithm point of view, since it involves linear pro-
gramming, a problem that seems inherently sequential. Secondly, there are iterative
techniques that are known to converge fast on the optimal policy; however, such
techniques are sequential also by nature. (Let us note in passing that the problem of
deriving a “clean” polynomial time algorithm for this problem, without using general
linear programming or approximate techniques, is an important open question that has
not been emphasized in the literature as much as it deserves.) An interesting question
arises: Is the Markov decision problem in NC, or is it complete for P, and thus, in
some sense, the use of linear programming for its solution is inherent?

In this paper we show that computing the optimal policy of a Markov decision
process is complete for P, and therefore most probably is inherently sequential. This is
true also for the average cost case, as well as the finite horizon (nonstationary) case.
However, we also show that the deterministic special cases of all three problems (that
is, in which all possible stochastic matrices have zero-one entries) are in NC.

Next, we address the question of the complexity of the partially observed generaliza-
tion of this problem; this is an important problem arising in many applications in
control theory and operations research [Be]. We show that the partially observed
version of the finite horizon problem is PSPACE-complete. We do not consider infinite
horizon partially observed problems because these are not combinatorial problems and
do not seem to be exactly solvable by finite algorithms. Notice that only recently has
there been work relating combinatorial optimization problems [Or, Pal] to this notion
of complexity, which is stronger than NP-competeness (see §2 for definitions). In fact,
we show that, most likely, it is not possible to have an efficient on-line implementation
(involving polynomial time on-line computations and memory) of an optimal policy,
even if an arbitrary amount of precomputation is allowed. Finally, we show that the
same problem with no observations is NP-complete.

In the next section we introduce the necessary concepts from Markov Decision
Processes, and Complexity Theory. In §3 we present our results concerning the
possibility of designing massively paralle! algorithms for these problems. Finally, in §4
we prove our results on partially observable Markov processes.

2. Definitions.

Complexity. For a general introduction to Computational Complexity see the
bibliography in [Pa2]. Our model of (sequential) computation can be any one of the
Turing machine, random access machine, etc. [AHU, LPj; all these models of computa-
tion are known to be equivalent within a polynomial. We denote by P the class of all



COMPLEXITY OF MARKOV DECISION PROCESSES 443

problems that can be solved in polynomial time (in such a model of computation). As
usual, by “problem” we mean an infinite set of instances, each of which is a “yes-no”
question. Optimization problems can be transformed into such problems by asking, not
for the optimal feasible solution, but simply whether the optimal cost is below a given
bound.

NP is the class of problems that can be solved nondeterministically in polynomial
time; a nondeterministic machine essentially has the power of branching out and
following both computation paths; this can be repeated in each of the paths, and so on, -
creating a potentially exponential set of computations. (Equivalently, NP is the class of
“yes-no” problems that have the “succinct certificate property”, see {PS].)

Besides time complexity, we shall concern ourselves with the space complexity of
algorithms. The space consumed by a computation is the number of memory cells
necessary for the computation; notice that this does not count the space necessary for
the input, so the space requirement of an algorithm may be less than linear (for
example, logarithmic). An important class is PSPACE, the class of all problems that
can be solved in polynomial space. If a computation can be carried out in time (or
nondeterministic time) T(n), then it requires only T(n) space; it follows that P and NP
are subsets of PSPACE. If the space requirements are 7(n), then the time requirement
cannot exceed ¢7™, for some constant c.

We say that a problem A is reducible to another B, if for any instance x of A, we can
construct using space log(|x]) an instance f(x) of B such that the answer for x,
considered as an instance of A, is the same as the answer of f(x), considered as an
instance of B (here x is a string encoding an instance of problem A, and |x| is its
length). Notice that we insist that the function f be computed in logarithmic space;
this is stricter than the polynomial time usually required. In practice this is not a major
restriction as most known polynomial reductions can in fact be accomplished in
logarithmic space. Also, it can be shown that log-space reduction is transitive. Let A be
a problem, and ¥ be a class of problems (such as P, NP, PSPACE). We say that A is
complete for €, or ¢complete if (a) A is a member of ¢, and (b) for every member B
of ¥, B is reducible to A.-

Although there are many NP-complete problems in the literature, the notion of
PSPACE-completeness is somewhat less well-known. A fundamental PSPACE-com-
plete problem is that of quantified satisfiability (QSAT) [SM]: We are given a
quantified Boolean formula 3x,Vx,3x,...Vx,F(x,,..., x,), where F is an ordinary
Boolean formula in conjunctive normal form with three literals per clause. We are to
determine whether this formula is true, that is, whether there exists a truth value for x,
such that, for all truth values of x,, etc. for all truth values of x,, F comes out true.

