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Abstract

We prove that the continuous-time discrete-agent system studied in [1] admits a unique solution
for almost all initial conditions.

We consider the following continuous-time model: each of n agents, labeled 1, ..., n, maintains a real
number x;(t), which is a continuous function of time, and evolves according to

ri(t) = 2:(0) + / S () —wln)dr, (1)

Jilwi(m) =z (7)|<1

We say that & € R™ is a proper initial condition of (1) if:

(a) There exists a unique z : RT — R™ : ¢t — x(t) satisfying (1), and such that z(0) = z.

(b) The subset of R" on which x is not differentiable is at most countable, and has no accumulation
points.

(c) If z;(t) = x;(t) holds for some t, then z;(t') = x;(t'), for every t' > t.

We then say that the solution x is a proper solution of (1). We provide in this note a detailed proof of
the following theorem.

Theorem 1. Almost all & € R™ are proper initial conditions, that is, the set of non-proper initial
conditions has zero Lebesgue measure.

1 Constructing a solution

Let us fix the number of agents n, and for each graph G({1,...,n}, E) define X¢ C R™ as the subset in
which |z; — x| < 1if (i,j) € E, and |z; — x| > 1if (i,j) € E. (Note that X¢ is an open set.) When
restricted to any given X¢, our system (1) is equivalent to the linear time-invariant differential equation

b= > (), (2)

Ji(ij)EE

which admits a unique solution for any initial condition. This system can be more compactly rewritten
as & = —Lgx, where L¢g is the Laplacian matrix of the graph G.

Consider an initial condition Z and suppose that it belongs to X, for some Gy. We construct a
solution to (1) as follows. First, let 20 : R — R" be the unique solution of #(t) = —Lg,x(t) for which
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2°(0) = Z, and let to = 0. Then, for successive values of k, starting with k = 0, and given t;, and z(t),
do the following:

If 2%(t) € X, for all t > t;, then
Set x(t) = z*(t) for all t > t;,
Stop (success)
else
Let tk+1 = mint>tk {t : l'k(t) S 8XGK}
Set x(t) = z¥(t) for all t € (tg,trs1]

If z(tx) belongs to the boundary of more than two sets X¢
Stop (failure)
End if

Let Gi41 be such that x(ty) € 0Xg, N0Xg,.,
Let 2**! be the unique solution of #*+1 = —Lg, , 2% for which z¥ 1 (t)41) = 2(tis1)

If there exists some € > 0 such that z*T1(t) € X, ,, for all ¢t € (tg41,tk+1 + €) then
increment k£ and start the next iteration
else Stop (failure)
End if

We say that the procedure fails if it stops on one of the two “stop” commands labeled with “(failure)”,
and succeeds otherwise. Observe that if it succeeds, it either produces (i) an increasing finite sequence
to,t1,...,ty, and a function z defined for all positive ¢, or (ii) an infinite increasing sequence tg, t1, . . .,
and a function x defined on the interval [0, limy_, o tx). This interval will not cover the entire time axis
if the sequence of t;, converges to a finite limit. In any case, one can verify that the function x produced
is a solution to the system (1) on its domain of definition, [0, limg_, o tx).

In the sequel, we use e; to denote the vector in 1™ whose ith entry is equal to one, with all other
entries equal to zero.

2 Problematic points

We now define a set of problematic points on the boundaries of the sets X and show that, provided that
the procedure described above never encounters such a problematic point, it produces a proper solution.
We say that a point x € R" is problematic if it belongs to the boundary of more than two sets X¢, or if
the following three conditions are satisfied.

(a) 2 € Xg, N X, for some G1,Go. These graphs necessarily differ only by the presence/absence of
one edge, which we denote by (3, j).

(b) (e; —e;)TLa,x = 0.

(c) (es —e€;)"La, #0.
We denote by P the set of problematic points. Observe that P C |J,0X¢. The following lemma
characterizes the change of the agent velocities when crossing the boundary between sets.

Lemma 1. Let G- ;) be a graph in which i and j are not connected, G(; jy = G- ;) U{(i,7)}, and
r € 0Xqg , , N0Xg,, suchthatz; > z;. We have

—egﬂLgﬂ(i’j)x = —ezﬂLG(m)x +1 —engﬂ(iyj)x = —e}ﬂLG(iJ_)J; — 1.
Proof. Since z; > x; and z € anﬁ(m.) N 8XG(L
the definition of L,

;,» we have z; —x; = 1. The result follows because by

_ ot —
eiLG(L”x = e; La +
—€ila, v = —ejLa v+ (v — )



O

Lemma 2. If the procedure described in Section 1 never encounters a problematic point (i.e., if x(ty) € P,
for all k), it succeeds.

