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Abstract— Today’s Internet is a loose federation of inde-
pendent network providers, each acting in their own self
interest. In this paper, we consider some implications of this
economic reality. Specifically, we consider how the incentives
of the providers might determine where they choose to
interconnect with each other; we show that for any given
provider, determining an optimal placement of interconnection
links is generally NP-complete. However, we present simple
solutions for some special cases of this placement problem.

We also consider the phenomenon of nearest-exit, or “hot-
potato,” routing, where outgoing traffic exits a provider’s
network as quickly as possible. If each link in a network is
assessed a linear cost per unit flow through the link, we show
that the total cost of nearest exit routing is no worse than
three times the optimal cost.

I. INTRODUCTION

The modern Internet is a network owned by a loosely
connected federation of independent network providers.
Fundamentally, the objectives of each provider are not
necessarily aligned with any global performance objective;
rather, each network provider will typically be interested in
maximizing their own monetary profits. This profit maxi-
mizing, self interested behavior has important ramifications
for the performance of the network.

Our paper is concerned with connections between net-
work providers. Most economic relationships between two
providers may be classfied into one of two types: transit,
and peer. Provider A provides transit service to provider
B if B pays A to carry traffic originating within B and
destined elsewhere in the Internet (either inside or outside
A’s network). In this paper, we will instead be primarily
interested in peer relationships. In peering agreements, one
or more bidirectional links are established between two
providers A and B. In contrast to transit service, where
traffic is accepted regardless of the destination, in a peering
relationship provider B will only accept traffic from A that
is destined for points within B, and vice versa. Importantly,
such agreements are typically negotiated without any trans-
fer of money between the two parties involved, because
two providers will only choose to become peers if they are
roughly the same size and have similar amounts of traffic
to send to each other. Peering agreements are typically seen
among the “tier 1” or “backbone” providers at the top level
of the Internet hierarchy, who provide national and global
connectivity to their customers. (For further details, see [1],
[2], [3].)

When two providers form a link connecting their net-
works (which we shall refer to as a peering link), the traffic
flowing across that link incurs a cost on the network it

enters. Such a cost may be felt at the time of network
provisioning, or on a faster timescale as network congestion
rises. We will abstract away from making any specific
assumptions about the nature of the network costs in our
models, with the understanding that these two interpreta-
tions are possible.

Consider a situation, then, where providers S and R are
peers. Each of these providers will typically have some
amount of traffic to send to each other. However, for the
purposes of this paper, we will separate the roles of the
two providers as sender and receiver; this will allow us to
focus on the different incentives that exist in each role. In
particular, we suppose that provider S has some amount
of traffic to send to destinations in provider R’s network.
If we assume the only costs incurred are network routing
costs, then because the peering relationship includes no
transfer of currency, provider S has an incentive to force
traffic into provider R as quickly and cheaply as possible.
This phenomenon is known as “nearest exit” or “hot potato”
routing (see [4]). In practice, for example, traffic travelling
from an AT&T subnetwork in Boston to a computer on a
Sprint subnetwork in Chicago will enter Sprint’s network
at a peering point in Boston, then traverse links owned by
Sprint until arriving at the destination in Chicago.

We will consider two problems that arise due to the
phenomenon of nearest exit routing. First, suppose again
that a provider S has agreed to peer with provider R. Given
the distribution of traffic flowing from S to R (across all
origins in S and destinations in R), both providers assume
at the outset that S will use nearest exit routing. We then ask:
where would R and S like to establish peering links? This is
a question that might be asked, for example, when providers
first establish a peering agreement and need to physically
construct the links connecting their networks. The decision
of where to place these links is, of course, intimately
connected to the distribution of the traffic flowing between
them. As we will see in Section II, determining which
placements are most preferred by the sender and receiver
is, in general, computationally intractable. Nevertheless,
special cases where both providers have a linear or tree
topology can be analyzed, and the link placements most
preferred by the sender and receiver can be determined. In
particular, we are able to show that when both providers
have a linear network, under some symmetry conditions
on the traffic, there exists a unique peering point placement
which will simultaneously satisfy both providers. This leads
to the important conclusion that at least in this special case,
it is possible to identify the expected outcome of the peering



point placement process between the providers.
In Section III, we address the second key problem which