As mentioned above, PSPACE contains NP. In fact, NP can be thought of as the
class of problems reducible to the special case of QSAT, called SAT, in which all
quantifiers are existential (that is, there is no alternation of quantifiers). In fact, there is
a number of intermediate classes! based on less restricted alternation; this is called the
polynomial hierarchy [SM]. The next level above NP in this hierarchy is the class 24,
which can be thought of as all problems that reduce to the problem of telling whether a
formula with one string of existential quantifiers, followed by a string of universal
quantifiers, is true. An example of such a formula is 3Ix3x,...IxVy\Vy,...
vymF(xl’ LR ym)'

In the interest of formalizing parallel computation, we can define a parallel random
access machine (PRAM), that is, a set of RAMs operating in unison, and communicat-

LOf course, it should be borne in mind that, for all we know, PSPACE, NP, even P might all coincide, in
which case so would these “intermediate™ classes.



444 CHRISTOS H. PAPADIMITRIOU & JOHN N. TSITSIKLIS

ing through a sequence of common registers, some of which initially hold the input
[Co). The measures of complexity here are the delay until the final answer is produced,
and the number of processors that have to be involved. A problem is considered to be
solved in a satisfactory way by such a supercomputer if the delay is polynomial in the
logarithm of the length of the input, and the number of processors involved are
polynomial in the length of the input. The class of problems solvable under these terms
is called NC. Obviously (by multiplying delay times number of processors) NC is a
subset of P. The great enigma for parallel computation, analogous to P = ?NP for
sequential computation, is whether NC = P. That is, while P = NP asks whether there
are (reasonable) problems that are inherently exponential, NC = P asks whether there
are problems that are inherently sequential. The bets are that such problems do exist,
but there is no proof. Now, if inherently sequential problems exist (equivalently, if
NC # P) then the problems that are complete for P will certainly be among them.
Thus, P-completeness plays vis-a-vis the NC = P problem the same role enjoyed by
NP-completeness in relation to the P = NP problem.

One basic P-complete problem is the circuit value problem (CVP). A circuit is a finite
sequence of triples C = ((a,, b, ¢;), i = 1,..., k). For each i < k, a, is one of the
“operations” false, true, and, and or, and b,, ¢, are nonnegative integers smaller than i.
If a, is either false or true then the triple is called an inpwt, and b, = ¢, = 0. If a, is
either and or or then the triple is called a gate and b,, c; > 0. The value of a triple is
defined recursively as follows: First, the value of an input (true; 0,0) is true, and that
of (false, 0, 0) is false. The value of a gate (a,, b;, c;) is the Boolean operation denoted
by a, applied to the values of the b;th and c,th triples. The value of the circuit C is the
value of the last gate. Finally, the CVP is the following problem: Given a circuit C, is
its value true?

Markov Decision Processes. In a Markov decision process we are given a finite set §
of states, of which one, s, is the initial state. At each time ¢ = 0,1,... the current state
is 5, € S. For each state s € § we have a finite set D, of decisions. By making decision
i€ D, at time ¢, we incur a cost c(s, i, t), and the next state s’ has probability
distribution given by p(s, s', i, t). We say the process is stationary if ¢ and p are
independent of ¢, in which case we write p as p(s,s’,i). A policy § is a mapping
assigning to each ¢t € {0,1,2,...} and state s € § a decision §(s, ). A policy is
stationary if 8(s,t) is independent of r. We shall consider three variants of the
problem. First, in the finite horizon problem, we are given a (nonstationary) Markov
decision process and an integer 7. We wish to find a policy that minimizes the
expectation of the cost 7_, c(s,, 8(s,, t), t). The other variants that we deal with have
infinite horizon, and thus we shall only consider their stationary special cases (otherwise
we need the description of an infinite object, namely the parameters ¢ and p for all
times). In the discounted (infinite horizon) problem we are given a Markov decision
process and a number 8 € (0,1), and we wish to minimize the expectation of the
discounted cost £2,c(s,, 8(s,, t))B’. Finally, in the average cost (infinite horizon)
problem we are given a Markov decision process, and we wish to minimize the
expectation of the limit lim,_, (X7, ¢(s,, 8(s,, 1))/T). It is well known that in the
two latter cases (those for which the optimal policy is a potentially infinite object),
there exist stationary optimal policies, and therefore optimal policies admit a finite
description. For all three cases of the problem, there are well-known polynomial-time
algorithms.