Proof. Consider step k + 1 of the procedure, and suppose that x(t;4+1) is not problematic. We will show
that the procedure does then not fail at that step. The first reason for which it could fail is if z(tx41)
belongs to the boundary of more than two sets X¢. This would however contradict our assumption that
x(tg+1) is not problematic. The other possible reason for failure is that there is no ¢ > 0 for which
2" (t) € Xg,,, for all t € (tg41,tps1 + €), where 2*! is the solution of "™ = —Lg, 2! with
a* (1) = 2 (ter).

Since x(tj41) is not problematic, it belongs to the closure of only two sets X¢, and X¢,,, and is at a
positive distance from all other sets Gy and G1, that differ in only one edge (7, j). We assume without
loss of generality that x;(tx+1) > =, (tg+1)-

Let us first assume that the edge (i, j) is present in G and absent in G 1. The boundary is 0X¢,,,
is locally described by x; — x; = 1. Any « close to x(tg+1) is in Xg, 41 if @y —2; > 1, and in Xg, if
z; —x; < 1. If there is no € > 0 such that 2**1(t) € X¢, ,, for all t € (tyy1,tks1 +€), the differentiability
of ¥+ implies that

d
0> pn (mf"‘l(t;ﬁ_l) - x§+1(tk+1)) =—(e; — ej)TLGk+1x(tk+1)- 3)

On the other hand, for ¢t € (¢, tx+1), 2(t) = 2¥(t) is by construction in X, , and it follows then from the
continuity of x and the definition of that set that 2% (t) — xf (t) < 1 holds on this interval. As a result,

— lim i (t) —af(t) — 1 >0, (@)

t=tp 1 (RTINS t—t a

~(ei— &) Layaltin) = 5 (250~ 5(0)

which by Lemma 1 implies that —(e; — e;)? Lg, @ (tk+1) > 2, contradicting (3).
A contradiction can also be obtained, by a similar argument, in the case where (i, 7) is absent in Gy,
and present in Gy11. Therefore, the procedure succeeds at every step k. ]

The proof above only uses the condition that no x(tx) belongs to the boundary of more than two
sets; under this condition, the procedure succeeds and we obtain existence of solutions, even if other
problematic points are encountered, satisfying the three conditions (a)-(c). Ruling out this latter kind
of problematic points, however, is essential in order to prove uniqueness of solutions, as will become
apparent in the proof of the next lemma.

Lemma 3. If the procedure described in Section 1 never encounters a problematic point (i.e., if x(ty) € P,
for all k), the function x that it produces is the unique solution of (1) on the domain of definition of x.

Proof. By Lemma 2, if the procedure never encounters a problematic point, it succeeds and creates a
function x that, on its domain of definition, solves (1), and a sequence (tg,t1,...). Suppose now, to
obtain a contradiction, that there exists another function y that solves (1) on the same domain, with
y(0) = 2(0). Let ¢* be the largest time such that x(t) = y(¢) holds for all ¢ € [0,t*].

Observe first that there cannot exist any e > 0 and graph G such that z(t),y(t) € X¢ for all
t € (t*,t* + ¢). Indeed, on such an interval, both x and y would be solutions to 2 = —Lgz with
z(t*) = x(t*), and would thus be identically equal, in contradiction with the definition of ¢*. Since x and
y are continuous, this implies in particular that z(¢*) must belong to the boundary of (at least) two sets
Xa, X¢ and therefore that t* = ¢ for some k.

By assumption, z(tj) is not a problematic point and is thus at positive distance from all sets except
Xea,._, and X¢,, and Gj—1 and G}, only differ by the presence or absence of one edge (i,7). Suppose
without loss of generality that x;(tx) > x;(tx), and consider the case where (4, j) is present in Gj_1 but
not in Gy. Note that (e; —e;)T L, , # 0, because otherwise z;(t) — z;(t) would be constant on [t_1, tx]
and x would never reach the boundary of X¢, . Using the argument that led to (3) we must have

s — )" Lo yalt) = lim 5 @(0) — 2,(0) > 0. o)



Thus x(t)) satisfies conditions (a) and (c) for being problematic. Since x(tj) is not problematic, it must
violate condition (b), and we obtain —(e; — ;)T L, _,z(tx) > 0. Using then the argument that led to
(4), we obtain that

—(ei —ej)T Lg,x(ty) > —(e; — e;)" Lg,_,z(ty) > 0.

