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Abstract—We address the issue of optimal energy allocation and admis-
sion control for communications satellites in earth orbit. These satellites
receive requests for transmission as they orbit the earth, but may not be
able to serve them all, dueto energy limitations. The objective isto choose
which requeststo serve so that the expected total reward ismaximized. The
special case of a single energy-constrained satellite is considered. Rewards
and demands from usersfor transmission (energy) arerandom and known
only at request time. Using a dynamic programming approach, an optimal
policy isderived and is characterized in terms of thresholds. Furthermore,
in the special case where demand for energy isunlimited, an optimal policy
is obtained in closed form. Although motivated by satellite communica-
tions, our approach isgeneral and can be used to solve a variety of resource
allocation problemsin wireless communications.

I. INTRODUCTION

OR most satellites, energy management is a critical issue,

for the ssimple reason that energy efficiency in asatellite di-
rectly trandates into cost savings. A satellite with lower energy
requirements requires a smaller energy source (solar panel, re-
actor, etc.) and a lighter battery pack, both of which translate
into weight savings. The weight savings generally provide an
economic benefit - a smaller launch vehicle might be selected,
thus decreasing cost, or more maneuvering fuel could be carried,
which would result in longer system life.

It is thus important to accurately anticipate energy input and
storage requirements for satellites. To do so, one must model
the operation of the satellite and its energy consumption. If ap-
propriate, it may be necessary to determine a strategy for energy
consumption.

For instance, a television broadcast satellite in geosyn-
chronous orbit will enjoy continuous sunshine for its solar cells
except for brief periods of eclipse, while demand for energy is
relatively steady and unchanging [7]. With both input and out-
put of energy relatively static, such a satellite may not require a
sophisticated energy consumption strategy. On the other hand, a
data communi cations satellite in medium or low earth orbit will
experience prolonged periods of darkness and lack of energy in-
put. At the same time, if the satellite is servicing a best-effort
packet data network (such as the Internet), demand for services
will often be bursty, and the satellite must choose amongst users
to be served. In such a situation, the need for an energy con-
sumption strategy is obvious.

Energy input for adata communications satellite in earth orbit
generally consists of power from solar cells[10]. The quantity
and timing of the input are known and can be determined well
in advance. As for energy outflow, a major source of energy
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expenditure is often the power needed to transmit on the down-
link connection back to earth. Receiving signals sent up from
earth requires relatively little power in comparison, and send-
ing signals to neighboring satellites (if the satellite is part of a
constellation with satellite crosslinks) is generally not energy
intensive. In the presence of multiple competing demands for
downlink service, the optimization of energy consumption con-
sists of deciding which usersto serve.

The amount of service demanded by users is often a widely
varying quantity. For instance, a satellite providing wireless
phone service will likely experience much more demand when
itisover New York than when it is over the North Pole. Further-
more, the energy required for servicing different users is usu-
ally not the same. Thunderstorms, for example, can severely
attenuate the satellite signals. Users may differ in distance to
the satellite, overhead atmospheric conditions, or even antenna
size, al of which imply that the satellite must expend a different
amount of energy to service each user. To complicate matters
even further, different users or user classes may provide differ-
ing payments and rewards for service by a satellite.

Thereislittle prior research on the topic of optimal allocation
of satellite energy under limited power and finite energy stor-
age conditions. In the 1970s, a study by Aein and Kosovych
[1] investigated capacity alocation for satellites serving both
switched and packet based networks, while Shaft [12] looked at
unconstrained allocation of power and gain to service commu-
nication satellite traffic. Recently, many researchers have exam-
ined the use of satellites to supplement terrestrial data networks
[12] [13]. Thiswork is most often focused on design and per-
formance evaluation of such space networks, but there is little
attention paid to energy allocation issues for satellitesin such a
network. Perhaps the closest study to our current work is one
by Ween et.al., [14] who studied resource alocation for low-
earth-orbit satellites providing GSM cellular services. Resource
allocation for satellite beams and path selection has been stud-
ied, [9], as has the allocation of bandwidth [2].

Much work has been done on design and analysis of power
systems for satellites. For instance, Kraus and Hendricks have
developed a model for estimating satellite power system perfor-
mance[8]. A study in 1986 examined operational scheduling for
the (then) proposed manned space station [3], and centered on
appropriately matching the many power sources to power sinks
on the space station.

In general, current satellite operators follow heuristic rules
about energy allocation. For example, a simple rule would be
to serve dl requests as long as sufficient energy is available.
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Fig. 1. Energy Flow

Such a*“greedy” approach isclearly suboptimal if different users
require different amounts of energy or provide different rewards
for the same service.