3. P-completeness and parallel algorithms, We show the following result:

THEOREM 1. The Markov Decision Process problem is P-complete in all three cases
(finite horizon, discounted, and average cost).



COMPLEXITY OF MARKOV DECISION PROCESSES 445

Proor. We shall reduce the CVP to the finite horizon version first. Given a circuit
C=((a; b,,c),i=1,..., k), we construct a stationary Markov process M = (S, c, p)
as follows: S has one state i for each triple (a;, b, ¢;) of C, plus an extra state g. If
(a;, b;, ¢;) is an input, then the corresponding state i has a single decision 0, with
p(i, q,0) = 1, and cost ¢(i,0) = 1 if a, = false, and 0 otherwise. All other costs in this
process are 0. From g we only have one decision, which has p(q, ¢,0) = 1. If a, is an
or gate, there are two decisions 0,1 from state i, with zero cost, and p(i, b,,0) = 1,
p(i, c;,1) = 1. That is, we decide whether the next state is going to be b, or ¢,. If q, is
an and gate, then there is one choice 0 in D,, with p(i, b;,0) = p(i, c,,0) = 1/2, that
is, the next state can be either b, or c,. The initial state is k, the last gate, and the time
horizon also equals k, the size of the circuit.

We claim that the optimum expected cost is O or less iff the value of C was true. In
proof, suppose that the expectation is indeed zero (it cannot be less). Then it follows
that there are decisions so that the states with positive costs are impossible to reach.
However, these states correspond to the false inputs, and thus these decisions are
choices of a true gate among b,, c; for each or gate i of the circuit so that its overall
value is true. Conversely, if the value is true, there must be a way to choose an input
gate for each or gate so that the false inputs are not reachable, or, equivalently, the
states with positive costs are not possible.

Essentially the same construction works for the discounted case; for the average cost
problem, a modification is necessary: We must first make sure that all paths from the
inputs to the last gate of C have the same number of gates on them, and then have
transitions from the states corresponding to the inputs not to a state g, but back to the
initial state. m

We note that the above proof shows that even the stationary special case of the finite
horizon problem is P-hard. It is not known whether the stationary finite-horizon
problem is in P, because of the following difficulty: We could be given a stationary
process with n states, and a horizon T up to 2%, and the input would still be of size
O(n). Still, the dynamic programming algorithm for this problem would take time
proportional to nt, and thus exponential in the input. (In the nonstationary case, the
input must specify ¢ and p for each i < T, and so the input size is at least T.)

Deterministic problems. Consider now the special case of these problems, in which
the only allowed values for p are 0 and 1; we call this the deterministic case. We shall
show below that the deterministic cases of the finite horizon (stationary and nonsta-
tionary), discounted, and average cost problem are in NC. Our approach is to look at
these problems as variants of the graph-theoretic shortest-path problem [La)]. This is
done as follows: Given a deterministic Markov decision process, we construct a
directed graph G = (V, A), where the nodes are the states, and the arcs emanating
from a node are the decisions available at this state. The node pointed to by an arc is
the state to which the decision is certain to lead (recall that there are only 0 or 1
probabilities). There is a weight c(u, v) on each arc (u, v), equal to the cost of the
corresponding decision. We denote by u, the node corresponding to the initial state s,.
The particular variants of the problem are then equivalent to certain variants of the
shortest path problem.

The nonstationary finite horizon problem. The parallel algorithms that we describe in
this section employ a technique used in the past to yield fast parallel (or space efficient)
algorithms known as “path doubling” [Sa, SV}. The idea is, once we have computed ail
optimal policies between any two states, where each policy starts at time ¢, and ends at
time ¢,, and similarly between ¢, and ¢,, to compute in one step all optimal policies
between 1, and ¢,. We can think of this as multiplying two |V'| X |V'| matrices A(¢,, t,)



446 CHRISTOS H. PAPADIMITRIOU & JOHN N. TSITSIKLIS

and A(1,, t;), where the (u, v)th entry of A(¢,,1,) is the cost of the optimal policy
from state u to v between times ¢, and ¢,. This “matrix multiplication” is the variant
in which multiplication of reals is replaced by addition, and addition of reals by the
operation .of taking the minimum. Using n> processors, we can “multiply” n X n
matrices in log n parallel steps, by independently computing each of the n? inner
products using n processors in log » steps. This latter can be done by computing the n
terms of the inner product independently, and combining them in log n stages.

