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Abstract

We consider finite horizon Markov decision
processes under performance measures that
involve both the mean and the variance of
the cumulative reward. We show that either
randomized or history-based policies can im-
prove performance. We prove that the com-
plexity of computing a policy that maximizes
the mean reward under a variance constraint
is NP-hard for some cases, and strongly NP-
hard for others. We finally offer pseudopoly-
nomial exact and approximation algorithms.

1. Introduction

The classical theory of Markov decision processes
(MDPs) deals with the maximization of the cumulative
(possibly discounted) expected reward, to be denoted
by W . However, a risk-averse decision maker may be
interested in additional distributional properties ofW .
In this paper, we focus on the case where the decision
maker is interested in both the mean and the variance
of the cumulative reward, and we explore the associ-
ated computational issues.

Risk aversion in MDPs is of course an old subject.
In one approach, the focus is on the maximization of
E[U(W )], where U is a concave utility function. Prob-
lems of this type can be handled by state augmenta-
tion, e.g., Bertsekas (1995), namely, by introducing an
auxiliary state variable that keeps track of the cumu-
lative past reward. In a few special cases, e.g., with an
exponential utility function, state augmentation is un-
necessary, and optimal policies can be found by solving
a modified Bellman equation such as Chung & Sobel
(1987). Another interesting case where optimal poli-
cies can be found efficiently involves piecewise linear
utility functions with a single break point; see Liu &
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Koenig (2005).

In another approach, the objective is to optimize a
so-called coherent risk measure (Artzner et al., 1999),
which turns out to be equivalent to a robust opti-
mization problem: one assumes a family of probabilis-
tic models and optimizes the worst-case performance
over this family. In the multistage case (Riedel, 2004),
problems of this type can be difficult (Le Tallec, 2007),
except for some special cases (Iyengar, 2005; Nilim &
El Ghaoui, 2005) that can be reduced to Markov games
(Shapley, 1953).

Mean-variance optimization lacks some of the desir-
able properties of approaches involving coherent risk
measures and sometimes leads to counterintuitive poli-
cies. Bellman’s principle of optimality does not hold,
and as a consequence, a decision maker who has re-
ceived unexpectedly large rewards in the first stages,
may actively seek to incur losses in subsequent stages
in order to keep the variance small. Nevertheless,
mean-variance optimization is an important approach
in financial decision making e.g., Luenberger (1997),
especially for static (one-stage) problems. Consider,
for example, a fund manager who is interested in the
1-year performance of the fund, as measured by the
mean and variance of the return. Assuming that the
manager is allowed to undertake periodic re-balancing
actions in the course of the year, one obtains a Markov
decision process with mean-variance criteria. Mean-
variance optimization can also be a meaningful objec-
tive in various engineering contexts. Consider, for ex-
ample, an engineering process whereby a certain ma-
terial is deposited on a surface. Suppose that the pri-
mary objective is to maximize the amount deposited,
but that there is also an interest in having all man-
ufactured components be similar to each other; this
secondary objective can be addressed by keeping the
variance of the amount deposited small.

We note that expressions for the variance of the dis-
counted reward for stationary policies were devel-
oped in Sobel (1982). However, these expressions are
quadratic in the underlying transition probabilities,
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and do not lead to convex optimization problems.

Motivated by considerations such as the above, this pa-
per deals with the computational complexity aspects
of mean-variance optimization. The problem is not
straightforward for various reasons. One is the absence
of a principle of optimality that could lead to simple
recursive algorithms. Another reason is that, as is evi-
dent from the formula Var(W ) = E[W 2]−(E[W ])2, the
variance is not a linear function of the probability mea-
sure of the underlying process. Nevertheless, E[W 2]
and E[W ] are linear functions, and as such can be ad-
dressed simultaneously using methods from multicri-
teria or constrained Markov decision processes (Alt-
man, 1999). Indeed, we will use such an approach in
order to develop pseudopolynomial exact or approxi-
mation algorithms. On the other hand, we will also
obtain various NP-hardness results, which show that
there is little hope for significant improvement of our
algorithms.

