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1. Introduction

It is a common perception that information plays an important role in crises: in particular, exchange
of local information about economic or political fundamentals is crucial in determining the outcomes
of crisis events. Coordination games of incomplete information have been used as stylized models
of crisis phenomena such as currency attacks (e.g., Morris and Shin (1998)), debt crises (e.g., Morris
and Shin (2004)), bank runs (e.g., Goldstein and Pauzner (2005)), and political regime change (e.g.,
Edmond (2005)). To the best of our knowledge, all existing applications of such games to crises
assume a continuum of agents and a private (and possibly, in addition, a public) noisy signal about
the fundamentals at each agent; there are no complex patterns of communication among the agents.
In this work we provide a model of local information sharing through a social network (involving a
finite number of discrete agents) and its effect on the outcomes. We seek to answer the question of
how do the outcomes depend on the network topology.

We study a coordination game of incomplete information with a finite number of agents, in which
each agent receives noisy signals concerning the strength of the status quo (i.e., the fundamentals)

according to her position in a social network. The action space for each agent is binary: attack the
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status quo or not attack. Attacking can yield a positive, zero, or negative payoff and is thus the risky
action; not attacking nets zero payoff, and is thus the safe action. Our payoff model exhibits strategic
complementarities and state monotonicity: an agent’s incentive to play the risky action is higher the
more other agents coordinate on the risky action, and the weaker the fundamentals.

We model the exchange of idiosyncratic noisy signals about the fundamentals with a link in a
graph that represents the social network. We identify the social network topology as a determining
factor with respect to the dichotomy between multiplicity and uniqueness of equilibria, and pose
the following question: what are necessary and sufficient conditions on the social network topology
for uniqueness? The question of uniqueness versus multiplicity is intertwined with the question of
predictability of outcomes, as well as the question of amenability of the model to policy implications
through comparative statics analyses. We seek to quantify the connection between the topology of
the social network and the predictability of individual behavior in large networks, as well as the
connection between the topology of the social network and individual attitude towards risk.

Under our model, in a network consisting of finitely many disconnected agents, there is a unique
strategy profile that survives iterated elimination of strictly dominated strategies, and therefore a
unique Bayesian Nash equilibrium; such a uniqueness result is proven in Carlsson and van Damme
(1993b), which assumes a model similar to ours. In sharp contrast, we show that introducing a sin-
gle link between any two agents induces multiplicity. The network of disconnected agents and the
network with a single link are examples of networks that are unions of disconnected cliques. We pro-
vide a characterization of strategies that survive iterated elimination of strictly dominated strategies
(IESDS) for general networks that are unions of disconnected cliques. We prove that for each agent, all
the information about the strength of the status quo can be summarized in a one-dimensional statis-
tic, the average of the signals whose values she knows (her “observations”): in any strategy profile
that survives IESDS, each agent chooses the risky action (attack) if the average of the observed signals
is less than a certain threshold, and chooses the safe action (not attack) if the average of the observed
signals is greater than some other threshold; in addition, any strategy profile that satisfies these two
conditions survives IESDS. For the special case of cliques of equal size, we provide a characterization
involving closed-form expressions for these thresholds. Our analysis proves multiplicity for unions
of disconnected (non-trivial) cliques. We also study the case of asymptotically many agents, and we
obtain sufficient conditions on the network topology for asymptotic uniqueness: if each clique grows
sublinearly in the number of agents, then we have uniqueness. In contrast, linear growth induces

multiplicity. This result can be interpreted as a tradeoff between predictability (uniqueness of equi-



libria) and degree of information sharing. In addition, the form of the thresholds indicates, at least for
the graphs we have studied so far, that a society can become more amenable to risk-taking behavior
by increasing the amount of information sharing.

As Angeletos and Werning (2006) put it, “it is a love-hate relationship: economists are at once fas-
cinated and uncomfortable with multiple equilibria.” In the economic literature, common knowledge
of the fundamentals leads to the standard case of multiple equilibria due to the self-fulfilling nature
of agents’ beliefs. Morris and Shin (1998, 2000) and others propose that multiplicity vanishes once
the economy/society is perturbed away from the complete-information benchmark. In this paper,
we show that perturbation may or may not induce uniqueness in the context of a social network of
discrete agents, depending on how the noisy signals are communicated, in other words depending
on the topology of the social network.

