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Optimal Energy Allocation for Delay-Constrained
Data Transmission over a Time-Varying Channel

Alvin Fu, Eytan Modiano, and John Tsitsiklis

Abstract—We seek to maximize the data throughput of an
energy and time constrained transmitter sending data over
a fading channel. The transmitter has a fixed amount of en-
ergy and a limited amount of time to send data. Given that
the channel fade state determines the throughput obtained
per unit of energy expended, the goal is to obtain a policy for
scheduling transmissions that maximizes the expected data
throughput. We develop a dynamic programming formula-
tion that leads to an optimal transmission schedule. We then
extend our approach to the problem of minimizing the en-
ergy required to send a fixed amount of data over a fading
channel given deadline constraints.

Method Keywords— Mathematical programming / opti-
mization

I. INTRODUCTION

FOR many mobile wireless transmitters, increased ef-
ficiency in sending information provides significant

benefits. Most such devices are battery powered, and of-
ten the energy required to send information is a signifi-
cant, if not the largest, drain on the battery. Higher en-
ergy efficiency may result in the use of a smaller battery
or in a longer battery lifetime. Alternatively, increasing
data throughput leads to more efficient bandwidth utiliza-
tion and higher revenues.

Unfortunately, the requirements for optimizing perfor-
mance are frequently contradictory and and must be bal-
anced. For example, increasing transmission rates often
result in decreased energy efficiency. A well-designed mo-
bile transmitter must not only maximize data throughput,
but also optimize the use of resources, effectively cope
with a fading channel, and meet operational constraints.
These constraints may include a limit on available energy,
and a deadline by which transmission must be completed.

It is not difficult to think of mobile transmitters that face
such issues. A laptop computer uploading data to the inter-
net, a personal digital assistant sending email, or a military
sensor in a remote location, must all operate with finite
battery energy, a limit on transmission power, and a delay
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constraint. For all these applications, increased through-
put and energy efficiency would in the very least result in
longer operational life or lowered cost.

The tradeoff between expended energy and throughput
is of prime importance in increasing transmitter efficiency.
This relationship will depend on the fade state of the chan-
nel being used by the transmitter. For a given fade state,
the data throughput is usually concave in expended energy
(and the expended energy is convex in throughput). This
concavity property results from a number of factors. First,
the Shannon capacity for a channel is a logarithmic func-
tion of energy expended. Moreover, channel capacity is
an approximately linear (and concave) function of energy
in a low signal-to-noise ratio or high bandwidth environ-
ment. Second, under a fixed modulation scheme, through-
put has a linear relation to energy expended. If, in addition,
a power limit is imposed - a maximum on the amount of
energy that can be consumed in a single time slot - this
linear relation then becomes piecewise linear and concave.

With the relationship between throughput and power in
mind, one may envision a transmitter trying to send in-
formation over a channel whose fade state and through-
put/power tradeoff is constantly changing. In this paper,
we seek to maximize the throughput of the transmitter
when there is only a finite amount of energy available.
Conversely, we also seek to minimize the energy required
to send a certain amount of data. For both problems, it is
assumed that transmission must be completed by a dead-
line.

Resource allocation for fading multi-user broadcast
channels is a popular topic in information theory. How-
ever, the resource being allocated is usually average power
or bandwidth, and the quantity to be maximized is most
often Shannon capacity. Goldsmith and Li [11] [8] and
Tse and Hanly [14] have found capacity limits and opti-
mal resource allocation policies for such channels. Biglieri
et al. [1] have examined power allocation schemes for
the block-fading Gaussian channel. Tse and Hanly [10]
have also studied channel allocations in multi-access fad-
ing channels that minimize power consumption. Of par-
ticular relevance is the paper of Goldsmith and Varaiya
[9], which computed expected Shannon capacity for fad-
ing channels under the condition that both the receiver and
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transmitter know the current channel state. This work was
extended by Negi and Cioffi [12], who calculated capacity
and provide power allocation strategies under an additional
delay constraint and assuming that a Gaussian codebook is
used. None of these papers, however, explore the effects of
scheduling transmissions with a finite amount of available
energy.

More recently, as interest in mobile communications
has increased, transmission scheduling for fading chan-
nels has attracted more interest. Ferracioli et al. [4] pro-
pose a scheduling scheme for the third generation cellular
air interface standard that takes channel state into account
and seeks to balance service priority and energy efficiency.
Wong et al. [15] study channel allocation algorithms for
cellular base stations. Given known channel characteris-
tics, the authors seek to assign channels in such a way as
to minimize total power consumed by all the mobile users
communicating with a base station.

Perhaps the work closest to this paper is that of El
Gamal et al. [3], and Collins and Cruz [2]. Both papers
studied the problem of minimizing expended energy for a
transmitter with a buffer accepting packets arriving accord-
ing to a random process. El Gamal et al. postulated a hard
deadline constraint for all data packets, and increased en-
ergy efficiency with slower transmission rates. The prob-
lem was to choose transmission rates for each data packet
that would allow transmission after arrival and before the
deadline, while minimizing expended energy. The paper
did not include the effects of a fading channel. Collins and
Cruz used dynamic programming and a duality argument
to develop a near-optimal transmission policy for minimiz-
ing energy in a fading channel with an average delay con-
straint and a power limit. They assumed energy expendi-
ture that is linear with transmitted data and two possible
channel fade states.