The rest of the paper is organized as follows. In Section
2, we describe the model and our notation. We also
define various classes of policies and performance ob-
jectives of interest. In Section 3, we compare different
policy classes and show that performance typically im-
proves strictly as more general policies are allowed. In
Section 4, we establish NP-hardness results for the pol-
icy classes we have introduced. Then, in Sections 5 and
6, we develop exact and approximate pseudopolyno-
mial time algorithms. Unfortunately, such algorithms
do not seem possible for some of the more restricted
classes of policies, due to strong NP-completeness re-
sults established in Section 4. Finally, Section 7 con-
tains some brief concluding remarks. Some of the
proofs are deferred to Mannor & Tsitsiklis (2011).

2. The Model

In this section, we define the model, notation, and
performance objectives that we will be studying.
Throughout, we focus on finite horizon problems. 1

2.1. Markov Decision Processes

We consider a Markov decision process (MDP) with
finite state, action, and reward spaces. An MDP is
formally defined by a sextuple M = (T,S,A,R, p, g)
where:

(a) T , a positive integer, is the time horizon;

(b) S is a finite collection of states, one of which is
1Some of the results such as the approximation algo-

rithms of Section 6 can be extended to the infinite horizon
discounted case; this is beyond the scope of this paper.

designated as the initial state;

(c) A is a collection of finite sets of possible actions,
one set for each state;

(d) R is a finite subset of Q (the set of rational num-
bers), and is the set of possible values of the im-
mediate rewards. We let K = maxr∈R |r|.

(e) p : {0, . . . , T − 1} × S × S ×A → Q describes the
transition probabilities. In particular, pt(s′ | s, a)
is the probability that the state at time t+1 is s′,
given that the state at time t is s, and that action
a is chosen at time t.

(d) g : {0, . . . , T − 1} × R × S × A → Q is a set of
reward distributions. In particular, gt(r | s, a) is
the probability that the immediate reward at time
t is r, given that the state and action at time t is
s and a, respectively.

With few exceptions (e.g., for the time horizon T ),
we use capital letters to denote random variables, and
lower case letters to denote ordinary variables. The
process starts at the designated initial state. At ev-
ery stage t = 0, 1, . . . , T − 1, the decision maker ob-
serves the current state St and chooses an action At.
Then, an immediate reward Rt is obtained, distributed
according to gt( · |St, At), and the next state St+1 is
chosen, according to pt( · |St, At). Note that we have
assumed that the possible values of the immediate re-
ward and the various probabilities are all rational num-
bers. This is in order to address the computational
complexity of various problems within the standard
framework of digital computation. Finally, we will use
the notation x0:t to indicate the tuple (x0, . . . , xt).

2.2. Policies

We will use the symbol π to denote policies. Un-
der a deterministic policy π = (µ0, . . . , µT−1), the
action at each time t is determined according to a
mapping µt whose argument is the history Ht =
(S0:t, A0:t−1, R0:t−1) of the process, by letting At =
µt(Ht). We let Πh be the set of all such history-based
policies. (The subscripts are used as a mnemonic for
the variables on which the action is allowed to depend.)
We will also consider randomized policies. For this
purpose, we assume that there is available a sequence
of i.i.d. uniform random variables U0, U1, . . . , UT−1,
which are independent from everything else. In a ran-
domized policy, the action at time t is determined by
letting At = µt(Ht, U0:t). Let Πh,u be the set of all
randomized policies.

In classical MDPs, it is well known that restricting
to Markovian policies (policies that take into account
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only the current state St) results in no loss of perfor-
mance. In our setting, there are two different possible
“states” of interest: the original state St, or the aug-
mented state (St,Wt), where

Wt =

t−1∑
k=0

Rk,

(with the convention that W0 = 0). Accordingly,
we define the following classes of policies: Πt,s (un-
der which At = µt(St)), and Πt,s,w (under which
At = µt(St,Wt)), and their randomized counterparts
Πt,s,u (under which At = µt(St, Ut)), and Πt,s,w,u (un-
der which At = µt(St,Wt, Ut). Notice that

Πt,s ⊂ Πt,s,w ⊂ Πh,

and similarly for their randomized counterparts.