This paper develops a method that allocates energy for asin-
ole satellite. As the satellite moves in its orbit, it encounters
different users with different overhead atmospheric conditions,
financial rewards, demand levels, and so forth. For each unit
of energy expended, the satellite receives a certain amount of
reward, which incorporates distances, atmospheric conditions,
and financial considerations. Thereward changeswith each time
step, and is assumed to be random and unknown until the actual
time of service, athough its probability distribution is known.
The satellite may also face a limit on the amount of energy it
can expend: there may be a physical power limit for its trans-
mitter, or there may simply not be enough customer demand.
The demand is again assumed to be random and not known until
the time of service. At the same time, the parameters for avail-
able energy are largely known: the satellite has a battery whose
sizeis known and finite, and receives energy from its solar cells
according to a known schedule. The objective is to expend the
energy (service the users) in away that maximizes reward.

We present a method for optimizing energy consumption to
maximize reward. In addition, we provide useful suboptimal
heuristics for the general case based on certainty equivalent con-
trol and on a closed-form optimal solution to the special case
where demand is unlimited. Finaly, although originally moti-
vated by a satellite energy allocation problem, our approach has
a natural application to wireless networking, which we discuss
insection V.

Il. SYSTEM MODEL

We consider a satellite system with slotted time, stochastic re-
ward, stochastic demand, and afinite time horizon. The satellite
receives energy in each time dot according to afixed and known
schedule and can store it in a battery of finite size. At the same
time, it serves customers by expending energy. The reward ob-
tained per unit energy changes randomly in each time step. The
demand for energy during each time step israndom aswell. The
objective is to find an optimal policy that maximizes expected
reward by choosing how much (if any) of the demand to service
at each time.

Denote the energy available for the satellite to spend at time
dot £ with the variable ay. It is assumed that during any time
slot, the satellite can spend the energy in its battery plus any in-
coming energy from the solar panels. Thus a; consists of the

energy in the battery plus the energy input for time slot &, de-
noted by,.

The inputs b, represent incoming energy from the solar pan-
els or reactor. Because orbits and reactor performance are pre-
dictable, the energy inputs b, are assumed to be known in ad-
vance. In this model, the satellite starts with energy ag and at
each time k > 0 receives energy input b, according to a prede-
termined and known schedule.

At each time dlot k, the satellite operator may elect to con-
sume an amount of energy ¢, (Up to ax) in servicing users. Any
unused energy $; = ax — ¢, Mmust be stored in the battery, which
has a capacity of E,,... Unused energy that cannot be stored is
lost. Therefore, for any time sot, the energy in the satellite’s
battery consists of available energy from the previous stage mi-
nus consumption from the previous stage, subject to a battery
capacity limit. The energy stored in the battery at time k for use
in the next stage, which we define as s, is then given by the
term s, = min(Fmax, @k — Ck)-

Ascan be seenin figure 1, the energy available for use by the
satelliteat time k + 1 is expressed as.

Ak+1 = min(EmaX7 ak — Ck‘) + bk+1 (1)

Alternatively, a1 can be written in terms of stored energy s
as

g1 = Sk + by 2

Each unit of energy consumed provides the satellite opera-
tor with areward r,. The reward r; is a non-negative random
variable with a probability distribution p,., (1) that varies with
time. Although p.., () is known a priori, the actual value of
rk 1S not known until time k. Similarly, the user’s demand for
energy, dx, is also arandom variable with a priori known prob-
ability distribution pg, (d), but the actual value of demand at
time k is not known until time k. The random variables r;, and
dp, k=1,2,..., n, areassumed independent.

The objective is to choose a consumption policy that maxi-
mizestotal expected reward over atime horizon of n time steps.
The total expected reward is given by
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where consumption is subject to demand and energy constraints.

Notice that implicit in equation (1) is the assumption that any
incoming energy during atime slot can be consumed during that
slot without being stored in the battery. This amounts to assum-
ing that energy input and consumption rates are constant for the
duration of a time dot, a realistic assumption for sufficiently
small ot durations.

Furthermore, there is an inevitable energy loss associated
with charging and discharging a battery, and the energy of a bat-
tery varies with its discharge rate. Although not currently cap-
tured, these battery effects can beincorporated into the model by
proper adjustment of the reward structure. It is also known that
the pulsed discharge of a battery yields significantly more en-
ergy than steady discharge at the same current, and Chiasserini
and Rao [5] [6] have developed a gorithms to exploit this prop-
erty for data transmission. This property could be included in
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our formulation by the use of a model where reward probabil-
ities are dependent on previous consumption and energy state.
Due to the short duration of battery pulses, incorporating this
effect would require the use of very short time slots (e.g. one
second or less).