In this paper, we show that dynamic programming can
be used to generate optimal solutions to the dual prob-
lems of maximizing throughput given limited energy, and
of minimizing energy given minimum throughput con-
straints. We solve both problems in the presence of a fad-
ing channel and hard deadline constraints. Furthermore,
we provide tractable numerical methods for the general
case where data throughput is concave in expended energy,
and closed form optimal solutions for special cases.

II. THROUGHPUT MAXIMIZATION

A. System Model

We consider a transmitter operating over a fading chan-
nel. Time is assumed to be discrete, and in each time
slot the channel state changes according to a known prob-

abilistic model. The channel state determines the through-
put that can be obtained per unit energy expended by the
transmitter, and is assumed to be random. The transmit-
ter is also assumed to have a battery with a fixed amount
of energy units available for use. The objective is to find
a transmission schedule that maximizes expected through-
put subject to a constraint on the total energy that can be
expended and a deadline by which it must be consumed
(or otherwise wasted).

Let ak be the available energy in the battery at time slot
k. The battery starts with a1 units of energy and must com-
plete transmission by time slot n. The energy consumed at
time slot k is denoted by ck. Thus, the available energy ak

evolves according to

ak+1 = ak − ck

At each time slot k the transmitter can consume up to ak

units of energy.
The throughput obtained by consuming energy depends

on the channel fade state. Let qk be the channel quality
at time k, and let f(c, q) be the throughput obtained by
consuming c units of energy in the presence of channel
quality q. The function f(c, q) is assumed concave in c
(for example, it may be linear in c).

The objective is to maximize the expected data through-
put achieved by the transmitter given n time slots to trans-
mit data and a1 units of initial energy. Thus, the problem
is to maximize

E

[
n∑

k=1

f(ck, qk)

]
(1)

subject to the constraints that ck ≥ 0 for all k and

n∑
k=1

ck ≤ a1 (2)

In the following subsections, we first study throughput
maximization under the conditions that the channel fade
state qk is known ahead of time and the throughput/energy
tradeoff fk(c, q) is a general concave function for all k.
Next, we assume that qk is random with known distribu-
tion function pqk

(q) (independent across time), and that qk
is not revealed until just before transmission at time k. We
develop a dynamic programming algorithm that provides
an optimal policy for the case where fk(c, q) is concave,
and obtain a closed-form optimal policy for the special
case where fk(c, q) is linear, but subject to a power limit.
Finally, we examine additional variations of the through-
put maximization problem. The dynamic programming al-
gorithm is extended to the case where the channel quality
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qk is revealed only at time k + 1, and evolves as a Markov
process. The case where the transmitter receives additional
incoming energy is also discussed.

B. Known Channel Quality

Let us start by examining the throughput maximization
problem in the simple case where channel quality is com-
pletely known for all time. In other words, qk is known at
time 0 for all k. Although knowing the channel fade state
for all time is an unrealistic assumption, the solution to this
problem provides insight, and is used to solve the problem
when channel fade state is unknown.

Since the tradeoff between throughput and energy is
precisely known for each time slot, we may define

fk(c) = f(c, qk)

The problem (1) can then be restated as maximizing

n∑
k=1

fk(ck) (3)

subject to the same constraints as before, and where every
function fk(c) is concave and known in advance. Further-
more, since it cannot hurt to use up all available energy,
note that the constraint given in (2) is active and met with
equality.

Assuming that each fk(ck) is differentiable, we may
apply the Kuhn-Tucker optimality conditions. It is well
known that when the objective function is concave and the
constraints linear, any solution satisfying the Kuhn-Tucker
conditions is optimal.

The optimality conditions are the following: for all k,

f ′k(ck) − λ− µk = 0
µkck = 0
µk ≥ 0
ck ≥ 0

n∑
k=1

ck = a1

where f ′k(c) is the derivative of fk(c), and where λ and
each µk are Lagrange multipliers.

The last two conditions are simply the constraints of
the maximization. In addition, complementary slackness
holds; that is, either µk = 0 or ck = 0. From this we
conclude that an optimal solution has either f ′k(ck) = λ or
ck = 0 for all k.

Given that each fk(·) is concave, this solution has an
interpretation similar to that of waterfilling in the parallel

Gaussian channel. In the waterfilling process, one allo-
cates energy to the least noisy Gaussian channel until the
marginal return is lower than that of the next best channel,
at which point energy is allocated evenly. Here, we allo-
cate energy to the best time slot until marginal throughput
(determined by f ′k(·)) is reduced to that of the next best
time slot, at which point energy is allocated in such a fash-
ion as to keep marginal throughput identical for both time
slots, and so forth.

C. Unknown Channel Quality

Now, let us examine the problem of throughput max-
imization under the assumptions that the channel quality
qk is not known until just before transmission at time k,
and that qk is random with a known distribution function
pqk

(q), which is independent across time, but not neces-
sarily identical across time.

In this case, the dynamic programming algorithm can
be used to find an optimal policy. As usual in dynamic
programming, we introduce the value function Jk(a, q),
which provides a measure of the desirability of the trans-
mitter having energy level a at time k, given that the cur-
rent channel quality is q. The functions Jk(a, q) for each
stage k are related by the dynamic programming recursion:

Jn(a, q) = f(a, q)

and

Jk(a, q) = max
0≤c≤a

[
f(c, q) + Jk+1(a− c)

]
(4)

where Jk(a) = Eqk
[Jk(a, qk)].