arises due to nearest exit routing. We will assume that
peering links have already been established between the
two providers S and R. Given that the sender S is using
nearest exit routing, we do not, in general, expect the
resulting routing of traffic from S to R to resemble an
“optimal” routing, according to some network cost metric
chosen a priori. Indeed, we will show that if network cost is
measured by assessing a cost per unit flow traversing each
link, and if we compare nearest exit routing to shortest path
routing, then when both sender and receiver share the same
topology, we can expect the nearest exit routing cost to
be no worse than three times the optimal (shortest path)
routing cost. This result follows the spirit of previous work
by Koutsoupias and Papadimitriou [5] and Roughgarden
and Tardos [6] in bounding the cost of anarchy: that is,
when selfish agents act in their own interests, what is the
resulting shortfall in efficiency relative to some well-defined
optimum? In this language, the cost of anarchy in our
problem is a factor of three; see Theorem 3.

Our research forms part of a growing body of work
on the implications of the current Internet interconnection
paradigm. Much of this work has been focused on the
protocol level, particularly on the failings of the BGP
protocol used for interdomain routing; see, e.g., [1], [3],
[7], [8]. Recently, however, several efforts at understanding
the impact of provider economics at network design have
also begun, including results by [9], [10], [11].

The analysis of these papers suggests that our analytical
models may no longer assume that the Internet as a whole
acts to optimize some network-wide performance objective.
Rather, the actions of the individual network providers will
typically lead to quite a different outcome; and quantifying
this difference in more general networks remains an impor-
tant challenge.

II. THE PEERING POINT PLACEMENT PROBLEM

In this section, we will investigate the creation of inter-
connection links between network providers, given that they
have already chosen to peer with each other. As discussed
in the Introduction, we will assume two network providers
S and R, and that S is sending traffic to the receiver R;
further we will assume that S is using nearest exit routing.
Note that, in general, both S and R will be sending and
receiving traffic; however, to isolate the effects of sending
and receiving traffic, we will assume only unidirectional
traffic flow. We make the further assumption that S and
R share the exact same network topology. While this is a
strong assumption, it is perhaps founded on the fact that
we expect our model to apply to the tier 1, backbone
level of the Internet, where most providers control national
and international networks. These networks will have many
common nodes (major cities, for example), and thus we
might reasonably expect some similarity in their topologies.
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Fig. 1. Two overlapping networks. The vertical lines represent links at
peering points between S and R; they are drawn as dashed lines because
in this model we assume that traffic experiences no cost travelling across
a peering point.

In the first subsection, we assume that both providers
share the topology of a linear network; and in the second
subsection, we assume both providers share a tree topology.
Under certain assumptions, we compute optimal placements
for sender and receiver. Nevertheless, for general topologies,
computing the peering link locations most preferred by
the sender and the receiver is NP-complete, as we briefly
describe in Section II-C.

A. Linear Networks

We consider a model consisting of two network providers.
The sending provider, S, controls a line segment of length
2l, while the receiving provider, R, controls a line; we
identify S topologically with the interval [−l, l] ⊂ R, and
we identify R with R. The line segment S “overlays” the
line R, as depicted in Figure 1.

We make two assumptions on the nature of the traffic
being sent from S to R. First, we assume that given an origin
x ∈ S, traffic originating at x is destined for a randomly
chosen destination y ∈ R, chosen according to a probability
density f (y|x). We make the assumption that f (y|x) = g(y−
x), where g is a probability density function such that g(z) =
g(−z). Intuitively, each origin x ∈ S is sending to its mirror
image in R, but with some random, symmetric “spread”
determined by the density g; notice that every origin x ∈ S
sees a spread determined by exactly the same density g. We
emphasize here that the only assumption we are making on
g is that it be symmetric about the origin. In fact, g may even
correspond to a distribution which is symmetric, but does
not possess a density; all the results here will continue to
hold. In this case, letting G be the distribution corresponding
to g, we simply require that G(−z) = 1−G(z) for all z ∈R.

The second assumption we make is that each origin x ∈ S
has exactly the same total amount of traffic to send into R.
Formally, we assume that S contains a total amount of traffic
T to be sent to the receiver R, and that the total amount
of traffic originating in an interval [a,b] ⊂ S is given by
(b−a)T/2l; in other words, the origin of any particular unit
of traffic is uniformly distributed across the interval [−l, l].
In the discussion that follows, we will only be interested in
the expected cost incurred by traffic flowing from S to R.