Our game admits a variety of interpretations and applications, in all of which beliefs have the
same self-fulfilling nature. Prominent examples are currency attacks (when a large speculative attack
forces the central bank to abandon the peg), bank runs (when a large number of bank customers
withdraw their deposits because they believe the bank is, or might become, insolvent), debt crises
(when a country/company fails to coordinate its creditors to roll over its debt and is hence forced
into bankruptcy), and political protests (when a large number of citizens decide whether or not to
take actions to subvert a repressive dictator or some other political establishment).

The rest of this paper is organized as follows. Section 2 attempts a concise, and by no means
exhaustive, review of the relevant literature. Section 3 introduces the model and defines the pro-
cess of IESDS. Section 4 analyzes two specific examples of network topologies, the network without
edges and the complete network, as well as the complete-information benchmark, for finitely many
agents, as well as asymptotically. Section 5 characterizes the strategy profiles that survive IESDS for
finite unions of cliques, showing multiplicity. Section 6 provides sufficient conditions on the network

topology for asymptotic uniqueness.

2. Literature Review

Carlsson and van Damme (1993a) give the following definition for a global game: “a global game is
an incomplete information game where the actual payoff structure is determined by a random draw
from a given class of games and where each player makes a noisy observation of the selected game.”
Methodologically, global games between discrete agents have been studied as a tool for equilibrium
selection; examples are Carlsson and van Damme (1993a) and Carlsson and van Damme (1993b).

The former proves uniqueness of equilibrium in the limit as the noise about payoffs becomes small



for the case of two-action games with two players receiving possibly correlated private signals, un-
der mild technical assumptions; the latter proves uniqueness of equilibrium for n players receiving
conditionally independent signals.

Global games of regime change have been used extensively as stylized models of crisis phenom-
ena. It is common in the relevant literature (e.g., Angeletos et al. (2007)) to model games of regime
change so that payoffs incur a discrete change when the regime changes. In those models, the out-
come of a collective attack against the regime is determined by the relative strength of the collec-
tive attack and the regime; once the outcome is determined, individual payoffs for attackers depend
merely on the (binary) outcome, not on the relative strength of the collective attack and the regime.
We consider a variation in which payoffs are not discrete: individual payoffs for attackers depend
directly on the relative strength of the collective attack and the regime. This allows for a continuous
modeling of the consequences of a collective attack as reflected on agents’ utility.

Another strand of the literature has dealt with the interaction of private and public informa-
tion, including the effect of public information on the unique rationalizable outcome (Morris and
Shin (2002)) and sufficient conditions on the relative precision of private and public information for
uniqueness (Hellwig (2002); Angeletos and Werning (2006)). Morris and Shin (2007) provides a char-
acterization of rationalizable actions in a binary action coordination game in terms of beliefs and
higher order beliefs, without making any reference to the relative precision of public and private
signals.

Our work shares with Chwe (2000) the motivation that locality is represented by information and
not necessarily by payoffs, thus building a model based on a local information game. Finally, for a
concise review of theory and applications related to global games, we refer the reader to Morris and

Shin (2003).

3. The Game

In this section, we introduce the model and define the process of IESDS. Our payoff function is similar
to that in Carlsson and van Damme (1993b); it is our information structure that is crucially different
from their setup, and this is what allows us to study the effect of local information exchange on the

outcomes.
3.1 Agents and Payoffs

Consider a collection of agents Z = {1,2,...,n} who face a status quo. Each agent has the option

of attacking the status quo (the risky action R) or not attacking (the safe action S). The payoff to



the attackers from taking the risky action depends on the number of agents who participate in the
collective attack, as well as on the strength of the regime. The payoff to any given agent is increasing in
the number of other agents who take the risky action (i.e., agents” actions are strategic complements),
and decreasing in the underlying strength of the regime. The payoff of agents who decide to take the
safe action of not attacking is zero, independent of the other agents” actions. More specifically, when

the action profile a = (a1, ..., ay) is realized, the payoff of an agent i is given by

h(k/n) — 0, ifa; =R and [{a; =R:i €I} =k,
ui(a) =
0, if a; = S,
where 6 € R is the strength of the regime (i.e., the fundamentals, which we alternatively refer to as

the state), and 4 : [0,1] — [0,1] is a non-decreasing function such that 2(0) = 0 and h(1) = 1. We

assume that h is common knowledge among all agents.
3.2 Information Structure

The true strength of the regime is described by a random variable ©; its realization ¢ is not known
by any of the agents. The agents have a common (improper) prior: the uniform distribution over
the entire real line. Each agent ¢ receives an idiosyncratic noisy signal z; about the state, which is
a realization of a random variable X;. Conditional on the state, agents’ idiosyncratic signals are
independent and identically distributed: X; = © + Z;, where =; ~ N(0, ¢), are i.i.d. normal random
variables, independent of ©, with mean zero and variance ¢ > 0.