The first term in the right hand side of equation (4),
f(c, q), represents the data throughput that can be obtained
in the current stage by consuming c units of energy. The
available energy in the next stage is then a − c, and the
term Jk+1(a − c) represents the expected throughput that
can be obtained in the future given a− c units of energy.

We claim that Jk(a, q) and Jk(a) are concave functions
of a for all k and q. Indeed, Jn(a, q) = f(a, q) is con-
cave by assumption. If Jk+1(a, q) is concave, it is clear
that Jk+1(a) = E[Jk+1(a, qk+1)] is also concave, since
it is a weighted sum of concave functions. Finally, Jk(a),
as given by equation (4), is an infimal convolution of two
concave functions and is therefore concave [13].

We now observe that the maximization in equation (4)
is of the same form as the problem of allocating energy
between channels of known quality. To obtain an opti-
mal policy for the unknown channel problem of this sub-
section, we solve a two-stage known channel problem for
each possible value of ak, at each stage of the dynamic pro-
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gramming recursion. This is a computationally tractable
problem and can be readily solved numerically.

D. Special Case: Piecewise Linear f(c, q)

We now assume that throughput is a piecewise linear
function of expended energy, and energy consumption at
each time step is subject to a power limit. Then

f(c, q) = qmin(c, P )

where P is the power limit. Substituting into (4), the dy-
namic programming recursion becomes

Jk(a, q) = max
0≤c≤a

[
qmin(c, P ) + Jk+1(a− c)

]
(5)

and

Jn(a, q) = qmin(a, P )

It is possible to precisely identify an optimal policy and
obtain a closed-form formula for this value function.

Theorem 1:
The expected value function Jk(a) for 1 ≤ k ≤ n is

piecewise linear, with the form

Jk(a) =γk
k min(a, P )

+ γk+1
k [min(a, 2P ) − min(a, P )]

+ γk+2
k [min(a, 3P ) − min(a, 2P )]

...

+ γn
k [min(a, (n− k + 1)P )
− min(a, (n− k)P )] (6)

where the number of linear segments is equal to (n−k+1)
and where γk

k , . . . , γ
n
k are constants that give the slopes of

each segment, and are determined recursively. The base
case is

γn
n = E[qn]

and in the recursion γk
k , γ

k+1
k , . . . , γn

k are calculated from
γk+1

k+1 , . . . , γ
n
k+1 for k < n. The constants γk

k and γn
k are

given by

γk
k =E[max(qk, γk+1

k+1)]

γn
k =E[min(qk, γn

k+1)]

and γk+1
k , . . . γn−1

k are given by

γi
k = E[min(qk, γi

k+1) − min(qk, γi+1
k+1)] + γi+1

k+1

Corollary:
An optimal policy for 1 ≤ k < n is to set the consump-

tion ck to:

min(P, ak) for γk+1
k+1 < qk

min(P,max(ak − P, 0)) for γk+2
k+1 < qk ≤ γk+1

k+1

...

min(P,max(ak − (n− k)P, 0)) for qk < γn
k+1 (7)

and to set ck = min(ak, P ) when k = n.

Proof:
Given in the appendix.

The optimal policy can be explained as follows: Assume
ak units of energy are available at time k. At each time
slot at most P units of energy may be consumed. If qk
were known for all k, maximizing throughput would con-
sist of selecting the �ak

P � time slots with the best channel
quality and allocating energy to the best time slots. As-
suming there are enough time slots available, this would
entail consuming P units of energy in �ak

P � time slots and

ak − P �ak

P
�

which is the remaining energy, in another time slot.
Of course, channel quality is in fact unknown. How-

ever, the constants γi
k are representative of expected chan-

nel qualities during future time slots as seen just before
time k. The γi

k values are ordered: γk
k is the expected

value of the best channel and γn
k is the expected value of

the worst, in the sense that

γk
k = max

τ
E [qτ ]

γn
k = min

τ
E [qτ ]

where the optimization is over all nonanticipative stopping
times that satisfy k ≤ τ ≤ n.

If we assume that the ordered list γk+1
k+1 . . . γ

n
k+1 com-

prises the actual future channel fade states, sorted in order
of quality, we may derive an optimal policy from the ear-
lier case with known channel quality. The policy would
be as follows: Take the current channel state qk, insert it
into the ordered list. If qk is among the best �ak

P � channel
qualities, consume P units of energy. If this is not the case
and qk is the �ak

P �th best channel quality, consume

ak − P �ak

P
�

units. Otherwise, do not consume any energy.
Theorem 1 and its corollary state that this policy is in

fact optimal; the assumption that the constants γk+1
k . . . γn

k

are the actual future channel qualities is unnecessary.
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E. Additional Problem Variations

The approach we have developed for the throughput
maximization problem can be used to solve a wide variety
of other variants of the main problem. For instance, one
may eliminate the assumption that the channel is known
just before the decision to transmit. Instead, it can be as-
sumed that the current channel is unknown, but that the
channel in the previous stage is known and that the state
of the channel in the current time step is dependent on the
state of the channel in the previous time step.