We consider the problem of placing at most n peering
points between providers S and R, i.e., points where traffic



exits S and enters R. We assume that n is given, so that the
maximum number of points to be placed has been agreed
upon a priori. We allow the peering points to be located
anywhere in the region [−l, l]. Each peering point is really
two points: an exit point p∈ S, and an entry point, its mirror
image p∈R. Note that this is an important restriction; traffic
may only enter the provider R at exactly the same point at
which it exits provider S.

We will consider two placement problems. First, we will
be interested in determining which placement of peering
points is most preferred by the sender; next, we consider
the same problem for the receiver. Note that entry and exit
at peering points is assumed to be costless. Sender S will
thus attempt to exit traffic at the peering point nearest to
an origin, and receiver R will use a shortest path from the
peering point to the destination. The sender wishes to place
peering points to minimize the expected distance from any
origin to a peering point; the receiver wishes to minimize
the expected distance from peering point to destination,
knowing that the sender will use nearest exit routing. The
following theorem shows that there exists a single peering
point placement which is optimal for both the receiver and
the sender. The proof is omitted; details may be found in
[12].

Theorem 1: Let pi = −l + (2i− 1)l/n, for i = 1, . . . ,n;
i.e,. the n peering points are placed symmetrically about
0, a distance 2l/n apart from each other. Then, the peering
point placement identified by p1, . . . , pn is the unique choice
which is simultaneously optimal for both the sender and the
receiver.

The theorem demonstrates that, in this special case, the
interests of both the receiver and sender are aligned. This
highlights the interesting point that if these two providers
were in a bargaining procedure to determine the placement
of peering points between them, there is a predetermined,
easily computed outcome which can be shown to be prov-
ably optimal for both providers.

B. Trees

We now consider a model consisting of two network
providers, each managing a tree: T1 will represent the send-
ing provider, and T2 will represent the receiving provider.
Each tree consists of k levels (not including the root node,
which by convention is at level 0), with a fan-out of m—i.e.,
all nodes except the leaves have m children. Thus each tree
consists of N = (mk+1 −1)/(m−1) nodes. We assume for
the moment that the edges of the tree all have unit length;
this assumption will be relaxed later.

We first outline our traffic model. We assume that each
leaf node in T1 has 1 unit of traffic to send to a randomly
chosen leaf node in tree T2. In randomly choosing the des-
tination, we fix a parameter p, 0 ≤ p ≤ 1, which determines
how “far” the destination is. Note that the distance travelled
from origin to destination is determined by the first node i
in the tree such that the subtree rooted at i has both origin
and destination as a leaf; this is the common subtree of

the origin and destination. When p is small (resp. large),
we will find that this common subtree typically occurs at a
very low (resp. high) level in the tree.

This behavior is described formally as follows. Given a
leaf node i in the tree, let P(i) denote the parent of node i,
and Pl(i) denote the (k− l)-level parent of node i; i.e., Pl(i)
is the node at level k− l in the tree, such that the subtree
rooted at Pl(i) contains i as a leaf. Denote the origin node
by io, and the destination by id . With probability 1− p,
id = io. With probability p(1− p), the destination is chosen
uniformly at random from among the m−1 siblings of the
origin, in the subtree rooted at P(i); and in general, for 1 ≤
l < k, with probability pl(1− p), the destination is chosen
uniformly at random from among the ml −ml−1 leaf nodes
for which Pl(i) is the root of their common subtree with
io. Finally, with probability pk, the destination is chosen
uniformly at random from among the mk −mk−1 leaf nodes
for which the root node of the tree is also the root of the
common subtree with io.

Given the traffic distribution, we may analyze the optimal
placement of peering points for both sender and receiver.
For this section, we will assume that the providers may
place an arbitrary number of peering points. Given this
ability, the sending provider would prefer to place mk

peering points at the lowest level—level k—of the tree.
Under nearest exit routing, this leads to zero routing cost
for the sending provider.