Since y satisfies the integral equation (1), it can be seen that

liminf(e; — ej)T . M

> min { — (e; — e)" La,_,o(tn), —(es — )T La,a(te) } > 0.
tit* t— 1

This implies that there exists some € > 0 such that for ¢ € (¢, t, +€), both z(¢) and y(t) lie in G}, which
we have shown above to be impossible since t* = t.
A symmetrical argument applies to the case where (4, 7) is absent from Gj_; and present in Gi. [

There remains to prove that the unique solution x is defined for all ¢ > 0. We have seen that this was
the case if the sequence tg,t1,... produced by the procedure of Section 1 is finite, and that x was defined
on the union of the intervals [tg,tx+1] if the sequence is infinite. We now show that infinite sequences
(to,t1,...) necessarily diverge, and thus that Uy~ o[te, te+1] = RT.

Lemma 4. Suppose that the procedure described in Section 1 never encounters a problematic point (i.e.,
that x(ty) € P, for all k), and produces an infinite sequence of transition times to,t1,.... Then, this
sequence diverges, and therefore there exists a unique solution x, defined for allt > 0.

Proof. Since the sequence t1, s, ... of transition times is infinite, a nonempty set of agents is involved in
an infinite number of transitions, and there exists a time T after which every agent involved in a transition
will also be involved in a subsequent one. Consider now a transition occurring at s; > 7" and involving
agents i and j. We denote by 4;(s; ) and i (s]) the limits lim;qs, #;(t) and limg |5, #;(t) respectively. (Note
that these limits exist because away from boundary points, the function x is continuously differentiable.)

Suppose without loss of generality that z; > ;. We consider two cases. (i) Suppose that ¢ and j
are connected before time s; but not after. The update equation (1) implies that ;(s]) = @;(s]) —
(zj(s1) —xi(s1)). Noting that x;(s1) — x;(s1) = 1, we conclude that that i;(s]) = i;(s] ) + 1. Moreover,
x; — x; must have been increasing just before s, so that &;(s; ) > @;(s7 ). (ii) Suppose now that ¢ and
j are connected after s; but not before. Then, i;(s]) = 4;(s7) + 1, and since z; — x; must have been
decreasing just before s1, we must have &;(s] ) > @;(s7 ). In either case, there exists an agent ky € {7, j}
for which iy, (s17) = max{#;(s7),4;(s7)} + 1. It follows from s; > T that this agent will get involved in
some other transition at a further time. Call s, the first such time.

The definition (1) of the system implies that in between transitions, |#;(t)] < n for all agents. Using
(1) again, this implies that |7;(¢)| < 2n? for all ¢ at which ¢ is not involved in a transition. Therefore,
ik, (55) > @, (s7) —2n%(s2 — 51) = @i(s] ) +1—2n2(s9 — s1). Moreover, by the same argument as above,
there exists a ko for which iy, (s3) = @5, (s5) + 1 > 24(s7) + 2 — 2n%(s2 — s1). Continuing recursively,
we can build an infinite sequence of transition times sy, so,... (a subsequence of t1,ts,. .. ), such that for
every m,

ip, (sh) > @i(s7) +m — 202 (s, — 51).

holds for some agent k,,. Since all velocities are bounded by n, this implies that s, — s; must diverge as
m grows, and therefore that the sequence t1,ts,... of transition times diverges. ]

The proof of Lemma 4 also provides an explicit bound on the number of transitions that can take
place during any given time interval. The following proposition summarizes the results of this section.

Proposition 1. If z € R" \ (U, 0X¢) is not a proper initial condition, then the procedure of Section 1
will reach some problematic point x(t) € P C |J, 0X¢.