This channel dependency can be modeled as a Markov
chain and we extend the earlier results to this case. The
objective is again to maximize the quantity

E

[
n∑

k=1

f(ck, qk)

]

subject to the constraints that ck ≥ 0 for all k and

n∑
k=1

ck ≤ a1

The value function satisfies

Jk(a, qk−1) = max
0≤c≤a

{Eqk
[f(c, qk))|qk−1]

+ Eqk
[Jk+1(a− c, qk)|qk−1]} (8)

and at the last stage, stage n, the value function is

Jn(a, qn−1) = Eqn [f(a, qn)|qn−1]

It can be shown that Jk(a, qk−1) is concave in a for
any fixed qk−1 [5]. Since the weighted sum of a con-
cave function is again concave, it is evident that both
terms on the right hand side of equation (8) are also
concave. An optimal policy can thus be obtained using
our earlier techniques for the case of independent chan-
nels. More precisely, in the Markovian model, the ex-
pectation E[qk|qk−1] and probability distribution function
pqk

(qk|qk−1) take the place of qk and pqk
(qk) in the case

of independent channels. Once this substitution occurs, the
results for section II-C easily extend to the Markov case.

Other problem variations may be obtained by allowing
the transmitter to receive additional energy input at each
stage, and to have a battery of finite size. Unused energy
that cannot be stored in the battery is assumed to be lost.

Let bk be the incoming energy for each stage and let
Emax be the battery capacity. Then the expression for
available energy at each stage evolves according to

ak+1 = min(ak − ck, Emax) + bk+1

Let us suppose bk is known at time 0 for all k. Then the
dynamic programming equation (4) becomes, for k < n,

Jk(a, q) = max
0≤c≤a

[
f(c, q)

+ Jk+1(min(a− c, Emax) + bk)
]

(9)

and for k = n,

Jn(a, q) = f(a, q)

Assuming that Jk+1(a) is concave in a, it can be shown
that Jk+1(min(a−c, Emax+b) is also concave in a. Then,
we can again reduce the maximization in equation (9) to
that of the two-stage known channel problem of equation
(4).

When there is no power limit and f(c, q) is linear, i.e.

f(c, q) = q c

the dynamic programming recursion becomes

Jk(a, q) = max
0≤c≤a

[
q c+ Jk+1(min(a− c, Emax))

]
(10)

and an optimal policy can be obtained in closed form. Fur-
thermore when f(c, q) is of the form

f(c, q) = qmin(c, P )

fast numerical methods can be used to rapidly obtain an
optimal policy [5].

It is also possible to handle the case where the energy
input is random with known distribution pb(b) and where
bk is revealed to the transmitter just before transmission.
In this case, we define

Ĵk(a) = Eqk,bk
[Jk(a+ bk, qk)]

The dynamic programming equation becomes

Jk(a, q) = max
0≤c≤a

[
f(c, q) + Ĵk+1(a− c+ bk)

]
(11)

the proof of concavity still goes through, and the maxi-
mization is again the same as that of the two-stage known
channel problem.

Unfortunately, at present there is no known closed-form
formula for Jk(a, q), for the case of a general function
f(c, q). Moreover, the numerical evaluation of the value
function can become difficult because the expectation over
qk and bk imposes a heavy computational burden. How-
ever, when f(c, q) is linear or piecewise linear, it is pos-
sible to apply the numerical techniques outlined in [5] to
obtain an optimal policy.
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III. MINIMIZING ENERGY

A. System Model

We have thus far analyzed a situation where we have
a given amount of energy, and wish to maximize the
throughput within a fixed time period. These results can
be extended to the somewhat more practical situation in
which the transmitter has a given amount of data d1 that
must be sent within a fixed time period n, and wishes to
minimize the expected amount of energy required to do
so.

Let the variable dk be the number of data units remain-
ing to be sent at time k, and s the amount of data that is
actually sent at time k. Thus dk evolves according to

dk+1 = dk − sk

The channel quality at time k is given by a variable qk,
which is random. Transmitting sk units of data requires
g(sk, qk) units of energy, and the function g(sk, qk) is as-
sumed to be convex in sk. Since the transmission must be
completed by time n, the objective is to find a transmission
policy that minimizes[

n∑
k=1

g(sk, qk)

]
(12)

subject to the constraints that sk ≥ 0 for all k and

n∑
k=1

sk ≥ d1

We show that the energy minimization problem, in the
presence of a convex energy/throughput function g(s, q),
can be solved using methods similar to those used for the
throughput maximization problem. We first examine en-
ergy minimization for the case where the channel qual-
ity qk is known at time k = 0 for all k. Next, we study
the case where qk is revealed to the transmitter just before
transmission at time k. Here, the probability distribution
of the channel state qk is given by pqk

(qk), and the dis-
tribution is assumed to be known and independent across
time. We present a dynamic programming algorithm for
this scenario that can be used to obtain an optimal policy
for convex g(sk, qk). Furthermore, when g(sk, qk) is lin-
ear and subject to a power limit, and qk is subject to certain
integrality constraints, we are able to describe an optimal
policy in closed form. Last, several additional variants of
the problem are analyzed, including a case where addi-
tional data packets with fixed time to live can arrive before
the transmission deadline.

B. Known Channel Quality

We first examine energy minimization in the simple case
where the channel quality qk is completely known ahead
of time. This problem is analogous to the known chan-
nel throughput maximization problem, and its solution is
similar.