2.3. Performance Criteria

Once a policy π and an initial state s is fixed, the
cumulative rewardWT becomes a well-defined random
variable. The performance measures of interest are
its mean and variance, defined by Jπ = Eπ[WT ] and
Vπ = Varπ(WT ), respectively. Under our assumptions
(finite horizon, and bounded rewards), it follows that
there are finite upper bounds of KT and K2T 2, for
|Jπ| and Vπ, respectively, independent of the policy.

Given our interest in complexity results, we will focus
on “decision” problems that admit a yes/no answer,
except for Section 6. We define the following problem.

Problem mv-mdp(Π): Given an MDPM and ratio-
nal numbers λ, v, does there exist a policy in the set
Π such that Jπ ≥ λ and Vπ ≤ v?

Clearly, an algorithm for the problem mv-mdp(Π) can
be combined with binary search to solve (up to any
desired precision) the problem of maximizing the ex-
pected value of WT subject to an upper bound on its
variance, or the problem of minimizing the variance of
WT subject to a lower bound on its mean.

3. Comparison of Policy Classes

Our first step is to compare the performance obtained
from different policy classes. We introduce some ter-
minology. Let Π and Π′ be two policy classes. We say
that Π is inferior to Π′ if, loosely speaking, the policy
class Π′ can always match or exceed the “performance”
of policy class Π, and for some instances it can exceed
it strictly. Formally, Π is inferior to Π′ if the following
hold: (i) if (M, c, d) is a “yes” instance of mv-mdp(Π),
then it is also a “yes” instance of mv-mdp(Π′); (ii)

there exists some (M, c, d) which is a “no” instance
of mv-mdp(Π) but a “yes” instance of mv-mdp(Π′).
Similarly, we say that two policy classes Π and Π′ are
equivalent if every “yes” (respectively, “no”) instance of
mv-mdp(Π) is a “yes” (respectively, “no”) instance of
mv-mdp(Π′).

We define one more convenient term. A state s is
said to be terminal if it is absorbing (i.e., pt(s | s, a) =
1, for every t and a) and provides zero rewards (i.e.,
gt(0 | s, a) = 1, for every t and a).

3.1. Randomization Improves Performance

Our first observation is that randomization can im-
prove performance. This is not surprising given that
we are dealing simultaneously with two criteria, and
that randomization is helpful in constrained MDPs
(Altman, 1999).
Theorem 1. (a) Πt,s is inferior to Πt,s,u;

(b) Πt,s,w is inferior to Πt,s,w,u;

(c) Πh is inferior to Πh,u.

The proof of this theorem is provided in Mannor &
Tsitsiklis (2011); it is based on a simple counterexam-
ple.

3.2. Information Improves Performance

We now show that in most cases, performance can im-
prove strictly when we allow a policy to have access to
more information. The only exception arises for the
pair of classes Πt,s,w,u and Πh,u, which we show in
Section 5 to be equivalent (cf. Theorem 6).
Theorem 2. (a) Πt,s is inferior to Πt,s,w, and Πt,s,u

is inferior to Πt,s,w,u.

(b) Πt,s,w is inferior to Πh.

The proof of this theorem is provided in (Mannor &
Tsitsiklis, 2011); it is constructive by providing an ex-
ample.

4. Complexity Results

In this section, we establish that mean-variance opti-
mization in finite horizon MDPs is unlikely to admit
polynomial time algorithms, in contrast to classical
MDPs.
Theorem 3. The problem mv-mdp(Π) is NP-hard,
when Π is Πt,s,w, Πt,s,w,u, Πh, or Πh,u.