This approach immediately suggests an NC parallel algorithm for the finite horizon
nonstationary problem: We start from the matrices A(¢,z+ 1), t =0,... T — 1; the
(u, v)th entry of A(¢, t + 1) equals the cost of the decision leading at time ¢ from state
u to state v, if such a decision exists at time ¢, and is equal to co otherwise. Then to
compute the required A(0, T) we multiply in log T stages these matrices. The total
number of processors is Tn3, and the total parallel time log T log n; since the size of
the input for the nonstationary problem is 727, this is an NC algorithm.

THEOREM 2. The finite-horizon, nonstationary deterministic problem is in NC. =

Notice that this technique does not solve the stationary problem, whose input is of
length .n? + log T, and which will have to be attacked by a more sophisticated
technique, explained later.

The infinite horizon undiscounted case. 1t is easy to see that the infinite horizon
average cost problem is equivalent to finding the cycle in the graph corresponding to
the process that is reachable from u,, and has the smallest average length of arcs. In
proof of the equivalence, the limit of the average cost of an infinite path which starts at
u,, reaches this cycle, and then follows this cycle for ever, equals the optimum average
cost, and this cannot be improved.

To make sure that we do not consider solutions that are not reachable from u,, we
first compute in log n parallel time [SV] the nodes reachable from u,, and in the sequel
consider only these. The cycle with the shortest average cost can be found by
computing, in parallel, for each k =1,..., n the shortest cycle of length %, and
companying the results, each divided by k. To compute the shortest cycle of length k,
we essentially have to compute the kth power of matrix A4, whose (u, v)th entry is
equal to the cost of the decision leading from state u to state v, if such a decision
exists, and oo otherwise. This is done with n%k processors in log k log n parallel steps.
The total time is log?n + 2log n, using n* processors.

THEOREM 3. The infinite-horizon, average cost deterministic problem is in NC. =

The infinite horizon, discounted case. Define a sigma in a directed graph to be a
path of the form (uy,..., 4, vy,..., 0, v;), where all nodes indicated are distinct. In
other words, a sigma is a path from u, until the first repetition of a node. The
discounted cost of a sigma P = (uy,..., u,,0,,...,0,0,) is defined to be

* Bk+1 I )
o(P) = Z c(“j’ “Hrl)pIY + '—1":""7" E (0 Vi1 moa ) B
im0 ( ﬁ)j-l
That is, the discounted cost of a sigma coincides with the discounted cost of an infinite
path that follows the sigma and repeats the cycle forever. It follows from the fact that
the (general) discounted problem has a stationary optimal policy, that the cost of this
optimal policy is the optimum discounted cost of a sigma in the corresponding directed
graph. : .
We can compute the optimum sigma as follows: First, we compute the shortest
discounted path of length j = 0,1...,n among any pair of nodes by “multiplying” the



COMPLEXITY OF MARKOV DECISION PROCESSES 447

matrices A, BA,..., 8774, where A is the matrix defined in the paragraph before
Theorem 3. This can be done in log2n steps by using n* processors. Let B,,..., B, be
the resulting products; the (u, v)th entry of B, is the length of the shortest path with j
arcs from u to v. Once this is done, for each node u and for each k, /= 0,1,..., n we
compute A + (B%*1u/(1 + B')), where X is the (uy, u)th entry of B,, and p is the u, u
entry of B, We pick the best result. This requires a total of n* processors, and
log?n + 3log n parallel steps.

THEOREM 4. The infinite-horizon, discounted deterministic problem is in NC. m

The finite horizon, stationary case. Given a stationary deterministic process, the
stationary finite horizon problem with horizon T is equivalent to finding the shortest
path with T arcs in the corresponding graph, starting from the node u,,. The algorithm
should run in a number of parallel steps that is polynomial to loglog T’ therefore the
“path-doubling” technique would not give the desired result. In the sequel we assume
that T > n?, otherwise the previous technique applies.