Since the channel quality is known, the tradeoff between
throughput and energy is known for all time. Then we may
define

gk(s) = g(s, qk)

The objective is then to solve the problem

min
n∑

k=1

gk(sk)

subject to the constraints that sk ≥ 0 for all k and

n∑
k=1

sk ≥ d1

Applying the Kuhn-Tucker optimality conditions, we
see that the optimal solution has either g′k(sk) = λ or
sk = 0 for all k, where λ is a constant and g′k(sk) is the
derivative of gk(sk). This solution has a waterfilling inter-
pretation: it is optimal to send data during the best time
slot until marginal energy cost (determined by g′k(·)) is in-
creased to that of the next best time slot, at which point
data is allocated in such a fashion as to keep marginal en-
ergy costs identical for both time slots, and so forth.

C. Unknown Channel Quality

We now assume that channel quality qk is not known
until just before transmission at time k, and is random with
a known distribution function pqk

(q), which is independent
across time. This problem is similar to that of section II-C,
and as before, we may use dynamic programming to solve
the problem.

The value functions Jk(d, q) for each stage k are related
by the following recursion:

Jk(d, q) = min
0≤s≤d

[
g(s, q) + Jk+1(d− s)

]
(13)

where the base case is given by

Jn(d, q) = g(s, q)

and the expected value function Jk(d) is defined by

Jk(d) = Eqk
[Jk(d, qk)]
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It can be shown that since gk(s, q) is convex in s,
Jk(d, q) and Jk(d) are also convex in d. This property
implies that the problem reduces to a series of two-stage
known channel problems. These problems are computa-
tionally tractable and can be solved to obtain an optimal
policy.

D. Special Case: Linear g(s, q)

We now examine the special case where g(s, q) is linear
in s/q, so that q can be interpreted as the amount of data
transmitted per unit energy consumed. A linear function
g(s, q) implies that there is no limit on the amount of data
that can be sent or on the energy that can be consumed in
a single time step. In such a situation, the problem reduces
to an optimal stopping problem. However, if we impose a
power limit, the problem becomes more difficult.

The power limit effectively imposes a limit of Pqk on
the throughput, where P is the power limit and qk is the
channel quality. If d is the amount of data remaining to be
sent, the dynamic programming recursion becomes

Jk(d, q) = min
0≤s≤min(d,Pq)

{s
q

+ Jk+1(d− s)} (14)

where

Jk(d) = Eqk
[Jk(d, qk)]

We impose an infinite cost for not sending all the data by
the last stage; the terminal cost function is

Jn+1(d, q) =

{
0 for d ≤ 0
∞ for d > 0

(15)

Let φk(qk) be a value of u that minimizes the expression

(d− u)
qk

+ Jk+1(u)

over all u ≥ 0. Thus,

φk(qk) = arg min
u≥0

[
Jk+1(u) − u

qk

]

Then an optimal policy is as follows:

Theorem 2:
The choice of

sk =

{
0 if dk ≤ φk(qk)

min(dk − φk(qk), P qk) if φk(qk) < dk

attains the minimum in the right hand side of (14).

The proof is omitted for brevity but can be found in [5].

In effect, φk(qk) is a threshold beyond which the energy
cost of sending data immediately exceeds the cost of sav-
ing data for later transmission. It does not depend on the
remaining data to send dk, and is hence easy to compute.
This property allows the development of numerical meth-
ods that considerably speed the process of calculating the
value function, and which are detailed in [7].

When qk is discrete and is restricted in value to integer
multiples of a constant qmin, it is possible to obtain closed
form expressions for the optimal policy and value func-
tion. It turns out that the expected value function Jk(a) is
a piecewise linear function with n− k+ 1 segments, each
with slope 1/ηi

k, where 1 ≤ i ≤ n − k + 1 and where ηi
k

is defined by the following:

Definition:
Given an m-dimensional list (α1, . . . αm) sorted in as-
cending order, and an i-dimensional list consisting of i rep-
etitions of the same number x, let θ(i, x, α1, . . . , αm) be
the (m+1) dimensional sorted list obtained by (i) merging
and sorting the two lists, and (ii) keeping the largest m+1
elements.

Definition:
Define the constants ηi

k for 1 ≤ k ≤ n and 1 ≤ i ≤
n − k + 1 recursively in the following fashion: The base
case for k = n (and i = 1) is given by

1
η1

n

= E

[
1
qn

]

and the recursion to obtain η1
k−1, . . . , η

n−k+2
k−1 from

η1
k, . . . , η

n−k+1
k is given by

(
1

η1
k−1

, . . . ,
1

ηn−k+2
k−1

)

=E

[
θ

(
qk
qmin

,
1
qk
,

1
η1

k

, . . . ,
1

ηn−k+1
k

)]
(16)

The slopes 1/η1
k, . . . , 1/η

n−k+1
k reflect the expected

marginal energy cost of sending a data packet. At each
stage, data may be sent immediately for a cost of 1/qk
energy units, up to a limit of Pqmin units. Alternatively,
data may be sent in future stages for an expected cost de-
termined by Jk+1(a). This function has slope 1/η1

k+1 for
the first Pqmin units of data, and 1/ηi

k+1 for each ith addi-
tional Pqmin units of data. By following the approach of
section III-C, the minimum energy cost may be obtained.
The resulting value function Jk(d, q) is a piecewise linear
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function with slopes

θ

(
qk+1

qmin
,

1
qk+1

,
1
η1

k

, . . . ,
1

ηn−k+1
k

)
(17)

for 0 ≤ d ≤ (n − k + 1)Pqmin. Furthermore, the slopes
for the expected value function Jk−1(a) at time k − 1 are
given by equation(16).