The proof of this theorem is provided in Mannor &
Tsitsiklis (2011); it is based on a reduction from the
subset sum problem.
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The proof of Theorem 3 also applies to the policy
classes Πt,s and Πt,s,u. However, for these two classes,
a stronger result is possible. Recall that a problem
is strongly NP-hard, if it remains NP-hard when re-
stricted to instances in which the numerical part of
the instance description involves “small” numbers; see
Garey & Johnson (1979) for a precise definition.
Theorem 4. If Π is either Πt,s or Πt,s,u, the problem
mv-mdp(Π) is strongly NP-hard.

The proof of this theorem is provided in Mannor &
Tsitsiklis (2011); it involves a reduction from the 3-
Satisfiability problem.

5. Exact Algorithms

The comparison and complexity results of the preced-
ing two sections indicate that the policy classes Πt,s,
Πt,s,w, Πt,s,u, and Πh are inferior to the class Πh,u, and
furthermore some of them (Πt,s, Πt,s,w) appear to have
higher complexity. Thus, there is no reason to con-
sider them further. While the problem mv-mdp(Πh,u)
is NP-hard, there is still a possibility for approximate
or pseudopolynomial time algorithms. In this section,
we focus on exact pseudopolynomial time algorithms.

Our approach involves an augmented state, defined by
Xt = (St,Wt). Let X be the set of all possible values
of the augmented state. Let |S| be the cardinality of
the set S. Let |R| be the cardinality of the set R. Re-
call also that K = maxr∈R |r|. If we assume that the
immediate rewards are integers, then Wt is an integer
between −KT and KT . In this case, the cardinal-
ity |X | of the augmented state space X is bounded
by |S| · (2KT + 1), which is polynomial. Without the
integrality assumption, the cardinality of the set X re-
mains finite, but it can increase exponentially with T .
For this reason, we study the integer case separately
in Section 5.2.

5.1. State-Action Frequencies

In this section, we provide some results on the repre-
sentation of MDPs in terms of a state-action frequency
polytope, thus setting the stage for our subsequent al-
gorithms.

For any policy π ∈ Πh,u, and any x ∈ X , a ∈ A, we
define the state-action frequencies at time t by

zπt (x, a) = Pπ(Xt = x,At = a), t = 0, 1, . . . , T −1,

and

zπt (x) = Pπ(Xt = x), t = 0, 1, . . . , T.

Let zπ be a vector that lists all of the above defined
state-action frequencies.

For any family Π of policies, let Z(Π) = {zπ |π ∈ Π}.
The following result is well known (Altman, 1999). It
asserts that any feasible state-action frequency vector
can be attained by policies that depend only on time,
the (augmented) state, and a randomization variable.
Furthermore, the set of feasible state-action frequency
vectors is a polyhedron, hence amenable to linear pro-
gramming methods.
Theorem 5. (a) We have Z(Πh,u) = Z(Πt,s,w,u).

(b) The set Z(Πh,u) is a polyhedron, specified by O(T ·
|X | · |A|) linear constraints.

Note that a certain mean-variance pair (λ, v) is attain-
able by a policy in Πh,u if and only if there exists some
z ∈ Z(Πh,u) that satisfies∑

(s,w)∈X

wzT (s, w) = λ, (1)

∑
(s,w)∈X

w2zT (s, w) = v + λ2. (2)

Furthermore, since Z(Πh,u) = Z(Πt,s,w,u), it follows
that if a pair (λ, v) is attainable by a policy in Πh,u, it
is also attainable by a policy in Πt,s,w,u. This estab-
lishes the following result.
Theorem 6. The policy classes Πh,u and Πt,s,w,u are
equivalent.

Note that checking the feasibility of the conditions
z ∈ Z(Πh,u), (1), and (2) amounts to solving a linear
program, with a number of constraints proportional to
the cardinality of the augmented state space X and,
therefore, in general, exponential in T .