In addition to her idiosyncratic signal, each agent i observes the signals of a subset N; C 7 of the
other agents, called her neighbors. We specify this neighborhood relation by an undirected graph G,
where each vertex corresponds to an agent, and where an edge (3, j) indicates that individuals ¢ and
Jj are neighbors. Throughout the report, we assume that G is common knowledge among all agents.
We also use the convention that i € N for all agents i. We use V(G) to denote the set of nodes of

graph G.
3.3 Strategies and Iterated Elimination of Strictly Dominated Strategies

For any given agent, a strategy is a mapping from the information available to the set of actions. More
specifically, a pure strategy of agent i is a mapping s; : RWil — {R, S}, where | ;| denotes the size
of agent i’s neighborhood. Based on this mapping, each agent i chooses her action as a function of
her idiosyncratic signal, as well as the signals observed by her neighbors. Similarly, one can define a

mixed strategy for each agent as a measurable mapping from her set of observed signals to the set of



all possible probability distributions on {R, S}. We denote the set of all possible mixed strategies of
agent i by SY. For ease of readability, we define y; = (z;);en;, and use y; instead of (z;) jcn;, from now
on. For a mixed strategy s;, we will slightly abuse notation and write expressions such as s;(y;) = 1
to indicate that, upon signal y;, the strategy assigns unit probability to the action a; = R.

To formally define iterated elimination of strictly dominated strategies (IESDS), we need a few
auxiliary definitions. Let V;(s_;|y;) denote the expected payoff of agent i from taking the risky action,
when she observes y;, and the other agents play the strategy profile s_;. We define the following sets
recursively, form = 0,1, .. .:

AV =0, BY =,

7 3

S ={si €8 si(ys) = 1 if yi € A7, and si(y;) = 0 if y; € B},

A;n"'l = {yz Vi (S—ilyi) > 0 for all S_; € SZ} s

B = {y; : Vi (s_|y:) <Oforall s_; € S™}.

In words, S} is the set of mixed strategies of agent i that survive m rounds of iterated elimination
of strictly dominated strategies. For m = 0, this is consistent with our earlier definition of S, and
S # (). Note that we are using the notation S™ to denote the Cartesian product of the sets S, for
J # i; this is the set of opponent strategy profiles s_; such that s; € S7", for every j # i.

Note that as long as z; < h(1/n) for all j € N;, taking the risky action is strictly dominant for
agent i. Similarly, as long as z; > h(1) for all j € N, taking the safe action is strictly dominant for
agent i. Therefore, there exist local signal profiles y; such that, for all opponents’ strategy profiles
s_; € 8Y,, wehave V; (s_;|y;) > 0 (< 0). Since the set S is nonempty, it follows from the definitions
that the sets A} and B} are disjoint. This implies that the set S} is nonempty. Continuing inductively,
we conclude that

S0, Ym >0, Viel,

and

ATABM =0 Vm, Vi

Finally, a simple inductive argument shows that for all i € Z and all m > 0, the following relations



hold:

=
'3
N

m+1
AT

8y
'3
N

m—+1
B,

st coogm.

K3

We now define the following sets, obtained in the limit of infinitely many rounds of iterated elimina-

tion of strictly dominated strategies:

oo
4, = (JAar
m=0
oo
B; = U Bi"
m=0
o0
S = [)s”
m=0
Definition 1. We say that a mixed strategy profiles = (s, ..., sy,) survives iterated elimination of strictly

dominated strategies (IESDS) if s; € S; forall i € T.

4. Motivating Examples

In this section, we consider some examples that motivate our main research question, answered, to
some extent, in Sections 5 and 6: how does the network topology determine uniqueness or multi-
plicity of equilibria? We study two networks that represent the two extremes of no communication
between agents (a network with no edges) and full communication (the complete network). For these
two networks, we characterize the strategy profiles that survive IESDS, for the case of a fixed n as
well as for the case of an asymptotically large n. For the network without edges, there is an essen-
tially unique strategy profile that survives IESDS, and therefore an essentially unique Bayesian Nash
equilibrium.! For the complete network, infinitely many strategy profiles survive IESDS, and the
game has infinitely many Bayesian Nash equilibria. We also showcase the case where agents ob-
serve the state perfectly (i.e., without noise), which yields infinitely many equilibria. What matters
for uniqueness is the degree of strategic uncertainty: high strategic uncertainty, as in the case of the

network without edges, causes uniqueness; no strategic uncertainty, as in the cases of the complete

network and complete information, makes coordination on each of a vast space of different strategies

1Nonuniqueness is also present because ties can be broken arbitrarily. However, ties occur only on a set of measure zero.
“Essential uniqueness” means that any two strategies that survive IESDS take the same actions with probability one. In the
sequel, we will use the simpler term “unique” to mean “essentially unique.”



possible.
4.1 Finitely Many Agents

In this subsection, we study the network without edges, the complete network, as well as the case of

complete information, all for fixed n.