Without loss of generality, assume that the arc lengths are such that no ties in the
lengths of paths are possible (this can be achieved by perturbing the lengths). Consider
the shortest path out of u, with T arcs. Since T > n?, there are many repetitions of
nodes on this path. Consider the first such repetition, that is, the first time the path
forms a sigma, and remove the cycle from the path. Then consider the first repetition in
the resulting sequence. Continuing this way, we can decompose the path into a simple
path (i.e., without repetitions of nodes) out of u,, plus several simple cycles (notice
that this decomposition may not be unique). We first need to show that we can assume
that only one simple cycle is repeated more than n times, namely the one that has the
shortest average length of its arcs. In proof, consider two cycles of length m, and m,,
repeated n, and n, times, respectively. If n,, n, > n, then we can repeat the cycle with
smaller average arc length, say the first, m, times less, and repeat the second m, times
more, to obtain another path of smaller length. Thus, only one cycle is repeated more
than n times. Furthermore, since we have no ties, only one cycle of each length is
repeated. Therefore, the shortest path of length T has the following structure: It
consists of a path with length / < n? (this is the simple path, plus the at most n
repetitions of one cycle from each length), plus a simple cycle repeated many times to
fill the required number of arcs. Therefore, for each value of / < n* and each node u
and each possible number of arcs in the cycle k that divides T — / we do, in parallel,
the following: We compute the shortest path of length / from u, through u, the
shortest cycle of length & through u, and the cost of adding (T — I)/k copies of the
cycle to the path. Of the resulting combinations, we pick the cheapest.

THEOREM 5. The finite-horizon, stationary deterministic problem is in NC. =

4. The partially observed problem. We can define an important generalization of
Markov decision processes if we assume that our policy must arrive at decisions with
only partial information on the current state. In other words, we have a partition
II={z,..., z,} of S, where the z,’s are disjoint subsets of S that exhaust §, and at
any time we only know the particular set in II to which the current state belongs
(naturally, we also remember the previous such sets).2 Each set z € II has a set D, of
decisions associated with it, and each decision i € D, has a cost ¢(z,i) and a
probability distribution p(s, s/, i) of the next state s/, gwenthecurrent state s € z.

2In the traditional formulation of the partially observed problem {Be], the observation at time ¢ is a
random variable, for which we know its conditional distribution given the current state and time. Here we
essentially deal with the special case in which the observation is a deterministic function of the current state.
Clearly, the general case cannot be any easier.



448 CHRISTOS H. PAPADIMITRIOU & JOHN N. TSITSIKLIS

The initial state is known as before to be s,. A policy is now a mapping from sequences
of observations z,, ..., z, to decisions in D, .

This problem is often treated by converting it to an equivalent perfectly observed
problem by redefining the state to be the vector p whose ith component is the
conditional probability that the state of the original problem equals i [Be]. In this
formulation the state space is infinite. Nevertheless, it is known [SS] that the function
assigning to each probability vector and time ¢ the optimum future cost (cost-to-go) is
of the form J(p, ?) = min ¢ x [ 4, + B, p], where 4, is a scalar and B, is a vector of
suitable dimension and K, is a finite index set. This allows the solution in finite time of
the problem even though the state space is infinite. Nevertheless, the cardinality of the
index set K, may be an exponential function of the time horizon and, therefore, this
procedure is of limited practical use. The following result shows that most likely this is
a generic property of the problem we are dealing with rather than a defect of the
particular reformulation of the problem. Notice also that in the infinite horizon limit
the index set X, will be infinite, in general, which makes fairly doubtful whether there
exists a finite-algorithm for the infinite horizon problem. For this reason, we only
consider the problem in which we are asked to minimize the expected undiscounted
cost over a finite time horizon T.

THEOREM 6. The partially observed problem is PSPACE-hard, even if the process is
stationary and T is restricted to be smaller than |S| (and it is in PSPACE in the latter

case).

ProoF. To show PSPACE-hardness, we shall reduce QSAT to this problem.
Starting from any quantified formula 3x,Vx,...Vx,F(x,,..., x,), With n variables
(existential and universal) and m clauses C,, ..., C,,, we construct a partially observed
stationary Markov process and a horizon T < |S}, such that its optimum policy has
cost O or less if and only if the formula is true.

We first describe S. Besides s, the initial state, S contains six states
A;; A}, T, T, Fyj, F; for each clause C;, and variable x;. There are also 2m states

in+1> Af n+1- We next describe the partition II. The initial state s, is in a set by
itself. For each variable j, the states 4, i = 1,..., m and the states A, i=1,...,m
form a set called A, the states 7;;, i = 1,..., m form a set called T, the states T
i=1,...,m form a set called 7’ and so on, up to F;. The states 4, ,,, and 4] ,,,
are each on a different set.