5.2. Integer Rewards

In this section, we assume that the immediate rewards
are integers, with absolute value bounded by K, and
we show that pseudopolynomial time algorithms are
possible. Recall that an algorithm is a pseudopolyno-
mial time algorithm if its running time is polynomial
in K and the instance size. (This is in contrast to
polynomial time algorithms in which the running time
can only grow as a polynomial of logK.)
Theorem 7. Suppose that the immediate rewards are
integers, with absolute value bounded by K. Consider
the following two problems:

(i) determine whether there exists a policy in Πh,u for
which (Jπ, Vπ) = (λ, v), where λ and v are given
rational numbers; and,

(ii) determine whether there exists a policy in Πh,u

for which Jπ = λ and Vπ ≤ v, where λ and v are
given rational numbers.
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Then,

(a) these two problems admit a pseudopolynomial
time algorithm; and,

(b) unless P=NP, these problems cannot be solved in
polynomial time.

Proof.

(a) As already discussed, these problems amount to
solving a linear program. In the integer case, the
number of variables and constraints is bounded
by a polynomial in K and the instance size. The
result follows because linear programming can be
solved in polynomial time.

(b) This is proved by considering the special case
where λ = v = 0 and the exact same argument as
in the proof of Theorem 3; see Mannor & Tsitsiklis
(2011).

Similar to constrained MDPs, mean-variance opti-
mization involves two different performance criteria.
Unfortunately, however, the linear programming ap-
proach to constrained MDPs does not translate into an
algorithm for the problem mv-mdp(Πh,u). The reason
is that the set

PMV = {(Jπ, Vπ) | π ∈ Πh,u}

of achievable mean-variance pairs need not be con-
vex. To bring the constrained MDP methodology to
bear on our problem, instead of focusing on the pair
(Jπ, Vπ), we define Qπ = Eπ[W 2

T ], and focus on the
pair (Jπ, Qπ). This is now a pair of objectives that de-
pend linearly on the state frequencies associated with
the final augmented state XT . Accordingly, we define

PMQ = {(Jπ, Qπ) | π ∈ Πh,u}.

Note that PMQ is a polyhedron, because it is the image
of the polyhedron Z(Πh,u) under the linear mapping
specified by the left-hand sides of Eqs. (1)-(2). In con-
trast, PMV is the image of PMQ under a nonlinear
mapping:

PMV = {(λ, q − λ2) | (λ, q) ∈ PMQ},

and is not, in general, a polyhedron.

As a corollary of the above discussion, and for the
case of integer rewards, we can exploit convexity to
devise pseudopolynomial algorithms for problems that
can be formulated in terms of the convex set PMQ.
On the other hand, because of the non-convexity of

PMV , we have not been able to devise pseudopolyno-
mial time algorithms for the problem mv-mdp(Πh,u),
or even the simpler problem of deciding whether there
exists a policy π ∈ Πh,u that satisfies Vπ ≤ v, for
some given number v, except for the very special case
where v = 0, which is the subject of our next result.
For a general v, an approximation algorithm will be
presented in the next section.
Theorem 8. (a) If there exists some π ∈ Πh,u for

which Vπ = 0, then there exists some π′ ∈ Πt,s,w

for which Vπ′ = 0.

(b) Suppose that the immediate rewards are integers,
with absolute value bounded by K. Then the prob-
lem of determining whether there exists a policy
π ∈ Πh,u for which Vπ = 0 admits a pseudopoly-
nomial time algorithm.

Proof.

(a) Suppose that there exists some π ∈ Πh,u for which
Vπ = 0. By Theorem 6, π can be assumed,
without loss of generality, to lie in Πt,s,w,u. Let
Varπ(WT |U0:T ), be the conditional variance of
WT , conditioned on the realization of the ran-
domization variables U0:T . We have Varπ(WT ) ≥
Eπ[Varπ(WT |U0:T )], which implies that there
exists some u0:T such that Varπ(WT |U0:T =
u0:T ) = 0. By fixing the randomization variables
to this particular u0:T , we obtain a deterministic
policy, in Πt,s,w under which the reward variance
is zero.

(b) If there exists a policy under which Vπ = 0, then
there exists an integer k, with |k| ≤ KT such that,
under this policy, WT is guaranteed to be equal
to k. Thus, we only need to check, for each k in
the relevant range, whether there exists a policy
such that (Jπ, Vπ) = (k, 0). By Theorem 7, this
can be done in pseudopolynomial time.