The theorem below formalizes these notions.

Theorem 3:
Suppose the channel quality qk is restricted to integer

multiples of qmin. Then the expected cost function is given
by

Jk(d) =
1
η1

k

min(d, Pqmin)

+
1
η2

k

[min(d, 2Pqmin) − min(d, Pqmin)]

...

+
1

ηn−k+1
k

[min(d, (n− k + 1)Pqmin)

− min(d, (n− k)Pqmin)]

Corollary:
An optimal policy at time k (for 1 ≤ k ≤ n − 1) is to

set sk as follows: For qk > η1
k+1,

sk = min(dk, P qk)

for η2
k+1 < qk ≤ η1

k+1

sk = min(max(dk − Pqmin, 0), P qk)

for η3
k+1 < qk ≤ η2

k+1

sk = min(max(dk − 2Pqmin, 0), P qk)

and so forth until qk < ηn−k
k+1 , where

sk = min(max(dk − (n− k)Pqmin, 0), P qk)

The proof of the theorem is similar to the proof of The-
orem 1 for throughput maximization, and is omitted for
brevity. The major difference arises because of the power
limit. In the throughput maximization problem, the limit-
ing resource is energy and the maximum amount of energy
that can be consumed during each time step is P . In this
energy minimization problem, the constraining resource is
data and the maximum amount of data that can be sent
at each time step is Pqk. There is hence a dependence

on qk that is not present in the earlier problem. However,
by imposing an integer constraint on the possible values
of qk, we can obtain a closed form expression for the ex-
pected value function. Once this is done, the problem is re-
duced to a two-stage known channel quality problem, and
the Kuhn-Tucker conditions dictate the optimal policy.

E. Additional Problem Variations

As in the case of throughput maximization, there are
a number of variations of the energy minimization prob-
lem which can be solved using the approach outlined
above. For example, our methods can accommodate
Markov channel fade states, and also additional incoming
data (which all must be sent by time n) that arrives after
time k = 0.

One problem variation of interest consists of having a
linear g(s, q), but with a limit on throughput, i.e.

g(s, q) =
{ s

q for s ≤ Tmax

∞ for s > Tmax

where Tmax is the throughput limit per time slot. Such
a problem may arise when a fixed modulation scheme is
employed or when data protocols impose a limitation on
throughput (e.g. the TCP window size limit).

A closed-form optimal transmission schedule for this
case can be obtained using a procedure analogous to the
one provided in Theorem 1. This is because a throughput
limit applied to the energy minimization problem has ex-
actly the same effect as a power (energy) limit applied to
the throughput maximization problem. (In the same fash-
ion, a throughput limit in the throughput problem may be
solved by an analog of Theorem 3.)

We now focus our attention on the case where the trans-
mitter must deal with data that arrives after time k = 0,
and where data packets must be sent l time steps after ar-
rival. In this situation, each data packet is said to have a
time to live, or expiration time, of l time steps.

Consider a transmitter that is sending data and that re-
ceives bk additional units of data at each time k, which
must be sent within a time to live l. We assume that bk is
known at time 0 for all k. Data that has not yet arrived can-
not be sent, and data must be sent before it expires. The
objective is to minimize the expected energy required to
send all the data.

It is clear that the data with the shortest time to live
should be transmitted first, although this is not necessary
for an optimal policy. This is because sending data with
a shorter time to live permits greater flexibility in arrang-
ing transmission times. In [5] it is formally shown that the
class of first-in-first-out (FIFO) policies contains an opti-
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mal policy when all data packets arrive with the same time
to live l.

With this property in mind, we may therefore envision
the data packets arriving in a queue, each labeled with its
own time to live and with the restriction that each packet
must be serviced by its expiration time. This expiration
time constraint may be transformed into an equivalent con-
straint where the queue buffer size changes during each
time slot, and any packets that do not fit in the buffer must
be serviced immediately.

Define dk as the total amount of data to be transmitted,
regardless of time to live. Then dk evolves according to
the recursion

dk+1 = dk + bk+1 − sk

where sk is the amount of data transmitted at time k, and
the base case is d1 = b1 We further define the buffer size
at time k to be Bk, and we have the following relationship
between incoming data and buffer size:

Bk =
k∑

i=k−l+1

bi

This definition of Bk insures that packets arriving at time
k are transmitted at time k + l or before.

The objective is to choose sk so as to minimize

E

[
n∑

k=1

gk(sk, qk)

]

subject to the constraints that dk − sk ≤ Bk and 0 ≤ sk ≤
dk.

When bk (and henceBk) is known for all k, the dynamic
programming recursion becomes

Jk(d, q) = min
0≤u≤min(d,Bk)

{
gk(d− u, q)

+ Eqk+1

[
Jk+1(u, qk+1)

]}
where u is unsent data. This problem can be solved using
the methods of section III-C.