Example 1 (The Network without Edges). In this case, N; = {i}, for all i € . A variation of this model,

and a derivation of the associated uniqueness result, was first presented in Carlsson and van Damme (1993b).

Proposition 1. A strategy profile survives IESDS if and only if it satisfies the following: each agent i chooses
1 n ]{j 1 n k

R if she ob i <= h|—| =tg and S if she ob i> = h|l =) =ts. I ticular, th

if she observes x <n; (n) R, and S if she observes x >n; (n) 5. In particular, the

game has a unique Bayesimz Nash equilibrium.

Proof. For ease of exposition, we only present the proof for the case when h(z) = z.

By symmetry, A" = A" = ... = A"

n

forallm,and Ay = Ay =---=A,; B{*=By* = --- = B,
for all m, and By = By = --- = B,,. Let us focus on agent i, for some fixed :.

m

Let si’i be the strategy profile in which every agent j # i plays R if z; € AJ', and plays S
otherwise. Let si—”' be the strategy profile in which every agent j # i plays R if z; € A;, and plays S
otherwise.

m
—i

B
Let s_;

be the strategy profile in which every agent j # i plays S if z; € B, and plays R
otherwise. Let si’i be the strategy profile in which every agent j # i plays S if 2; € Bj, and plays R
otherwise.

We first provide an outline of the argument. For every m > 1, we define the function g,, : R — R
by

Am=t
gm(xi) =V <S_il |1’1) ,Va; € R.

We will show that, for every m, g., is continuously differentiable; and that there exist positive con-
stants K1, K5 such that dg,, (z;)/dz; < 0 and K < |dg,,(z;)/dx;| < Ks, for all z; and m.

We define the function g : R — R by
g(z;) =V; (Si‘{'ilxi) Vz; € R.

It then follows that Lipschitz continuity (with the same Lipschitz constants) holds for the (pointwise)

limit of the sequence of functions {g,, : m > 1}, which is g(-) = V; (sfi’i ) A similar argument

establishes the Lipschitz continuity of V; (si’i ) Uniqueness then follows easily.




We now continue with the formal proof. Clearly, AY = § and A} = (—o00,1). Also, gi(z;) =

A%,
Vi <3_,’

Assume, for the purpose of induction, that, for some m > 1, g, is continuously differentiable, and

:cz> = 1/n — x; is continuously differentiable, and dg; /dx; = —1.

there exist positive constants K, K> such that dg,,(z;)/dz; < 0, and K1 < |dgm(z;)/dz;| < Ko, for
all z;, with K; = 1and Ko = 21 \/% \/% + 1. Then there exists a (unique) real number ¢,, such that
gm(x) = 0if and only if z = t,,, and ¢, (x) > 0 if and only if z < t,,.

We have?

gmii (@) = Vi (525 |) M
n &~ n
J#

1 1
= ISP s 0w+ L - o
Ly "

1 1
= 75 P(Xj<tm|$i)+*—13i
n —- n
J#i

n—1¢<tm—xi>+1
= — — Ty,
n V2e n

where we use ® to denote the cumulative distribution function of the standard normal A/(0, 1). (By

standard Gaussian updating, the distribution of © conditional on {X; = z;} is N'(z;, €). Therefore the
posterior on X, j # i is N'(x;, 2¢).)

We see that g,,1 is continuously differentiable. In addition,

dgm+1 () n—1 (tm—z;\ 1

el - e () o
PR SR
Ton V2my2e
= Ky,

where we use ¢ to denote the probability density function of the standard normal A(0, 1). Therefore
dgm (x;)/dz; < 0and K; < ‘?TT‘ < Ky, for all z;. The induction is complete.

It follows that the pointwise limit g of the functions g,,, m > 1, is Lipschitz continuous in x;, with
the same constants as the sequence {g,,, m > 1}. Therefore there exists a (unique) real number ¢z

such that g(z) = 0 if and only if # = ¢t and g(z) > O if and only if z < ¢g.