In the following sections, we formulate the energy allocation
problem within the framework of dynamic programming [4].
Generating an optimal policy and a value function from the dy-
namic programming recursion can be computationally difficult.
We prove concavity of the value function and thereby obtain
some properties of an optimal policy. The concavity property is
also the basis for two separate methods of calculating the value
function and generating an optimal policy, both of which pro-
vide scalability and a significant decrease in computation time.
Next, we analyze the certainty equivalent heuristic and show that
it has a simple structure in the specia case where the expected
reward per energy unit is the same at each period. In addition,
we derive an optimal policy for the special and limiting case
where demand is unlimited. Last, we present a numerical exam-
ple contrasting the performance of the three algorithms with a
greedy algorithm and examine an aternative applicationin wire-
less networking.

I1l. DYNAMIC PROGRAMMING FORMULATION

In this section, we present a dynamic programming algo-
rithm for the problem formulated in the previous section. As
usual in dynamic programming, we introduce the value function
Jk(ag, i, dy), which provides a measure of the desirability of
the satellite having available energy level a; at time k, given
that current demand is dy, and current reward is ;. The optimal
value functions J (ax, i, di) for each stage k arerelated by the
following dynamic programming recursion:

. d
()grilfgak{rk min(cy, di)
+ E(T’k+17dk+1) [Jk+1(min(ak — Cy Emax) + brt1,

Tt drg1)]}

Ji(ar, i, di) =

(4)

The two terms in the maximization represent the trade-
off in reward between consuming and saving energy. The
ri min(cg, dy.) term represents the reward for consumption; the
satellite receives r; units of reward per unit of energy con-
sumed, up to a maximum consumption of d,. The expected
value term represents the value of saving energy. As discussed
earlier, the satellite's available energy in the next stage, axy1,
iSagr1 = min(ar — ¢k, Emax) + br+1. The expected reward
for having this much energy availableis given by the expectation
E[Jky1(ak+1, 7541, dgs1)], which istaken over the distribution
of dk.}rl and Tht1-

In order to maximize expected reward the satellite should
choose the consumption ¢;, that maximizestheright-hand sidein
equation (4). Notice that any consumption beyond the demand
dy, iswasted, asis any energy saved beyond F,..

An aternative expression for the value function can be ob-
tained by using the stored energy term s, = min(a; —

¢k, Emax). Hencefor stage &
Je(ar, i, di) =

max

{ri min(ax — sk, dx)
0<si<min(ar,Fmax

©)

For both formulations, at the final stage, stage n, the value
function is given by

+ B v dir) [Jer1 (88 4 b1y "o, diy1)] }

(6)

This of course represents the reward for consuming the remain-
ing energy in the satellite.

T, 7, dy) =rp, min(ay,, d,)

A. Concavity of the Value Function

The value function can be evaluated numerically; however,
execution time can be slow. The magjor difficulty is computing
the expectation £, ., 4, , ) [Jr+1(Sk + Ori1, k1, dig1)], for
every ay, sk, and k. It is apparent that there is afive-stage loop
here: the algorithm must consider all values of sy, ag, rx, and
dy in each stage, and there are atotal of n stages. Fortunately,
the execution time can be considerably improved by taking ad-
vantage of some properties of the value function.

Theorem 1:
Ji(ak, 71, di;) isconcave in ay, for any fixed v, and dy.

Proof:
Given in appendix.

Corollary:
Let usdefine J,(ay,) as
Jr(ar) = EralJrk(ak, mr, di)]

Then Jy(ay) isconcavein ay aswell.

(7

The concavity properties of the expected value function
Jra1(apy1) dictate the nature of an optimizing consumption
policy. In the dynamic programming recursion, the expected
value function for time k + 1 represents the expected reward for
saving energy at time k. Since this function is concave, it trans-
lates into a decreasing marginal reward for saving energy. The
marginal reward for consuming energy, on the other hand, is r,
and then zero after the demand limit is reached.

Let us assume from now on, and throughout the rest of the
paper, that the variables ay, sk, ¢k, di, Emax, and by are all
integer. This will allow us to consider computational methods
for solving the problem of interest.

Let ¢ (ry) be the smallest s, intherange 0 < s < Epax
such that

T (se + 1+ beyr) — Trpa(se +beyr) <7

and set ¢ (1x) = Epax if such an sy does not exist.
Because of the concavity of Jy(ax), an optimal policy can be
obtained by setting s, to be

for
for
for

min(ag, Emax)

min((bk (’I“k), Ernax)
min(ay — di, Emax)

ar < ¢p(ry)
Or(re) < ap < dp(re) + di
Or(rr) + di < ag

In effect, ¢ (rx) is a threshold beyond which the reward for
consuming exceeds the reward for saving.