The situation for the receiving provider is more interest-
ing. It is possible to show that there exists an optimal level
l∗(p), depending on the parameter p, which minimizes the
routing cost; that is, the receiving provider would wish to
place ml∗(p) peering points at level l∗(p) of the tree. We
omit the details of the derivation, which can be found in
[12]. The optimal level l∗(p) is given by:

l∗(p)=







k, p ∈ [0,1/2];
k− i, p ∈ [(1/2)1/i,(1/2)1/(i+1)], 1 ≤ i ≤ k−1;
0, p ∈ [(1/2)1/k,1]

Note that at the boundary points, there are two possible
optimal levels the provider may choose from. Further, the
expression for l∗(p) is independent of the fan-out m; and
the analysis may be extended to the case where not all links
have unit length. Generally, the two providers will not agree
on where to place peering points in this model: the sender
always prefers to place peering points at the lowest level of
the tree, whereas the receiver prefers l∗(p), which may or
may not be the lowest level.

C. In General

Under some assumptions on the structure of traffic and
topology, the previous sections have provided insight into
the placements most preferred by sender and receiver. In
general, computing these optimal placements is computa-
tionally intractable, as we now show.

We assume two providers, and identify each with the
same graph: S = R = (N,A). We assume that if (i, j) ∈ A,



then ( j, i) ∈ A; thus any link from i to j is paired with a
return link from j to i. To distinguish the two graphs S and
R notationally, we denote sender and receiver by subscripts
S and R respectively: thus, NS represents the set of nodes
in the sending network S, etc. The providers are to place a
collection of n peering points, labeled by p = (p1, . . . , pn).
Formally, this means the network as a whole will be a
graph G = (NG,AG) consisting of nodes NG = NS

S

NR, and
arcs AG = AS

S

AR
S

{(p1,S, p1,R), . . . ,(pn,S, pn,R)}. Each of
the last n arcs link from a peering point pi,S ∈ NS to a
corresponding pi,R ∈ NR. Traffic may travel from S to R
only at these peering points.

S, the sending provider, has some amount of traffic to
send to R. The amount of traffic originating at a source
s∈NS and terminating at destination d ∈NR is given by b =
bsd ; we write b = (bsd) for the vector of source-destination
flows. Given the peering point locations p = (p1, . . . , pn),
the set of routes available to a source-destination pair (s,d)
is given by Pp(s,d); each element r ∈ Pp(s,d) is a path in
G consisting of a path from s ∈ NS to some pi,S, followed
by the link (pi,S, pi,R), followed in turn by a path from pi,R
to d. We let yr denote the flow sent along route r.

Because the sending and receiving networks divide the
responsibility of carrying traffic from s to d, we define two
new sets of paths. First, let PS(s, pi) be the set of all paths
available to the sender to route traffic from s ∈ S to pi ∈ S;
if r ∈ PS(s, pi), and (i, j) ∈ r, we require that (i, j) ∈ AS.
Similarly, we define PR(pi,d) as the set of paths available
to the receiver to route traffic from pi ∈ R to d ∈ R; again,
if r ∈ PR(pi,d), and (i, j) ∈ r, we require that (i, j) ∈ AR.

We will assume that link (i, j) has a length ci j; the
cost of sending fi j units of flow on link (i, j) is ci j fi j.
We assume that distances are symmetric, in the sense that
(i, j) ∈ AS and (i, j) ∈ AR both have length ci j, and we will
denote the vector of link lengths by c = (ci j). Also, we
assume that given the peering point locations p, all links
(pi,S, pi,R) have zero length. (Note that if the placement
problems are NP-complete with these assumptions, they
remain so without the assumptions.) We now define the
sender’s placement problem:

SenderPlacement(N,A,b,c,n,K):

Does there exist a peering point placement p =
(p1, . . . , pn) such that the value of the following optimiza-
tion problem is less than or equal to K?

minimize ∑
(i, j)∈AS

ci j fi j (1)

subject to∑
pk

∑
r∈PS(s,pk)

yr = ∑
d∈R

bsd , ∀ s (2)

∑
(s,pk)

∑
r∈PS(s,pk):(i, j)∈r

yr = fi j, ∀ (i, j) ∈ AS (3)

yr ≥ 0. (4)

The first constraint ensures all traffic from a fixed source
s ∈ S is routed to a peering point. The second constraint
simply identifies the link flow fi j as the sum of flows from
routes using that link. According to this formulation the
objective of the sender is to use nearest exit routing to send
all the flow given by b out of S into R.