2 Abusing notation, we use P (- | ;) to denote P (- | X; = x;), here and elsewhere in the paper.



Similarly, the pointwise limit f of the functions f,,,, m > 1, defined by

m—1
B—?,

f?n(xi) = ‘/1 (5_1 ; |:CZ) ;\V/Ii S Ra

is Lipschitz continuous in z;, with the same constants as the sequence { f,,,, m > 1}. Therefore, there

exists a unique real number tg such that f(z) = 0 if and only if = tg and f(z) < 0 if and only if

T >tg.
We have
A_; 1 1
J#i
1 1
= =) P(g(X;) > Olzi) + — —a
n < n

1 1
= - E P(XJ <tR|l’i)+ffl’i
n —- n
J#i

n—1 tp — x; 1
= d +*—.’177;7
()

where the second equality follows from Lebesgue’s dominated convergence theorem. Because V; (s

A_;

—1

ta) =

0 by the definition of ¢z, and ®(0) = 1/2, it follows that tp = n2+ ! (: 1 Z k) .
n

We also have

%ZP(XJ¢BJ‘\%)+%—% 3)
J#i

1 1

n;P(f(Xj) > Ofzi) + - —

i3]
SN—
|

1 1
n —- n
J#i

n—1 ts —x; 1
= o +*—$i7
S )

where the second equality follows again from Lebesgue’s dominated convergence theorem.

‘ 1 1k
Because V; (si" ts) = 0 by the definition of ¢ 5, it follows similarly thattg = tp = nt <: — n) .

2n n

k=1
We have shown that A; = (—o0,tg) and B; = (ts, +00), with tg = tg, which implies uniqueness.

O

Example 2 (The Complete Network). In this case, N; = I, for all i € 7.

10



Proposition 2. A strategy profile survives IESDS if and only if it satisfies the following: each agent i chooses

n

R if 2im1 T <h <1> = tg, and S if i T > h(1) = tg. The game has infinitely many Bayesian
n n n

Nash equilibria. In particular, fix some t with h (1/n) <t < h(1) and consider a strategy profile whereby each

n n
. i1 Ly T 17
agent chooses R is she observes @ @
n n

< t,and S if she observes > t. Such a strategy profile is a

Bayesian Nash equilibrium.
Proof. By symmetry, A7* = A} = ... = A, forallm,and A1 = Ay = - - =A,; Bl* =B =-.- =

m
—1

B, for all m, and By = By = --- = B,,. Fix agent i. Let sf

2

be the strategy profile in which every
agent j # i plays Rif (z1,...,2,) € AT, and plays S otherwise. Let si’nﬁ be the strategy profile in

which every agent j # i plays Sif (z1,...,2,) € B}", and plays R otherwise.

A%_{(xl,...,mn)iz?;m<h<7ll)}

B} = {(xl,...,xn) : & > h(l)}.

n
+h(1) .P(Mzh(l> ,JC) X
n n n n

)
).

Is is easy to see that

and

Then,

.131,...,37”)

Il
=
—
S~—
=
N
.
i s
—
)
<
A
>
N
| —
N———
B3
=

h(l)— == it g

3

n )

3= 3=

1
Because A? = {(xh...,wn) -V <si"|x1, e ,xn> > 0},it follows that

11



Furthermore,

1 " oxs
%(5?1_7 Zlfl,...,.an) = h(l)]P)<z:J_lj§h’(1)|xl7azn>

n
1 g =1 T
h () P(z]_l L h(D)|e, ) =1
n n
h1) = 5L i =R < (),
h (%) Z?—l ZJ’ if Z;Tll Z j > h(l)

1

Because B? = {(:vl, cey ) Vi (sBi

—1

B> = B! = {(xl,...,mn) YL >h(1)}.

n

T1,..., mn) < O}, it follows that

n n n

Similarly, A7 = {(xl,...,xn) 2Ty, (1>}andB;” - {(xl,...,xn) 2= h(l)},

. Z?:1 Zj 1
for all rounds of elimination m > 1. It follows that A; = < (z1,...,2,) : —/—— < h | — and

n n

Bi: (%1,,.13”)2721%>h(1)}

That the strategy profiles of the form described in the second part of the proposition are indeed

Bayesian Nash equilibria can be verified by inspection. O

Example 3 (Complete Information). In this case, we assume that x; = 0, for all i € Z. Informally, this
can be viewed as a version of our earlier model, with zero observation noise, i.e., with € = 0. With this model,
common knowledge of the fundamentals gives rise to the standard case of multiple equilibria due to the self-

fulfilling nature of agents’ beliefs. Clearly, in this case, the structure of the network is immaterial.