B. Computation of the Value Function

The concavity of Jj(az) not only dictates an optimal policy,
but also can be exploited to quickly calculate the value function
itself. Two different methods have been devel oped to do so. The
first method is based on the fact that knowing ¢y (r) eliminates
the need to maximize over consumption in equation (4). More-
over, ¢k (ry) isindependent of the demand and available energy.
Because of this, the expectation of the value function over d;
becomes similar to a convolution while r;, is held fixed. Itis
only necessary to weigh and sum over r;, to get the expectation
over r, and complete the calculation for J;. (ay,).

Using this strategy, the expected value function can be ex-
pressed as

Ji(ar) = Era[Jk(ak, ri, di)]

= Y pe(ri) EalJi(an, i, di) 7] ®)

Tk =0

where ay, 11, and d; are taken as discrete and integer for the
purposes of computation.
It can be shown that whenever a;, < ¢ (7%),

EqlJx(ak, mi.di) |75
= E, a[Jx(ak, Tk, dy)]
= 7k+1(min(ak, Emax) + bk+1) (9)

and when ap > gf)k(’l"k-),

Eq[Jy(ag, ri, di)|7%]
ap—¢(ry) -
= > pa(di) ki1 (min(ak — di, Boax) + bri1)
dp=0
+[1 = Fa, (a, — ¢x(r))]
[re(ar — ¢r(re)) + Jrs1 (min(dr(re), Emax))]

+ e Fa, (ar — dn(rr)) (10)

where Fy, isdefined as

Fa() = pa,(d)

di=0

In practice this method is frequently able to obtain adramatic
improvement in computation speed over the standard dynamic
programming algorithm, in some cases over two orders of mag-
nitude.

The second method of calculating expected value is fre-
guently even faster than the one detailed above. The basis of this
method is achange in the order of summation and the concavity
properties explored earlier. The agorithm essentially chooses
the maximum of either the expected marginal reward from sav-
ing or from consuming for each incremental unit of energy it is
ableto use.

It can be shown that for a; > 0, the expected value function
Ji(ax,) isequal to:

7k(a;€) = jk+1(ak) + Z de (ck)Gk(ak — ck) (11)

Ckzl

and for a, = 0,

T1(0) = Ji41(0) (12)
where JA;Hl (ay,) isthe expected future reward if the current con-
sumption is set to zero. More precisely,

Jit1(ar) =E(r.a)[Jet1 (min(Emax, a)

+ b1, g1, A1) (13)

Also, Fy, (z) and G, (x) are defined by

Fy ()= pa,(dy)

dp=x
Gr(2) = en, ([Ji1 (@)]) = Jfsa () Fr ([ 41 ()])

where [-] isthe ceiling operator that rounds up, and

F, (J’J) = Z Pry, (rk)

Tek=X

Cry, (:E) = Z TkDry, (rk)

Tk=T
and J;_, (z) isthefirst difference of Jj.1(z), defined by

Jpir (@) = Jpy1(z + 1) = Jiga (2) (14)

The above equations may appear complicated, but are rela-
tively easy to evaluate numerically. Notethat 7., () and e, (x)
do not change unless the probability distributions for r;, change
with time. For problems with unchanging probability distribu-
tions, this algorithm is even faster than the first method detailed
above. While both algorithms must loop over a;, and k, the first
method must also loop over r;, and sum over dj,, while the sec-
ond method only needs to sum over cy.

C. Certainty Equivalent Policies

Certainty equivaent (CEQ) control is a heuristic policy that
at each stage applies a decision that would have been optimal if
the future rewards r;, and demands d;, were all deterministic and
equal to their expectations E[r;] and E[dy], respectively. As
seen above, dynamic programming requires taking expectations
over random variables. This process is computation intensive
and can be extremely slow. In the certainty equivalent heuristic,
the decision at each stage is found by solving a much easier
deterministic problem.

The dynamic programming recursion for the deterministic
problem underlying the CEQ policy is given by

Ji(ar) :OSSkSH{&%Z(k)EMX){E[rk} min(ay — sk, E[dg])
+ Js1(8k + brr1)} (15)
and
Jn(ay,) =FE[r,] min(a,, E[d,]) (16)



Oncethevaluefunctions J (ay) are available, adecision at time
k < n — 1 isobtained by setting ¢, = aj — s, where s, isthe
maximizing value in the expression

max {rr min(ay, — sk, di)

0<si<min(ag,Fmax

+ Jit1(sk + b))} (17)
Thedecisionattimen issetto c,, = a,,.