The approach in the proof of part (b) above leads to a
short argument, but yields a rather inefficient (albeit
pseudopolynomial) algorithm. A much more efficient
and simple algorithm is obtained by realizing that the
question of whether WT can be forced to be k, with
probability 1, is just a reachability game: the decision
maker picks the actions and an adversary picks the en-
suing transitions and rewards (among those that have
positive probability of occurring). The decision maker
wins the game if it can guarantee that WT = k. Such
sequential games are easy to solve in time polynomial
in the number of (augmented) states, decisions, and
the time horizon, by a straightforward backward re-
cursion. On the other hand a genuinely polynomial
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time algorithm does not appear to be possible; indeed,
the proof of Theorem 3 shows that the problem is NP-
complete.

6. Approximation Algorithms

In this section, we deal with the optimization coun-
terparts of the problem mv-mdp(Πh,u). We are inter-
ested in computing approximately the following two
functions:

v∗(λ) = inf
{π∈Πh,u:Jπ≥λ}

Vπ, (3)

and
λ∗(v) = sup

{π∈Πh,u:Vπ≤v}
Jπ. (4)

If the constraint Jπ ≥ λ (respectively, Vπ ≤ v) is infea-
sible, we use the standard convention v∗(λ) = ∞ (re-
spectively, λ∗(v) = −∞). Note that the infimum and
supremum in the above definitions are both attained,
because the set PMV of achievable mean-variance pairs
is the image of the polyhedron PMQ under a continu-
ous map, and is therefore compact.

We do not know how to efficiently compute or even
generate a uniform approximation of either v∗(λ) or
λ∗(v) (i.e., find a value v′ between v∗(λ) − ε and
v∗(λ)+ε, and similarly for λ∗(v)). One key obstacle for
obtaining a uniform approximation arises due to the
difficulty of handling the discontinuity of v∗(λ) near
the edges where the constraint Jπ ≥ λ becomes infea-
sible. In the following two results we consider a weaker
notion of approximation that is computable in pseu-
dopolynomial time. We discuss v∗(λ) as the issues for
λ∗(v) are similar. Another approximation algorithm
that is based on set-valued dynamic programming is
presented in Mannor & Tsitsiklis (2011).

For any positive ε and ν, we will say that v̂(·) is an
(ε, ν)-aproximation of v∗(·) if, for every λ,

v∗(λ− ν)− ε ≤ v̂(λ) ≤ v∗(λ+ ν) + ε. (5)

This is an approximation of the same kind as those
considered in Papadimitriou & Yannakakis (2000): it
returns a value v̂ such that (λ, v̂) is an element of the
“(ε+ν)-approximate Pareto boundary” of the set PMV .
For a different view, the graph of the function v̂(·) is
within Hausdorf distance ε + ν from the graph of the
function v∗(·).

We will show how to compute an (ε, ν)-aproximation
in time which is pseudopolynomial, and polynomial in
the parameters 1/ε, and 1/ν.

We start in Section 6.1 with the case of integer re-
wards, and build on the pseudopolynomial time algo-

rithms of the preceding section. We then consider the
case of general rewards in Section 6.2.

6.1. Integer Rewards

In this section, we prove the following result.

Theorem 9. Suppose that the immediate rewards are
integers. There exists an algorithm that, given ε, ν,
and λ, outputs a value v̂(λ) that satisfies (5), and
which runs in time polynomial in |S|, |A|, T , K, 1/ε,
and 1/ν.

Proof. Since the rewards are bounded in absolute
value by K, we have v∗(λ) = ∞ for λ > KT and
v∗(λ) = v∗(−KT ) for λ < −KT . For this reason, we
only need to consider λ ∈ [−KT,KT ]. To simplify the
presentation, we assume that ε = ν. We let δ be such
that ε = 3δKT .