Proposition 3. A strategy profile survives IESDS if and only if it satisfies the following: each agent i chooses
R if she observes that § < h (L) = tg, and S if she observes that § > h(1) = ts. The game has infinitely
many Bayesian Nash equilibiria. In particular, fix some t with h (1) <t < h(1) and consider a strategy profile
whereby each agent chooses R is she observes that § < t, and S if she observes that 6 > t. Such a strategy

profile is a Bayesian Nash equilibrium.

Proof. As before, we use the definition y; = (x;) e, for ease of readability.

By symmetry, A" = Ay =--- = A7, forallm,and Ay = Ay =---=A,, B =By =---= B,
forall m,and By = By = ... = B,,. Fix agent i. Let si" be the strategy profile in which every agent

12



m
—1

J #iplays Rif y; € AT", and plays S otherwise. Let si be the strategy profile in which every agent

J #iplays Sify; € Bi", and plays R otherwise.

Ai1 = {yi:xi<h<1)},
n

It is easy to see that

Then

Vi (sAlfﬂy,-) — n(1)-P <:c <h <;> |y,->

() 7 2rC))
)
).

\
3= 3=

1
Because A% = {yz 'V (sAi" |yz> > O}, it follows that

Af:A%:{yi:xi<h<1)}.
n

Furthermore,
B!,
V(7)) = b PG 0l
1
h(1) — x4, if x; < h(1),

h (%) — X, if z; > h(l)

Because Bf = {yi 'V (s?‘ﬂyi) < O}, it follows that
B? =B} = {y; : x; > h(1)}.
)} and B!™ = {y; : @; > h(1)}, for all rounds of elimination m > 1.

Similarly, A" = {yi cx; < h (

1
n
1
n

It follows that A; = {y; : #; < h (%)} and B; = {y; : &; > h(1)}.

13



That the strategy profiles of the form described in the second part of the proposition are indeed

Bayesian Nash equilibria can be verified by inspection. O

4.2 Asymptotically Many Agents

In all of the preceding examples, the set of strategies that survive IESDS are characterized by certain
thresholds. We now consider the limit as the number of agents n increases, and the behavior of the
associated thresholds.

1
For the network without edges, we have lim ¢t = lim tg = lim — Zh( ) / h(z)dx.

n—so0 n—00 n—oo N
(The Riemann-integrability of & follows from its monotonicity.) For the complete network, as well as
for the case of complete information, we have nh_)rréo lp = nh_)r{)lo h (;) = h(0) = 0, assuming continuity
of hatO0.

Tables 1 and 2 summarize the results for the three examples, for fixed number of agents as well as

for an asymptotically large number of agents, and for positive noise as well as for zero noise. As in

the statements of the Propositions, we use ¢z (ts) to denote the threshold pertaining to playing R (5).

Table 1: Thresholds for strategies that survive IESDS for the network without edges and for the com-
plete information case.

Network without Edges Fixed n n — 00
e>0 th= 130 h(k/n) tr= [ h(z)da
e>0 ts =130 h(k/n) ts= fo h(z)dx
e=0 tR:h(l/n) tR:h()
e=0 ts = h(l) ts = h(1)

Table 2: Thresholds for strategies that survive IESDS for the complete network and for the complete
information case.

Complete Network Fixed n n — 0o
e>0 tth(l/n) tRZh(O)
e>0 ts = h(1) ts = h(l)
e=0 tR:h(l/n) tR:h(O)
e=0 tS = h(].) tS = h(l)

5. Characterization of Strategy Profiles that Survive IESDS for Finite Unions of
Cliques

In this section, we characterize the set of strategy profiles that survive IESDS for finite networks that

are unions of disconnected cliques. We first provide a generic solution, which we then use to come

14



up with a closed-form solution for the special case of cliques of equal size. Our results establish
multiplicity of equilibria for the case of finitely many agents. This multiplicity arises because agents

in the same clique can use their shared information to coordinate their actions in multiple ways.
5.1 Generic Characterization

Assume that the network consists of M disconnected cliques; clique i € {1,..., M} has n; nodes, and

Zij\il n; = n. We have the following result:

Proposition 4 (Characterization for finite unions of cliques). There exist thresholds {t%, 15}, such that
a strategy profile survives IESDS if and only if it satisfies the following: each agent i in clique c chooses R if
ZIE T 4 and S if SIS S 1%, Furthermore, the thresholds {t%, t5 Y., solve the following system of

c e
equations (here a choice of | corresponds to selecting r out of the M — 1 cliques):