In the specia case where rewards in each time step are inde-
pendent and identically distributed (i.e., p., (ri) = p-(r) and
E[ry] = EIr] is the same for al k), the certainty equivalent
value function takes on a particularly simple form, and the re-
sulting consumption policy isrelatively easy to analyze:

Theorem 2:

Assumethat E[ry] isthe samefor al k. Then, the value func-
tion Jy(ax) for the underlying deterministic problem is of the
form

Ji(ar) = Elr][min(a, ) + ] (18)

where ¢;, and +;, are some constants and 0, > E|[dy].

Proof:

Consider the underlying deterministic problem. Sincethe (ex-
pected) reward is the same at al times, an optimal policy is to
consume as much as possible at al times, and J; (ay) is equal
to E[r] times the total consumption (in the deterministic prob-
lem) over the entire horizon. Let v, = Ji(0)/E[r]. Asay
increases from O, each additional unit of available energy will
be eventually consumed, and the total reward increases linearly.
However, once a;, reaches a certain threshold value §;,, any addi-
tional available energy will have to be wasted and will not result
in any additional reward. The fact that 6, > E[d)] isimmedi-
ate because any available energy up to E[d;] can be profitably
consumed at time & and will not be wasted.

As seen by the preceding proof, the quantities vy, and 6, have
an intuitive interpretation that results in recursive formulas for
computing these constants. Indeed, assume that ;1 and dx11
have already been determined. We then have

& =Jk(0)/Elr]
=Jky1(bey1)/Elr]
=min(bg+1,0k+1) + Vr+1 (19)

To determine ¢, we need to determine the maximum possible
available energy ay, that will not bewasted. Thefirst E[dy] units
are not wasted because they can be consumed immediately. Any
further useful available energy cannot exceed F,,., since this
the most that can be conserved for future use. At the next time,
the maximum useful available energy is §x11. Since there will
be a fresh supply of b1 units, any useful transfer from time &
islimited to max(dx4+1 — br+1, 0). Putting everything together,
we obtain

0k = Eldg] + min{ Epax, max(0, k1 — bgt1)} (20

The CEQ policy is determined by using the special form of
the value function in equation (17), to obtain

max
0<sip<min(ak,Fmax)

+E[r][min(sg + brt1, Ok+1) + Ye+1)

{rk min(ax — sk, di)

(21)

If r, > E[r], the algorithm will consume as much as possible
(up to dj) and then save any remaining energy. If r, < E[r],
the algorithm will save as much as possible, up to 0;41 — brt1
units of energy, and try to consume the rest. This policy appears
to be areasonable one, and in tests the CEQ algorithm regularly
obtained 80% to 90% of the optimal reward.

D. Unlimited Demand Policy

When demand is unlimited one can obtain a closed-form ex-
pression for an optimal consumption policy, described by asim-
ple threshold scheme. This formulation also applies to the case
where demand is finite but is guaranteed to always exceed the
available energy. This policy can be used as a heuristic to solve
the general demand-limited case.

As before, the objective is to choose a consumption policy
that maximizes total expected reward over n time steps. Since
demand is unlimited, the dynamic programming recursion be-
COMmes:

max
0<ck<ag

+ E[Jg+1(min(ar — ¢k, Emax) + bkt1,75)]}

For 1 < i < j < n, define the constants

Jiar, ) = {rece

(22)

aj = Elrj]
o = E[max(r;, aé-“)]
ﬂg = Emax

B; = max(8;t! — b;,0)

Theorem 3:
An optimal consumption policy, for 1 < k < n, isgiven by
the following: If r, > a£*1, then

(23)

C = ag
Otherwise,

¢, = max(ag — ﬁ;ﬁc+1, 0) (29)
where j isthesmallest j intherangeintherangek+1 < j <n
such that rj, < o+,

Furthermore, the value function is given by

Ji(ag,me) =

k+1

[max(rg, o ktl

) = max(ry, oy, "7)] - [min(3F", ax)]

k+1

+ [max(ry, o, 71) — max(ry, 0, 73)] - [min(8;71, ar)]

+ [max(r, aZi%) — max (7, aZi})] . [min(ﬁ,{fié, ag)]

+ [max(ry, op 1) — i) - [min(B17, ax)]

+rrap +w (25)
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where w is a constant (the actual value of which does not affect
policy).

The physical intuition behind the constants above is as fol-
lows: a§ represents the optimal expected reward in an optimal
stopping problem in which there is a unit of energy that can be
consumed at any timei, i+ 1, . .. j between stagesi and 5. (The
reward r;, for any given time step isnot known until thetime step
is reached, but the probability distribution for reward is known
for each time.) Notice that for a given 1, a} is non-decreasing
with j.