Now consider the case where each bk is revealed only at
time k. Here, the state space for the dynamic programming
recursion becomes l+2 dimensional. For all but small val-
ues of time to live l, the problem becomes intractable. In
this situation approximate dynamic programming methods
are necessary. For instance, by simulating trajectories of
bk using a Monte Carlo method, it is possible to obtain an
approximate lower bound on the value function.
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Fig. 1. Channel Quality, Consumption, and Thresholds

IV. EXAMPLES

A. Throughput Maximization

We consider a specific instance of the throughput maxi-
mization problem and compare the performance of an opti-
mal policy to a threshold heuristic that transmits whenever
the channel quality is above a fixed threshold. We find that
no matter what threshold is used in the heuristic, we are
able to obtain superior average performance by using our
optimal policy.

The scenario consists of 50 time steps where the chan-
nel throughput qk per unit energy is integer valued and
uniformly distributed between 1 and 50 during each time
step. It is assumed that consuming c units of energy yields
qk min(c, P ) units of throughput, where the power limit P
for each time step is 10 units of energy. The initial energy
is 95 energy units.

Figure 1 shows a set of randomly generated channel
qualities and the consumption schedule as determined by
the optimal policy. The figure also shows a set of thresh-
olds corresponding to values of γi

j generated by the opti-
mal policy. This allows one to gain an idea of how the
optimal policy functions. The topmost dashed line is the
value of γk+1

k+1 for each time step k. This represents the
expected throughput that can be obtained per unit energy
for the first ten units of energy saved. The dashed line just
below the top is the value of γk+2

k+1 . Unsurprisingly, this
represents the expected throughput per unit energy for the
next ten units of energy saved. The pattern continues for
the rest of the dashed lines.

The lines represent thresholds between consuming and
saving energy. With the battery full, at energy state 95, the
optimal policy consumes energy when channel throughput
is higher the bottom-most threshold line. This line rep-
resents the expected throughput that can be obtained by
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Fig. 2. Throughput for Optimal and Threshold Policies

the 91st to 100th unit of energy saved. Whenever the cur-
rent possible throughput is higher than the expected future
throughput, the optimal policy consumes.

After the first transmission, the battery only has 85 units
of energy. At this point, the threshold line second from
the bottom becomes relevant because it represents the ex-
pected throughput from the 81st through 90th energy units
saved. The optimal policy consumes when the current
channel quality is greater than this threshold. Notice also
that the optimal policy will only consume five energy units
if the current channel quality is greater than this threshold
but less than the threshold just above it.

Figure 2 shows the average throughput obtained by the
optimal policy and different fixed threshold policies. The
fixed threshold policies always consume as much energy
as possible when channel state is better than or equal to
the threshold, and save energy otherwise. The average
throughput for each policy was obtained by generating 500
different channel state trajectories and applying the poli-
cies to each trajectory. The horizontal dashed line repre-
sents the average throughput obtained by the optimal pol-
icy, and the solid line plots the throughput obtained by a
threshold policy as a function of the threshold. The left-
most point on the curve (threshold = 1) represents a greedy
heuristic that transmits no matter what the channel quality,
while the rightmost points represent heuristics that trans-
mit only for the very best channel states. As can be seen
from the figure, the optimal policy obtained a higher av-
erage throughput than any possible simple fixed threshold
policy. The advantage of the optimal policy is further en-
hanced by the fact that finding the best simple threshold is
often nontrivial. Moreover, Figure 2 shows a large sensi-
tivity to error: a poorly chosen threshold will result in a
rapid decrease in performance.
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Fig. 3. Channel Quality, Data Sent, and Thresholds

The optimal policy described above was implemented
on a computer and compared with an earlier-developed
numerical algorithm that directly solves the dynamic pro-
gramming recursion [7]. The numerical algorithm, al-
though capable of handling a much broader array of situa-
tions (such as random power limits and battery recharges)
was significantly slower: on a Sun Ultra 10 computer run-
ning Matlab 6.0, the numerical algorithm was slower by
a factor of 10. Both algorithms are orders of magnitude
faster than a brute-force calculation of the value function.

B. Energy Minimization

We now present a similar example of an energy mini-
mization problem. We consider a scenario where the trans-
mitter has 50 time steps to send 95 units of data. Channel
quality qk is integer and Poisson distributed with a mean
of 20, and a power limit of 10 energy units is imposed.
Sending s units of data requires s/qk units of energy.

Figure 3 shows the channel qualities and the data trans-
mission schedule as determined by our optimal policy. The
figure also shows a set of thresholds corresponding to val-
ues of ηi

k+1 generated by the optimal policy. The topmost
dashed line is the value of η1

k+1 for each time step k. This
represents the expected data that can be transmitted per
unit energy for the first ten units of energy saved. The pat-
tern continues; the dashed line just below the top is the
value of η2

k+1 and represents the expected throughput per
unit energy for the next ten units of energy saved. These
threshold lines are used in the same fashion as those of
Figure 1.

Unlike the problem of throughput maximization, a pol-
icy that uses a fixed threshold at all times would not be
appropriate. This is because unless the threshold is be-
low qmin, the expected cost would be infinite, as there is a
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Fig. 4. Energy Consumed for Optimal and Threshold Policies

positive probability that that the channel quality would be
equal to qmin at all times. We consider instead a threshold
policy of the following type: For times k such that

n− k ≤ d0

Pqmin

(that is, using the parameters in this example, for k ≥ 41),
the threshold is at zero and we always transmit at full
power. For earlier times, we transmit if and only if the
channel quality is above a threshold.