— Tle 1 J X 'cX-
- h<n ne + >P(Vd7éc’z]ed J<t(}é‘de J_t%)
n Nnq Ne

M72(NIT_1)
n-— Zd#c d selected by 1 Ttd — Tle +1 1
h i T,
1 X X
+h<>P(Vd7&CvZﬂ“thR‘Zﬁj—t§a), Vee {1,..., M},
n ng Ne
X X
tg = h(l)P(Vd;éc,zjzzjgtg|Zas«’J:t§>
w2 () M= D e dselected by 1 TV
T Z h< ?éc,nSEECL Y >pg’l
r=1 [=1

, X X
+h(n°)]P<Vd7éc,ZJ;‘;j>tgzjzcj:t§>, Vee{1,..., M},

C

and where
p’}él =P ( only for the r cliques selected by | Zj;ZXj > tji%’ ZJGZXJ = t‘j%)
and
pgl =P <onlyfor the r cliques selected by | Zj;ZXj >t | Z]EZXJ = tg) .
Notice that due to our normality assumptions, %x] is a sufficient statistic for {z;};c. with

respect to 6, and hence with respect to the signals of other cliques, for all cliques c.

Example 4. We showcase the characterization for the simple network of Figure 1. The relevant thresholds,
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X3

Figure 1: A simple network.

{tg’2}, t§1’2}, tg’}, té?’}}, satisfy the following system of equations:

2 X1+ X
t%’z}:h(?))[?(x <t 1+ Q_t{12}>+h(> (
X1+ X X1+ X
12— h(1 )IP’(X <t{3}‘ 1+ 2—t{12})+ ()IF’(X > ¢} 1+ A2 }>
X1+ X X1+ X
tE}:h(l)P<1;2<tg’2}'X3:tg’}>+h( > ( 1+ 2>t{12}‘X _t{3}>

X1+ X X1+ X
3 = h(1)P (1; 2 <l ‘ X3 = t§3}> +h <3) P <1 ; 2> ‘ X3 t{S})

X1+ Xo + Xo _ t{l 2})

>

The system can be solved numerically. The solutions for different values of €, for the case when h(x) = x, are

shown in Table 3. For small values of €, the thresholds for the clique of two agents and the single agent are

Table 3: Thresholds for strategies that survive IESDS for the network in Figure 1, for h(z) = z, and
different values of e.

e = 0.0001 e=1 e = 10000
Agents 1,2 tp =0.5474,t5 = 0.7859 tgr =0.5132,t5 = 0.8202 ¢t = 0.5002,t5 = 0.8332
Agent 3 tr = 0.5518,t5 = 0.7815 tr = 0.6345,t5 = 0.6989 tr = 0.6662,t5 = 0.6671

close. As the noise increases, the extent of multiplicity (more formally, the difference ts — tr) grows larger for
the two agents in the clique {1,2}, but smaller for the single agent 3. For the clique of two agents, less precise
signals lead to multiplicity of greater extent; on the contrary, for the single agent, a less precise signal leads to
more refined multiplicty, which gets very close to uniqueness for large e. We notice that the difference ts — tg

is more sensitive to changes in the noise for the single agent than it is for the clique of two agents.

5.2 Characterization in the Case of Cliques of Equal Size

In the special case of M equally sized cliques, we can write down closed-form expressions for ¢ and

ts. Notice that each clique has size n/M.
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Corollary 1. A strategy profile survives IESDS if and only if it satisfies the following. Each agent i in clique

. X
choosesRiL]<t,andSzLj>t,where
¢ f= . <R f = s

N ]\1/[<h<n—n/M+1> Mz_: < n/M)n (n/M)+1>+h(7ll>>7

and

ty = J\14<h(1) §2h<’w>+h("/§\4)>

Example 5. We showcase the characterization for the simple network of Figure 2. The thresholds are given by
1 3
X X3
Xa ] [ Xg
2 4
Figure 2: A simple network with cliques of equal sizes.
1 3
=3 (15 ()

b sn (1)
et = (03 (3) (3 () et s (2)11(2) ()

is the threshold pertaining to the network of 4 disconnected agents. Thus, there exist equilibria involving a

B~

N =

threshold which is larger than that for the disconnected network (i.e., the society is “braver”) as well as equi-
libria involving a threshold which is smaller than that for the disconnected network (i.e., the society is “less

brave”). In particular, more communication can make society either more or less brave.