The constant ﬁj.“ represents E,,.. |ess the incoming energy
bit1+---+b;_1 betweentimei + 1 andtime j — 1, aslong as
it does not become negative. Notice that 3;*" is non-increasing
with j. Itisinterpreted asthe amount of energy at time that can
be saved until time j, without overflowing the battery, in view
of the future energy inputs b;41, . . .

The policy can be interpreted as follows: If the current re-
ward r;, is greater than the expected reward for consuming at
an optimally chosen time between time £ + 1 and time n, then
the policy consumes al available energy immediately. In other
words, if the expected reward for saving is less than the reward
for consuming, the policy consumes.

If not, the policy finds the smallest time 5 such that current
reward is less than the expected reward given that the user must
consume between time k£ + 1 and time j. The policy then con-
sumes available energy less ﬁf“ (subject to the constraint that
consumption cannot go below zero). Note that in all instances
the policy consumes any energy that cannot be saved in the bat-
tery.

This closed form solution has an execution time dependent
only on the number of stages n and the number of possible val-
uesfor the rewardsr;.

7bj—1-

Proof of Theorem 3:

The theorem can be verified through tedious algebraic ma-
nipulation of equation (22). However, there is another approach
that is more intuitive. Notice that it is never optimal to save
more energy than the battery capacity. Any amount of saved
energy greater than the battery capacity is wasted, whereas one
can aways obtain some reward (however minimal) by consum-
ing, since demand is unlimited.

With this observation in mind, let us consider the battery as
a queue for energy packets with a capacity of ... Assume
without loss of generality that each energy packet is of size one.
At each time k, by, energy packets arrive, and the satellite can
“service” any number of energy packets in the queue to obtain
7 Units of reward per unit energy. Thetask isto find the service
policy that generates the greatest expected reward.

Now consider the class of first-in-first-out (FIFO) policiesfor
managing this queue. First, notice that any energy packet in the
gueue must be serviced or discarded as soon as E,,. additional
energy packets arrive after it. If the energy packet is not ser-
viced, queue capacity is exceeded and the energy packet will be
wasted.

Since the schedule for energy packet arrivals is known, each
energy packet in this queue has an effective expiration time. The
expiration time for each energy packet is the time at which a
total of E,., additional energy packets arrive after it. Under an
optimal policy, the energy packet must be serviced by thistime.
Note that as one moves from the head of the queue to the end
of the queue, the time until expiration for each energy packet is
non-decreasing.

Given these expiration times, an optimal FIFO policy simply
picks the best time between the current time and the expiration
time of the energy packet to serviceit. Thisinvolves solving an
optimal stopping problem for each energy packet.

The solution to the optimal stopping problem is well known:
For an energy packet with expiration time j, an optimal strat-
egy is to compare current reward rj, with o', 1f 1y < o1
the satellite should save the energy packet; if not, it consumes
the energy packet. If the satellite consumes an energy packet
with expiration time 7, it also will want to consume all energy
packets with expiration times before j. At time k, the num-
ber of energy packets with expiration time before j is given by
max(a; — B;7",0). This leads us to the optimal policy de-
scribed above.

Since thetime until expiration is shorter as one moves toward
the head of the queue, the satellite will always service energy
packets according to FIFO ordering. We have thus obtained an
optimal FIFO poalicy for servicing energy packets. Finally, note
that because the energy packets are indistinguishable, an optimal
FIFO policy is also an optimal policy in general.

IV. EXAMPLE: A Low EARTH ORBIT SATELLITE

Three procedures for allocating energy have been introduced:
the optimal algorithm for the general case, the certainty equiv-
alent method, and the optimal algorithm for the unlimited de-
mand case, which can be used as a heuristic for the genera
case. We now apply these three procedures to a hypothetical
satellite in low earth orbit and compare their performance to a
simple greedy algorithm that expends as much energy as it can
- min(ay, di) units of energy - during each time step.

The objective of the algorithms is to maximize total reward
obtained over a 24 hour time period, which is divided into 15
minute time slots. The hypothetical satellite has a 90 minute
orbital period, half of which is spent in sunlight, half in dark-
ness. Accordingly, the satellite sees a pattern of three time slots
with incoming energy, followed by three time slotswithout. The
satellite starts with 10 units of energy and receives 10 units of
energy fromits solar cells during each time slot it isin sunlight.

At each time dlot k, the satellite can expend up to dj, units of
energy for r; units of reward per unit energy. The demand dj,
is Poisson distributed with parameter A, and thereward r;, hasa
discrete uniform distribution between 1 and 50.