The algorithm is as follows. We consider grid points
λi defined by λi = −KT +(i−1)δ, i = 1, . . . , n, where
n is chosen so that λn−1 ≤ KT , λn > KT . Note that
n = O(KT/δ). For i = 1, . . . , n−1, we calculate q̂(λi),
the smallest possible value of E[W 2

T ], when E[WT ] is
restricted to lie in [λi, λi+1]. Formally,

q̂(λi) = min
{
q
∣∣ ∃ λ′ ∈ [λi, λi+1] s.t. (λ′, q) ∈ PMQ

}
.

We let û(λi) = q̂(λi)− λ2
i+1, which can be interpreted

as an estimate of the least possible variance when
E[WT ] is restricted to the interval [λi, λi+1]. Finally,
we set

v̂(λ) = min
i≥k

û(λi), if λ ∈ [λk, λk+1].

The main computational effort is in computing q̂(λi)
for every i. Since PMQ is a polyhedron, this amounts
to solving O(KT/δ) linear programming problems.
Thus, the running time of the algorithm has the
claimed properties.

We now prove correctness. Let q∗(λ) = min{q |
(λ, q) ∈ PMQ}, and u∗(λ) = q∗(λ) − λ2, which is the
least possible variance for a given value of λ. Note that
v∗(λ) = min{u∗(λ′) | λ′ ≥ λ}.

We have q̂(λi) ≤ q∗(λ′), for all λ′ ∈ [λi, λi+1]. Also,
−λ2

i+1 ≤ −(λ′)2, for all λ′ ∈ [λi, λi+1]. By adding
these two inequalities, we obtain û(λi) ≤ u∗(λ′), for
all λ′ ∈ [λi, λi+1]. Given some λ, let k be such that
λ ∈ [λk, λk+1]. Then,

v̂(λ) = min
i≥k

û(λi) ≤ min
λ′≥λk

u∗(λ′) ≤ min
λ′≥λ

u∗(λ′) = v∗(λ′),

so that v̂(λ) is always an underestimate of v∗(λ).
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We now prove a reverse inequality. Fix some λ and
let k be such that λ ∈ [λk, λk+1]. Let i ≥ k be such
that v̂(λ) = û(λi). Let also λ̄ ∈ [λi, λi+1] be such that
q∗(λ̄) = q̂(λi). Note that

λ2
i+1 − λ̄2 ≤ λ2

i+1 − λ2
i = δ(λi + λi+1)

≤ 2δ(KT + δ) ≤ 3δKT. (6)

Then,

v̂(λ)
(a)
= û(λi)

(b)
= q̂(λi)− λ2

i+1

(c)
= q∗(λ̄)− λ2

i+1

(d)

≥ q∗(λ̄)− λ̄2 − 3δKT

(e)
= u∗(λ̄)− 3δKT

(f)

≥ v∗(λ̄)− 3δKT

(g)

≥ v∗(λ− δ)− 3δKT

(h)

≥ v∗(λ− ε)− ε.

In the above, (a) holds by the definition of i; (b) by
the definition of û(λi); (c) by the definition of λ̄; and
(d) follows from Eq. (6). Equality (e) follows from
the definition of u∗(·). Inequality (f) follows from the
definition of v∗(·); and (g) is obtained because v∗(·) is
nondecreasing and because λ̄ ≥ λ− δ. (The latter fact
is seen as follows: (i) if i > k, then λ ≤ λk+1 ≤ λi ≤ λ̄;
(ii) if i = k, then both λ and λ̄ belong to [λk, λk+1], and
their difference is at most δ.) Inequality (h) is obtained
because of the definition ε = 3δKT , the observation
δ < ε, and the monotonicity of v∗(·).

6.2. General Rewards

When rewards are arbitrary, we can discretize the re-
wards and obtain a new MDP. The new MDP is equiv-
alent to one with integer rewards to which the algo-
rithm of the preceding subsection can be applied. This
is a legitimate approximation algorithm for the original
problem because, as we will show shortly, the function
v∗(·) changes very little when we discretize using a fine
enough discretization.