Figure 4 shows the average energy consumed by differ-
ent fixed threshold policies as a percentage of that con-
sumed by the optimal policy. The results were obtained
by applying the policies to 500 randomly generated chan-
nel state trajectories. The optimal policy obtained a lower
energy cost than any possible threshold policy of the type
described above.

V. CONCLUSION

This paper developed strategies for transmission op-
timization over a fading channel with energy and time
constraints. Throughput maximization and energy mini-
mization strategies were developed, first for channels with
known fade states, and then for channels with fade states
unknown until just before transmission. Furthermore,
closed form optimal policies were derived for a number
of cases, and several problem variations were examined.
These variations included throughput maximization in the
presence of additional incoming energy, energy minimiza-
tion in the presence of additional incoming data, and a sce-
nario where the channel fade state evolves according to a
Markov process.

There are several areas that require further investiga-
tion. First, a tractable solution for the important scenario

of energy minimization with random additional data inputs
needs to be developed. Second, the incorporation of bat-
tery effects may yield further performance gains. Finally,
it may be interesting to explore transmission optimization
under the additional constraints imposed by network pro-
tocols, such as those that might arise under explicit TCP
time-out and window size limits.

APPENDIX

Proof of Theorem 1:
We first show that Jk(ak) satisfies equation (6). From

the base case of the dynamic programming recursion, we
have

Jn(a) =Eqn [Jn(a, qn)]
=E[qn] min(a, P )
=γn

n min(a, P )

which satisfies the form of equation (6).
We now assume that Jk+1(a) satisfies equation (6), and

show that Jk(a) has the same property. Substituting equa-
tion (6) into equation (5), we obtain

Jk(a, q) = max
0≤c≤a

{qmin(c, P ) + γk+1
k+1 min(a− c, P )

+ γk+2
k+1 [min(a− c, 2P ) − min(a− c, P )]

...

+ γn
k+1[min(a− c, (n− k)P )
− min(a− c, (n− k − 1)P )] (18)

Using the above expression, one may employ an alge-
braic approach to prove the theorem [5]. However, because
this approach is somewhat tedious, we discuss an alterna-
tive method. The results from section II-C indicate that the
maximizing value of consumption c in equation (5) can be
obtained by solving a two-stage known channel problem.
One “channel” represents the throughput that can be ob-
tained by consuming immediately, qmin(c, P ), while the
other channel represents the expected throughput obtained
by saving, Jk+1(a− c).

In this special case, the two channels have a special
structure: they are both piecewise linear. We may take ad-
vantage of this property when applying the Kuhn-Tucker
conditions (as outlined in section II-B). The derivatives of
both Jk+1(a−c) and qmin(c, P ) are decreasing piecewise
constant functions whose values change every P units. Al-
locating energy to the function with the highest marginal
throughput simply consists of picking the function with the
highest slope. The resulting Jk(a, q) is again piecewise
linear and can be determined precisely since its slopes are
known.
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More formally, the function qmin(c, P ) has derivative

q for 0 ≤c < P

0 for P >c (19)

and Jk+1(a− c) has derivative

γk+1
k+1 for 0 ≤a− c < P

γk+2
k+1 for P <a− c < 2P

...

γn
k+1 for (n− k − 1)P <a− c < (n− k)P

0 for (n− k)P >a− c (20)

To summarize (19) and (20), we say that qmin(c, P ) has
marginal throughput (slopes) q, 0 and Jk+1(a − c) has
marginal throughput γk+1

k+1 , . . . , γ
n
k+1. Note that due to

concavity, the elements of both marginal throughput ex-
pressions are in descending order.

Using the Kuhn-Tucker conditions and applying the wa-
terfilling process, we see that Jk(a, q) has almost the same
marginal throughput as Jk+1(a − c), except that q is in-
serted into it so as to maintain a descending order. The
resulting marginal throughput, γk+1

k+1 , . . . , q, . . . γ
n
k+1 can

be exactly expressed as

max(q, γk+1
k+1),

[min(q, γk+1
k+1) − min(q, γk+2

k+1) + γk+2
k+1 ],

[min(q, γk+2
k+1) − min(q, γk+3

k+1) + γk+3
k+1 ],

...

min(q, γn
k+1) (21)

Since Jk(a, q) is known to be piecewise linear and equa-
tion (21) provides an exact expression of its slope, we may
obtain Jk(a, q) in closed form:

Jk(a, q) = max(q, γk+1
k+1)min(a, P )

+ [min(q, γk+1
k+1) − min(q, γk+2

k+1) + γk+2
k+1 ]

· [min(a, 2P ) − min(a, P )]
...

+ min(q, γn
k+1)

· [min(a, (n− k + 1)P ) − min(a, (n− k)P )]

Taking the expected value with respect to q, and using the
definition of γi

k, we obtain equation (6). The expected
value function Jk(a) is thus a concave piecewise linear
function with marginal throughput γk

k , . . . , γ
n
k .

Now that the form of the expected value function has
been ascertained, the optimal policy readily follows. The

value function Jk+1(a − c) is identical to the one that
would be obtained if, at time k, future channel quali-
ties qk+1, . . . , qn were known to be respectively equal to
γk+1

k+1 , . . . , γ
n
k+1. As seen in the discussion subsequent to

the statement of Theorem 1, an optimal policy for this sit-
uation simply consists of picking the best time slots. The
resulting consumption at time k is then given by (7).
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