Figures 3 and 4 show the performance of the algorithms in
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garnering reward as battery capacity changes from 5 to 150,
with A = 15 and A = 50 respectively. Figure 5 shows the
performance of the policies resulting from each algorithm as A
changes from 2 to 60 and for a fixed battery capacity of 50 en-
ergy units. In each figure, every data point is the average per-
formance observed in 50 simulations of a policy over the 24-
hour horizon. The reward obtained by each policy isplotted asa
fraction of the reward obtained by the policy resulting from the
optimal agorithm.

As can be seen from the figures, the three algorithms intro-
duced earlier significantly outperformed the greedy algorithm.
The certainty equivalent heuristic always obtained at least 80%
of the optimal reward, while the unlimited demand heuristic was
always above 70%. Figure 5 also shows that the unlimited de-
mand policy performed particularly well when the average de-
mand was relatively high. Also notice from figures 3 and 4 that
the performance of every suboptimal algorithm deteriorated as
battery capacity increased. The explanation is that alarger bat-
tery leads to more choices as to when to consume energy, which
the heuristics do not handle as well as the optimal algorithm.
In contrast, when the battery capacity was small, all algorithms
performed similarly, as the opportunity to save energy was lim-
ited by the battery capacity.

Note that while the plots show the relative performance of the
greedy algorithm deteriorating with increasing battery capacity
and increasing demand, the total rewards obtained by the greedy
algorithm actually remained fairly constant. It is easy to see that
increasing battery capacity would have little impact on the total
reward obtained by the greedy algorithm, which stores as little
energy as possible. Similarly, the greedy agorithm would not
be able to take advantage of increased demand levels by saving
energy for future, higher reward opportunities. Hence, the de-
teriorating relative performance of the greedy algorithm in the
simulation was due mainly to the increased reward obtained by
the other algorithms, which were able to exploit higher battery
capacity and demand levels in making consumption decisions.

The agorithms were run on a Pentium 111 computer using
Matlab 5.0. Computing value functions and policies for a typi-
cal data point from figure 5 required roughly .92 seconds when
using the second method for calculating an optimal value func-
tion (equation (11)). The unlimited demand algorithm required
.51 seconds and the CEQ algorithm .39 seconds. In contrast,
the greedy algorithm required only .006 seconds, while a direct
calculation of the optimal value function required about 26 min-
utes, 39 seconds.

V. OTHER APPLICATIONS

The agorithms and analysis presented above are applicable
in many situations where there is a stored resource that can be
expended for a reward. For instance, the operator of a hydro-
electric dam with alimited supply of water could use a similar
algorithm to maximize revenue when faced with a fluctuating
price for power.

One particularly interesting application is that of maximiz-
ing throughput in a fading channel given finite battery capac-
ity. Assume that a mobile transmitter seeks to transmit over a
fading channel where throughput per unit energy expended is
not known until the time of transmission. The probability den-



sity of the throughput isindependently distributed over time and
known. We aso impose a power limit on the transmitter and a
deadline by which the transmission must take place.

This application givesrise to two problems that can be solved
using the approach described in this paper. First, one may seek
to maximize expected total throughput during a fixed time pe-
riod and given a limited amount of energy. Second, one may
seek to minimize the energy expected to be consumed given a
fixed amount of datato send during afixed time period.

For thefirst problem, if throughput is seen asareward rate and
power limit seen as demand, the resulting formulation is almost
identical to the satellite energy allocation problem. There are
only two places where the problems differ. First, energy inputs
for the mobile transmitter are zero for all time. Second, in most
cases power constraints will be static and known a priori. These
two conditions will tend to significantly simplify calculations;
nevertheless, the algorithms detailed above will be completely
applicable. In particular, note that the unlimited power/demand
algorithm degenerates to an optimal stopping problem.

The second problem can be solved with techniques similar to
the ones used for the first problem; however, the problem is a
minimization rather than a maximization, and some modifica-
tion of our approach will be necessary.

VI. CONCLUSION

This paper developed a dynamic programming formulation
for optimizing satellite energy allocation and presented three
methods for efficiently obtaining a solution. The three meth-
ods trade off computational complexity with optimality and
their performance and properties have been analyzed. The ap-
proach developed is general and can be used for other stored re-
source alocation problems, including throughput maximization
for wireless communications.

There are a number of areas for further investigation. The
algorithms and policies presented thus far are valid only for a
single satellite. Additional work needs to be done on extending
the results to a constellation of satellites. It would also be inter-
esting to explore the use of these algorithms as a satellite design
tool rather than as an aid to operation. Because the algorithms
run quickly on a computer, it is easy to see the effects of are-
duction in battery capacity or an increase in average demand.
Another natural extension of our model would be to capture
battery charge/discharge effects, as discussed earlier. Finaly,
it would be interesting to investigate the use of extremely short
time steps: the algorithms could be used to decide whether to
accept or reject individual packets.