Proof. Tt follows from Lemmas 2, 3 and 4 that if Z does not satisfy condition (a) or (b) for being proper,
the procedure of Section 1 fails at some problematic point. Observe now that any Z satisfying condition
(a) for being proper also satisfies condition (¢). To see this, suppose that z is a solution of (1) with
x(0) = Z, and that z;(t) = x;(t) holds for some ¢, but not for some latter ¢ > t. One can then build
another solution by switching z; and z; after time ¢. It follows that z is not a unique solution of (1), and
Z does not satisfy condition (a) for being proper. O



Note that the absence of a problematic transition point is sufficient but not a necessary condition for
Z to be proper. In particular, the initial condition & = %(—1, —1,0,1,1) is a problematic point because
it belongs to the closure of more than two sets. There holds indeed |Z1 — Z4] = |1 — T5| = |T2 — Z4| =
|#2 — ¥5] = 1. However, one can verify that Eq. (1) has a unique and proper solution x(t) = Ze 5.

3 Measure of the set of non-proper initial conditions

We now show that unless Z belongs to a certain zero measure set, the procedure starting with & never
encounters a problematic point. We denote by p the natural measure on the n — 1 dimensional set
Ug 90X, and begin by proving that p(P) = 0. The proof consists of showing that P is the union of
(n — 2)-dimensional affine spaces.

Lemma 5. The set P of problematic points measure has zero measure in |J, 0Xq.

Proof. Observe first that the points that belong to the boundary of more than two sets necessarily satisfy
z; —x; = £1 and =, — x, = £1, with at least one of p or ¢ different from ¢ and j. The set of these
points is thus included in a finite union of (n — 2)-dimensional affine spaces, and has zero measure in the
(n — 1)-dimensional set | J, 0X¢.

Consider now a point x satisfying the three conditions (a)-(c) for being problematic. Condition (a)
implies that ; — x; = £1 for some i, j. Moreover, it follows from condition (b) that (e; — e;)" Lg,z =0
holds for some graph G;. Condition (c) implies that the set of points satisfying the last equality is
a (n — 1)-dimensional space. The latter set is clearly not identical to the (n — 1)-dimensional affine
space defined by z; — x; = £1, so that their intersection, if it exists, is an affine space of dimension
n — 2. Therefore, the set of points x satisfying the three conditions (a)-(c) is included in a finite union of
(n — 2)-dimensional sets, and thus has zero measure in |J, 0X¢. O

Let Py = P, and for every k > 0, let P, be the set of points in y € |J, 0X¢ for which there exists G
and t* > 0 such that:
a)y € 0Xg,
b) e~ Loty € Xg, for all t € (0,t%),
c) e Llat’y e Py,
Thus, P is the set of points, on some boundary, from which we can reach a problematic point after k
transitions. Points in Py, as well as their pre-images are the only ones that can eventually lead to a
problematic point and therefore destroy properness. This is stated in the next lemma, which does not
require further proof. Note that eZ¢? is the transition matrix under the inverse dynamics.

Lemma 6. If & € R" is not a proper initial condition, then either & € |J, 0Xq or

;Z:GU{eLth:t€§TE+,y€UPk} (6)
G k

In order to show that the set in (6) also has a zero measure, and complete the proof of Theorem 1,
we will use Proposition 2 below, which is proved in Section 1.

Let Hy, H1 be two affine subspaces in ®”, and let A be a n x n matrix. We define a partial function
g: Hy — H; as follows. If there exists a time ¢ > 0 such that:
(i) y = eMa € Hy,
(ii) etz ¢ Hy for all t' € (0,),
we let g(z) = y. Otherwise, g(x) is left undefined. In words, if starting from x € Hy, the solution of
the differential equation & = Ax eventually hits H;, then g(y) is the first point in H; that lies on the
trajectory.

Proposition 2. Suppose that Hy and Hy have dimension n— 1, and that Hy is not a subspace (i.e., does
not contain the zero vector). If X C Hy has zero measure (in Hy), then g(X) has zero measure (in Hy).



Lemma 7. We have u(J, Pr) =0, and the set

U{eLth:tE%Jr,yEUPk}

G k
has thus zero measure in K.

Proof. We have proved in Lemma 5 that p(FPy) = 0. We now assume that p(Py) = 0; we will prove that
1(Prt+1) = 0. Observe first that

PkaPkHQUaXG:U{xGW:xi—szl},
G

]

Consider two (possibly identical) hyperplanes H; ;, Hy, , defined by z; —2; =1 and 2, — 24 = 1.