Next we shall describe the decisions, the probabilities, and the costs. All decisions
except those out of the set A, , have zero cost. At s, there is only one decision,
leading to the states A}, i = 1,..., m with equal probability. If x; is an existential
variable, there are two decisions out of the set 4, leading certainly from 4,; to T;; and
F,;, respectively; similarly there are two decisions out of the set A/, leading with
certainty from A4;; to T;; and F}, respectively. If x; is a universal variable, there is one
decision out of the set A4, leading with equal probability from 4,; to 7;; and F;
similarly there is one decision out of the set 4}, leading with equal probability from
A{; to T and F;. From the T, F,, T/ and F; sets there is only one decision, which
leads with certamty from 7:’]’ E’p I;;’ and E; to (respeaivel)') Ai,j-H’ Ai. j+1» A;,j+1f
and A] ;. ,, with two exceptions: If x; appears positively in C,, the transition from 7]
is to A, ;,, instead of 4 ;,,; and if x; appears negatively, the transition from F/, is
toAd, ;i1 ~

Fina ;, outof A, ., and A] ., there is one decision, leading to a new state with
certainty. In the entire process, all decisions have cost zero, except for the decision out
of A} ,.,, which incurs a cost of 1. This completes the construction of the process; the
horizon T is defined to be 2m + 2 (just enough time for the process to reach one of
A; pir OF A7 ,49)



COMPLEXITY OF MARKOV DECISION PROCESSES 449

We claim that there exists a policy with expected cost zero iff the formula is true.
Suppose such a policy exists. Recall that the transition from the initial state can be to
any state A}, of Aj; we think that the process “chooses” a clause C,. Once this has
happened, the process remains at states subscripted by i forever, without ever observ-
ing the real value of i. It follows that the policy has zero expected cost for all such
initial choices. We next claim that the policy must guarantee that the process ends up
in 4; ,,,- If not, that is, if for some choices of decisions for the universal variables the
process ends up in A4; ., then this contributes an expected cost of at least 27" /m,
which is absurd. It follows that the policy must, based on the previous observations on
the transitions at the sets corresponding to previous universal variables, pick at the
existential variables those decisions that correspond to a truth assignment which
satisfies the clause. Since all clauses must be satisfied, the formula was true.

Conversely, if the formula were true, there is a policy for setting the existential
variables, based on the values of previous universal ones, so that all clauses are
satisfied. This, however, can be translated into a policy for choosing the corresponding
decisions at the sets corresponding to existential variables so that, for all choices of
clauses, the state 4, ,,, is reached. A policy with zero cost is thus possible. The proof
is complete.

Finally, we sketch a proof that the special case of the problem examined here is in
PSPACE. The construction is a bit tedious, but quite reminiscent of polynomial-space
algorithms for other similar problems (see for example [Pal]). We can think of the
possible outcomes of the process within the finite horizon T as a tree of depth T, which
has internal nodes both for decisions and transitions. The leaves of this tree can be
evaluated to determine the total contribution to the expected cost of this path. To
determine whether the optimal policy has expected cost less than some number B, we
need to traverse this tree, making nondeterministic decision nodes, iterating over all
transitions and taking care to make the same decision every time the history of
observations is identical. This latter can be achieved by organizing the search in such a
way that nodes at the same level of the tree are divided into intervals from left to right,
corresponding to distinct -observation sequences. Decisions from nodes in the same
interval must be the same. That the problem is in PSPACE follows now from the fact
that PSPACE is robust under nondeterminism. =

Theorem 6 says that, unless P = PSPACE (an event even less likely than P = NP),
there is no polynomial-time algorithm for telling whether a cost can be achieved in a
given partially observable process. However, there is a more practical problem, the
complexity of which is not settled by this result. It would still be satisfactory if we
could analyze such a process (perhaps by preprocessing it for an exponential time or
worse), and, based on the analysis, design a practically realizable controller (poly-
nomial-time algorithm) for driving the process on-line optimally. This algorithm would
presumably consult come polynomially large data structure, constructed during the
analysis phase. We point out below that even this is very unlikely:

COROLLARY 1. Unless PSPACE = 28, it is impossible to have an algorithm o and a
mapping p (of arbitrary high complexity) from a partially observed Markov process M to
a string p(M) of length polynomial in the description of the process, such that the
algorithm, with the string and the observations as input, computes the optimum decision
for the process in polynomial time.