We may similarly define the receiver’s placement
problem. Let b′pi,d be the traffic entering at pi destined for
d seen by the receiver R, given that the sender is using
nearest exit routing. We note here that the traffic matrix
b′ may not be uniquely determined, as there may not
be a unique solution to the optimization problem (1)-(4).
This technical issue does not play a role in any results
presented here, so we may simply assume, for example,
that the receiver randomly chooses an optimal solution
to the sender’s problem (1)-(4). The receiver’s placement
problem is then:

ReceiverPlacement(N,A,b,c,n,K):

Does there exist a peering point placement p =
(p1, . . . , pn) such that the value of the following optimiza-
tion problem is less than or equal to K?

minimize ∑
(i, j)∈AR

ci j fi j (5)

subject to ∑
r∈PR(pk,d)

yr = b′pk,d , ∀ (pk,d) (6)

∑
(pk,d)

∑
r∈PR(pk,d):(i, j)∈r

yr = fi j, ∀ (i, j) ∈ AR (7)

yr ≥ 0. (8)

The receiver sees the input traffic matrix determined by
nearest exit routing at the sender; this traffic is then routed
using shortest path routing to the destination.

We prove the following result using a reduction from
VertexCover; see [12] for details.

Theorem 2: The problems SenderPlacement and
ReceiverPlacement are NP-complete.

We note here that the computational complexity result
of Theorem 2 supports an informal claim made by Aw-
duche et al. [13]. In that paper, the authors formulate
the optimal peering point location as an integer program,
related to the formulation discussed here, and suggest some
traditional approximation techniques that might be used by
network providers. Our result shows formally that solving
the optimal peering point location problem is analytically
intractable in general. Nonetheless, our discussion of linear
networks and trees shows that for networks with special
structure, it is indeed possible to evade the negative conclu-
sion of this theorem.

III. NEAREST EXIT ROUTING VS. OPTIMAL ROUTING

The previous section considered the problem of where
peering points should be placed, given that two providers
have decided to peer with each other. In this section, we
consider the effects of these peering decisions on routing:



namely, given that two providers have established a set
of peering points with each other, how inefficient is the
resulting routing of traffic?

We continue to use the notation and model of Section II-
C: two network providers S and R share the same topology.
Now, however, the peering point vector p = (p1, . . . , pn) will
be assumed fixed. Given this set of peering point locations,
we will try to investigate the nature of the optimization
problems solved by the two providers, given by (1)-(4) for
the sender and (5)-(8) for the receiver.

Traditionally, when one network manager controlled the
whole network G, routing would be performed according
to a global cost minimization problem (see, e.g., [14]):

minimize ∑
(i, j)∈AG

ci j fi j (9)

over ∑
r∈Pp(s,d)

yr = bsd , ∀ (s,d) (10)

∑
(s,d)

∑
r∈Pp(s,d):(i, j)∈r

yr = fi j, ∀ (i, j) ∈ AG (11)

yr ≥ 0. (12)

Recall that AG is the global set of arcs, and Pp(s,d)
represents the set of paths available from an origin s ∈ S to
a destination d ∈ R, given the set of peering point locations
identified by p.

The problem defined by (9)-(12) corresponds to an op-
timization which minimizes the sum of the routing costs
experienced by the sender and the receiver. Of course,
when sender and receiver act independently (according to
the optimization problems (1)-(4) and (5)-(8)), there is no
reason to expect them to arrive at the globally optimal
solution, and indeed, this is generally not the case. However,
we may analytically compare the routing cost of nearest
exit routing with globally optimal routing. To emphasize
the assumptions, we note here that we have assumed the
two networks R and S are identical, and that the two
have identical cost functions for their links. We have also
assumed a fixed, but arbitrary, placement of n peering
points. We then have the following theorem.

Theorem 3: Suppose that S = R, and both have identical
lengths ci j ≥ 0 for their links. Then given any placement of
n peering points, the cost of nearest exit routing is no more
than three times the cost of optimal routing. Further, for all
sufficiently small ε > 0, there exist networks such that the
cost of nearest exit routing is at least 3− ε times the cost
of optimal routing.

Proof. The proof uses a graphical argument; refer to
Figure 2. Recall that because costs are linear, we may treat
the link cost coefficient ci j as the length of link (i, j).
Suppose that 1 unit of traffic must travel from s ∈ S to
d ∈R, and the optimal (shortest path) route is the solid black
line which passes through pOPT . Let the total distance (and
hence the total cost) travelled from s to d along this optimal
path be r.