APPENDIX
Proof of Theorem 1: Concavity of the Value Function

The dynamic programming equations for stochastic reward
and stochastic demand energy allocation are given by

max {r, min(ay, — sx, dy)

Ji(ar, i, di) = !
0< s, <min(a, Emax

+ By sdis) [Tr1 (85 + bk, Thg1, diy 1))} (26)

and

Jn(an: Tn,y dn) =Tn min(ana dn) (27)

We now show that J(ax, 7k, di) is concave with respect to
ay, for every r, and dj,.

Definition:

A function f : ® — R is concave if for 0 < A < 1 and
A+ A =1wehave

FOy+X2) = M(y) + Af(2)
fordl y,z € R.

(28)

Lemma 1:
If f and g are concave and o > 0, then f + g and of are
concave.

Proof:
Follows from definition of concavity.

Lemma 2: 7
Ifo<A<land A+ \=1,then

Amin(a, b) + Amin(c, b) < min(Aa + Ac, b) (29)

Proof:
For fixed b, the function min(a, b) is a concave function of a
and the result follows.

Theorem:
Ji(ak, 1, dy) isconcave in ay, for any fixed v, and dy.

Proof:

We use induction. First, note that the value function
Jn(an,r,) is concave in a,, and the expected value function
E[Jn(an—1 + by, ry)] is concave in a,,—;. Indeed, from the
problem formulation, we see that

Jn(ana ) dn) =Tn min(am dn)

is a piecewise linear and concave function of a,,. J,(a,—1 +
by, rn,dy) is concave in a,—; as well, and by lemma 1, the
expectation E;. 4[Jy, (an—1+bn,n,dy)] isalso concaveto a,, 1
sinceit isaweighted sum of concave functions.

Now assume E,. 4[Jk+1(ak+bk+1, Tk+1, dip+1)] iSCOncavein
ay. We show that Jy(ag, rk, dy) is concave to a. To complete
the induction, we also show that E, 4[Jk(ax—1 + bk, i, di)] IS
concavein ay_1.

Let uslook at Ji(x, 7k, di) and J(y, 7, di ). We have

Ji(x,rg, dy) = max {re min(x — si, d)

a.
0<si<min(z,Emax)

+ Er al k1 (86 + bk, Tht1, drt1)]}

There must be an optimizing value for s,. Denote this by s7.
Then

Ji(x,rk, di) = rmin(z — sg, di)

+ By aJk41(Sk + b1, Tir1, di1)]
Similarly,

(Y, di) = r min(y — s, d,)
+ Er alJiet1(8% + bkg1, rit1, dit1)]



where s} is an optimizing value for s; in the equation for
Ji(y, 1, dy;). Combining the two equations and weighting by
AOrA,

The terms min(z — s7,dy) and min(y — s}, d,) are piecewise

Mg (2, 7k, dig) + Ak (Y, Txs die)
=\{ry min(z — s%, dx)
+ EralJrs1(sk + b1, o1, digr)]}
+ X{’I‘k min(y — SZ, di)
+ EralJk1 (8] + brg1, Tra1, dega)]}
=ri(Amin(z — s}, dx) + Amin(y — s}, dy))
+ AE; a[Jrt1(SE + bkt1, Tkt 1, di41)]
+ AEra[Jri1(sp + brgr, ki1, dira)]}

linear and concave. By the induction hypothesis, we also know
that E, q[Jit1(5% + brs1: Thet1, digr)] and By [Ty (s) +
bk+1,Tk+1, dip+1)] @econcavein sg. Then

Now examine the range of the maximization.

Mg (@,r1, di) + ANy (y, e, di)
< rpmin(Az + Ay — Asf — As¥, dy)
+ Er[Jk—&-l()\si + XSZ + bk—l—l, Tk+1, dk+1)]

Since sf <

min(z, Eyax) and s}, < min(y, Emax),

Asy —&—st <z + My

and
Asi + Asp < ABmax + APBmax
Combining,
Asy + st < min(Az + Ay, Epax)
and

)\Jk(LL‘,Tk, dk) +XJk(y,?“k7dk)

< max _
0<sk <min(Az+Ay, Fmax)

+ EralJet1(8k + bry1s Trg1, dry1)] }
:Jk(>\1‘ + Xy7 Tk dk)

{ri, min(A\z + \y — s, dy,)

(30)

This shows that Jy(ag, %, di) IS concave in a;. A direct ap-

plication of lemma 1 showsthat E, 4[Jx(ax—1 + bk, Tk, di)] iS

also concavein a1 and theinduction is complete.

(1
(2

(3l
(4
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