We are given an original MDPM = (T,S,A,R, p, g)
in which the rewards are rational numbers in the in-
terval [−K,K], and an approximation parameter ε.
We fix a positive number δ, a discretization parame-
ter whose value will be specified later. We then con-
struct a new MDP M′ = (T,S,A,R′, p, g′), in which
the rewards are rounded down to an integer multi-
ple of δ. More precisely, all elements of the reward
range R′ are integer multiples of δ, and for every
t, s, a ∈ {0, 1, . . . , T − 1} × S × A, and any integer

n, we have

gt(δn | s, a) =
∑

r: δn≤r<δ(n+1)

gt(r | s, a).

We denote by J , Q and by J ′, Q′ the first and second
moments of the total reward in the original and new
MDPs, respectively. Let Πh,u and Π′h,u be the sets of
(randomized, history-based) policies in M and M′,
respectively. Let PMQ and P ′MQ be the associated
polyhedra.

We want to to argue that the mean-variance tradeoff
curves for the two MDPs are close to each other. This
is not entirely straightforward because the augmented
state spaces (which include the possible values of the
cumulative rewardsWt) are different for the two prob-
lems and, therefore, the sets of policies are also differ-
ent. We follow an approach that is based on a coupling
argument.

Proposition 1. There exists a polynomial function
c(K,T ) such that the Hausdorf distance between PMQ

and P ′MQ is bounded above by 2KT 2δ. More precisely,

(a) For every policy π ∈ Πh,u, there exists a policy
π′ ∈ Π′h,u such that

max
{
|J ′π′ − Jπ|, |Q′π′ −Qπ|

}
≤ 2KT 2δ.

(b) Conversely, for every policy Π′h,u, there exists a
policy Πh,u such that the above inequality again
holds.

The proof of this proposition is provided in Mannor &
Tsitsiklis (2011).

Theorem 10. There exists an algorithm that, given
ε, ν, and λ, outputs a value v̂(λ) that satisfies (5), and
which runs in time polynomial in |S|, |A|, T , K, 1/ε,
and 1/ν.

Proof. Assume for simplicity that ν = ε. Given the
value of ε, let δ be such that ε/2 = 2KT 2δ, and con-
struct the discretized MDP M′. Run the algorithm
from Theorem 9 to find an (ε/2, ε/2)-approximation v̂
for M′. Using Proposition 1, it is not hard to verify
that this yields an (ε, ε)-approximation of v∗(λ).

7. Conclusions

We have shown that mean-variance optimization prob-
lems for MDPs are typically NP-hard, but sometimes
admit pseudopolynomial approximation algorithms.
We only considered finite horizon problems, but it is
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clear that the negative results carry over to their infi-
nite horizon counterparts. Furthermore, given that the
contribution of the tail of the time horizon in infinite
horizon discounted problems (or in “proper” stochastic
shortest path problems as in Bertsekas, 1995) can be
made arbitrarily small, our approximation algorithms
can also yield approximation algorithms for infinite
horizon problems.

Our negative results apply to general MDPs. It would
be interesting to determine whether the hardness re-
sults remain valid for specially structured MDPs. One
possibly interesting special case involves multi-armed
bandit problems: there are n separate MDPs (“arms”);
at each time step, the decision maker has to decide
which MDP to activate, while the other MDPs remain
inactive. Of particular interest here are index policies
that compute a value (“index”) for each MDP and se-
lect an MDP with maximal index; such policies are of-
ten optimal for the classical formulations (see Gittins,
1979 and Whittle, 1988). Obtaining a policy that uses
some sort of an index for the mean-variance problem
or alternatively proving that such a policy cannot exist
would be interesting.

We only considered mean-variance tradeoffs in this pa-
per. However, there are other interesting and poten-
tially useful criteria that can be used to incorporate
risk into multi-stage decision making. For example,
Liu & Koenig (2005) consider a utility function with a
single switch. Many other risk aware criteria have been
considered in the single stage case. It would be inter-
esting to develop a comprehensive theory for the com-
plexity of solving multi-stage decision problems under
general (monotone convex or concave) utility function
and under risk constraints. This is especially inter-
esting for the approximation algorithms presented in
Section 6.
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