6. The Case of Asymptotically Many Agents

We have seen that for a finite number of agents, links induce multiplicity of strategy profiles that
survive IESDS. The natural question that arises is under what conditions on the network there ex-
ists asymptotically a unique strategy profile that survives IESDS, and thus a unique Bayesian Nash

equilibrium. In this section we provide sufficient conditions for uniqueness in the case of an asymp-
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totically large number of agents.

We consider a growing sequence of graphs G, k = 1,2,..., with G, C Gi41. The graph Gy,
consists of g(k) cliques of equal size f(k) > 1, for a total of n(k) = f(k)g(k) nodes. We assume that
the function f is nondecreasing in k. For example, the graph could grow by adding more cliques of
the same size, or by merging existing cliques to form larger cliques. For any k, the strategy profiles
that survive IESDS are described by the thresholds in Corollary 1. We denote these thresholds by t%,
and t% to indicate explicitly the dependence on k.

The proposition that follows shows that if the number of cliques grows to infinity (equivalently, if
the clique size grows sublinearly with the number of agents), then t¥, and t£ converge to a common
value, as k increases. Thus, loosely speaking, in the limit, there is an essentially unique strategy that

survives IESDS, and therefore a unique Bayesian Nash equilibrium.
6.1 Sufficient Conditions for Asymptotic Uniqueness

Proposition 5 (Asymptotic uniqueness). Suppose that lim,, ., g(m) = co. Then,

lim tk hm tS —/ h(x
k—o0

Proof. By Corollary 1, we have

lim tk = lim i h (]f(k))

k— o0 k—o00 g(k‘) »

Again by Corollary 1, we have

g(k)—-1 ,
hm tR— lgroloﬁ z; h<]ffzk()k;_1>

Notice that for all &,

1 (k)— .
k—>oo ZO (



We showed above that

/01 h(:r)da:._

By a standard sandwich argument, it follows that
1
lim % = / h(z)dx.
k— o0 0

O
We note that we can use a similar argument to establish that if the growth of each clique is linear
in n, then we have multiplicity: the thresholds satisfy

lim § < lim ¢%.
k—o0 k—o0

6.2 Interpretation

We believe that Proposition 5 extends to the case of unions of cliques of unequal sizes, when the
fastest-growing clique grows sublinearly with the total number of agents n. We also note that the case,
in Proposition 5, of sublinearly growing cliques leads to the same asymptotic equilibrium analysis as
the case of disconnected agents. Loosely speaking, in general we can view the properties of equilibria
for the case of asymptotically many agents as being governed by two competing effects: the network
is growing, and the sharing of information among agents is also growing. An intuitive explanation
why the equilibrium analysis for the two aforementioned sequences of networks is asymptotically
the same, and yields uniqueness, is the following: the two sequences of networks, in the limit of large
n, are informationally equivalent; precisely, for both sequences of networks the growth of informa-
tion sharing is insignificant compared to the growth of the network, and this gap induces a unique

equilibrium. In turn, we can view uniqueness of equilibria as predictability of individual behavior.
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On the other hand, we conjecture that for the case of unions of disconnected cliques, when the
fastest-growing clique grows linearly with the total number of agents n, there are asymptotically
infinitely many strategy profiles that survive IESDS. The intuitive interpretation is that the growth of
the sharing of information among agents is comparable to the growth of the network; the excess in
communication is what breaks uniqueness (and predictability of individual behavior).

If our conjectures hold, there are no sequences of networks that are unions of disconnected cliques
for which uniqueness of Bayesian Nash equilibrium is obtained asymptotically, at a unique threshold
other than / 1 h(z)dz. If this is so, we cannot come up with sequences of networks for which the
unique thresi)lold shifts, signifying a societal shift in favor of or against taking a risky action. (A shift
of the threshold to higher values would signify that rational individuals are willing to play the risky
action over a signal space that includes higher observations, corresponding to higher realizations of
the fundamentals. A shift of the threshold to lower values would signify that rational individuals
are only willing to play the risky action over a signal space that is limited to lower observations,

corresponding to lower realizations of the fundamentals.)

7. Current Work

Having addressed the case of unions of disconnected cliques, we are currently developing results for
more general topologies. We have already identified non-trivial network topologies that yield unique-
ness in the case of finitely many agents, and have been developing results that classify more general
finite networks into a class of networks that induce uniqueness and a class that induce multiplicity
of Bayesian Nash equilibria. We thus come closer to a complete characterization of topological con-
ditions for uniqueness versus multiplicity. We have been also studying a generalization of the model
presented in this paper, according to which agents do not observe each other’s idiosyncratic signals,
but instead observe information coming from different sources. This generalization subsumes both

undirected and directed networks.
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