Sketch. If such an & and p existed, then we could express the question of whether
M has zero expected cost (and thus, by the previous proof, whether an arbitrary
quantified Boolean formula is true) as follows: “There exists a string u( M) such that,



450 CHRISTOS H. PAPADIMITRIOU & JOHN N. TSITSIKLIS

for all possible transitions, the decisions of algorithm ./ lead to a zero cost.” This last
sentence, however, can be rewritten as a Boolean formula with two alternations of
quantifiers. =

Finally, considering the special case of the partially observed problem, in which the
partition IT = {§} (i.e., the case of unobserved processes or, equivalently, an open-loop
control) we note that a simplification of the proof of Theorem 6 establishes that this
problem is NP-complete:

COROLLARY 2. Deciding whether the optimal policy in an unobserved Markov decision
process has expected cost (undiscounted, over a Jfinite horizon) equal to zero is an
NP-complete problem. m

Acknowledgement. We wish to thank Professor M. Katehakis for a number of
helpful discussions and insightful comments, and an anonymous referee for careful
reading of the manuscript and a number of helpful suggestions. This research was
supported by an IBM faculty development award, and ONR contract N00014-85-C-
0731.

References

[AHU] Aho, A. V., Hopcrost, J. E. and Ullman, J. D. (1974). The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, MA.

[Be] Bertsekas, D. P. (1976). Dynamic Programming and Stochastic Control. Academic Press, New York.

[Co] Cook, S. A. (1981). Towards a Complexity Theory of Synchronous Parallel Computation. Enseign.
Math. 2, 27 99-124.

[DLR] Dobkin, D., Lipton, R. J. and Reiss, S., (1979). Linear Programming is Log-Space Hard for P.
Informat. Process Letr. 8 96-97.

[GSS] Goldschlager, L. M., Shaw, R. A. and Staples, J. (1982). The Maximum Flow Problem is Log Space
Complete for P. Theoret. Comput. Sci. 21 105-111.

[G)) Garey, M. R. arnd Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, San Francisco.

[Ho]  Howard, R. A. (1960). Dynamic Programming and Markov Processes. MIT Press, Cambridge.

[La} Lawler, E. L. (1977). Combinatorial Optimization: Networks and Matroids. Holt, Rinchart and
Winston, New York.

[LP} Lewis, H. R. and Papadimitriou, C. H. (1981). Elements of the Theory of Computation. Prentice-Hall,
Englewood Cliffs, NJ.

[Or]) Orlin, J. (1981). The Complexity of Dynamic Languages and Dynamic Optimization Problems.
Proc. 13th STOC, 218-221.

[Pa2]  Papadimitriou, C. H. (1985). Computational Complexity. In Combinatorial Optimization: Anno-
tated Bibliographies. M. O’hEigeartaigh, J. K. Lenstra, A. H. G. Rinooy Kan (eds.), 39-51.

[Pal} . (1985). Games Against Nature. J. Comput. Systems Sci. 31, 2 288-301.

[PS]  _____ and Steiglitz, K. (1982) Combinatorial Optimization: Algorithms and Complexity. Prentice-
Hall, Englewood Cliffs, NJ.

[Sa) Savitch, W. J. (1970). Relationships Between Nondeterministic and Deterministic Tape Complexi-
ties. J. Comput. Systems Sci. 4 177-192.

[SS} Smallwood, R. D. and Sondik, E. J. (1973). The Optimal Control of Partially Observable Markov
Processes over a Finite Horizon. Oper. Res. 11 1971-1088.

[SM]  Stockmeyer, L. J. and Meyer, A. R. (1973). Word Problems Requiring Exponential Space. Proc. Sth
S7OC.

[svi Shiloach, Y. and Vishkin, U. (1982). An O(log ») Parallel Connectivity Algorithm. J. Algorithms 3
57-67.

PAPADIMITRIOU: DEPARTMENTS OF COMPUTER SCIENCE AND OPERATIONS RE-
SEARCH, STANFORD UNIVERSITY, STANFORD, CALIFORNIA 94305

TSITSIKLIS: DEPARTMENT OF ELECTRICAL ENGINEERING, MASSACHUSETTS INSTITUTE
OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139