PSfrag replacements

pNEpOPT

S

R
r

s

sd

x

Fig. 2. Proof of Theorem 3: Nearest exit routing cost is at most three
times optimal routing cost.
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Fig. 3. Proof of Theorem 3: Example where the upper bound is tight.

Now consider the route depicted by the dashed line,
passing through pNE . The sender has determined that the
nearest peering point to s is pNE ; the total distance between
them is denoted x. Note that x ≤ r, since by definition pOPT
must be further from s than pNE .

Once traffic destined for d enters R at pNE , the receiver
would route it to d at minimum cost. However, consider the
following route available to the receiver: first send traffic
from pNE back to s, using the same (outgoing) route as
used by S to send traffic from s to pNE . This distance is
x ≤ r. After traffic reaches s ∈ R, use a shortest path within
R from s to d. This distance must be less than r, since r is
the length of shortest path from s to d with the additional
constraint that the route must include a peering point. So
if the receiver uses this route, from pNE to s to d, then the
total cost incurred by the receiver is less than or equal to 2r.
Since the sender incurs a cost no higher than r in sending
traffic to pNE , and peering links have zero cost, the total
cost incurred in sending traffic from s to d is less than or
equal to 3r. By linearity of the cost functions, this bound
may be extended to any arbitrary traffic matrix (bsd), since
for each source destination pair (s,d) this bound holds.

We finally show that this bound is tight. Consider the
network depicted in Figure 3. The sender has one unit
of traffic to send from s to d = p1. Since the distance to
peering point p2 is 1− ε, the sender chooses this exit; the
receiver then incurs a cost of 2− ε in routing the traffic to
d from p2. The total cost, therefore, of nearest exit routing



is 3− 2ε; on the other hand, note that the optimal choice
is to send traffic from s to p1, incurring a cost of 1. Thus
the nearest exit cost may be made arbitrarily close to 3
times the optimal cost by a sufficiently small choice of ε. 2

Notice that the cost experienced on link (i, j) is linear
in the flow fi j, and given by ci j fi j. In general, we may
define a cost function Ci j( fi j), which we assume to be
convex and increasing, but not necessarily linear; such a
framework is discussed by Bertsekas and Gallager [14].
However, note the essential importance of linearity in the
current setting, allowing us to decouple individual source-
destination pairs from each other; in a general network
where costs are nonlinear, any analysis must consider the
interaction of flows sharing the same link. In fact, relaxing
any of the assumptions in the theorem cause the conclusion
to fail; counterexamples exist not only for the constant
multiple 3, but for any constant multiple of optimal cost.
One may easily construct such cases when the networks
are not symmetric (i.e., S 6= R), when they do not share
common cost functions, or when link costs are allowed to
be nonlinear.

Notice that because we have assumed link costs to be
linear in flow, the analysis continues to apply even if both
providers are sending traffic to each other and receiving
traffic from each other. In fact, the result continues to apply
even if there are multiple network providers, all peering
with each other, and sharing the same topology and link
costs. The analysis is done on a route-by-route basis, so
these extensions do not affect the final result.

One way to refine our model is to assume, for example,
that the link cost cR

i j of link (i, j) in provider R’s network
and the link cost cS

i j of link (i, j) in provider S’s network
satisfy cR

i j ≤ βcS
i j, for some β > 0 which does not depend on

the link (i, j). In this case, the proof of the theorem above
would show that nearest exit routing cost is no worse than
1+2β times the optimal routing cost; in the setting of our
theorem, β = 1. Thus, through a simple change, we may
take into account some degree of heterogeneity in the link
costs of the various backbone providers, and relate this to
the efficiency loss relative to optimal routing.

IV. CONCLUSION

This paper has discussed two important issues which arise
in today’s Internet between competing network providers:
First, where to place interconnection links; and second,
the performance of the resulting traffic routing. For both
problems, we start from the assumption that the network
providers act in their own self interest. This selfish behavior
impacts our analysis in two different ways. When placing
peering points between each other, the key problem is that
providers must agree simultaneously on the placement. This
poses an important practical challenge: our computational
complexity result shows that aligning the interests of the
providers with each other will require tractable approxi-
mations which still capture their incentives accurately. The

second impact of selfish behavior is in a loss of efficiency,
or “cost of anarchy,” as discussed in the Introduction. We
examine this cost in the context of interdomain routing.
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