Fix a graph G and let g; j, 4,c be a function defined on the largest possible subset of H; ;, which
maps z to a particular y € H), , if there exists a ¢, such that y = eletzy € H, , and eloty ¢ H, , for all
t e (0,t,).

By the definition of g; j . q.¢ and Pr41, if y € Hp U Pi41, then there exists a graph G, indices ¢, 7,
and x € H; ; such that y = ¢, ; » q.c¢(z). Therefore,

Pir € U HpaNGijpac(Pen Hij).
4,5,9,4,G

Since u(Py) = 0, Proposition 2 implies that p(Pgy1) = 0. The induction is complete and shows that
w(Py) = 0 for all k. Therefore, the countable union of all Py, also has zero measure in the n—1 dimensional
set (o 0X¢q. It follows that

U {6Lcty teRtye UPk}

G k

has zero measure in R". O]

Together with Lemma 6, this last result completes the proof of Theorem 1.

4 Proof of Proposition 2

The proof will make use of the following two facts:

(F1) Let B be an open subset. Suppose that the function f : B — ™ is infinitely differentiable and has
nonsingular Jacobian at every z € B. If S C B has positive Lebesgue measure, then so does f(S).

(F2) Let B be an open subset. Suppose that the function f : B — R” is infinitely differentiable. If
S C B has zero Lebesgue measure, then so does f(5).

The first fact is true because the mapping f is locally a diffeomorphism, and the Jacobian formula for
the transformation of measures applies. The second fact can be found, for example in [2] (Lemma 10.2,
p. 243).

The (n — 1)-dimensional affine subspace H; is necessarily of the form {z : p’z = ¢}, for some constant
¢ # 0, and some unit length vector p. Suppose first that p’ Az = 0 for every x € Hy. Since H; is an affine
subspace, of dimension n — 1, but is not a subspace (does not contain the origin), H; contains n linearly
independent vectors. It follows that p’A = 0. This implies that p’z is constant along any trajectory of
the differential equation @ = Ax. In particular, any trajectory that starts outside H; will never reach
H,. In this case, the map ¢ is undefined, for every x € Hy. We can therefore assume from now on that
there exists some x € Hy for which p’ Az # 0.

Consider now the set [0, 00) x Hp, which can be identified with a halfspace in ", and endowed with
(n-dimensional) Lebesgue measure. Consider the Co, mapping h defined by

h:[0,00) x Hy — R": (t,x) — ez



The image h(X) of that mapping, to be denoted by @, is the set of all points in " reachable from X.
Since X has zero measure in Hy, it follows (from Fubini’s theorem) that [0, 00) x X has zero measure.
Using Fact (F2), it follows that @, has zero (n-dimensional) Lebesgue measure.

Suppose now, in order to derive a contradiction, that g(X) has positive ((n — 1)-dimensional) measure
in H;. Consider the subspace on which p’Ax = 0. Since p’A # 0, this is a proper subspace. The
intersection of this subspace with the affine space H; (which does not contain the origin) is a set of
dimension at most n — 2. Therefore, this intersection has zero measure in Hy. After removing this zero
measure set, we are left with a positive measure subset of ¢g(X) on which p’Azx # 0. Without loss of
generality, assume that there is a positive measure subset of g(X) on which p’ Az is positive. It follows
that we can find some ¢ > 0, such that the set

g(X)n{z:p' Az > 26}

has positive measure (in H;). By a routine argument, and using the continuity of p’ Az as a function of
x, we can find an open cube in R”, to be denoted by B, on which p’ Az > § and whose intersection with
g(X) has positive measure (in Hy).

Fix a small constant n > 0. Consider the mapping s : (—n,n) x (BN Hy) — R"™, that maps (¢, z) to
etz Because of the transversality condition p’ Az > 6, and by taking 7 sufficiently small, it is not hard
to show that the Jacobian of this mapping is nonsingular. It follows from Fact (F1), that the mapping s
maps positive measure sets to positive measure sets. Consider the set [0,7) x g(X); since g(X) N B has
positive measure (in Hy), it follows that [0,7) x ¢g(X) has positive measure. Therefore, the set

D =5([0,n) x g(X)) = {ea: t€[0,9), z€g(X)},

has positive measure (in £™). Recall now that every point in g(X) is reachable from X. This implies
that points in D are also reachable from X. But then, as shown earlier, the measure of D must be zero.
This is a contradiction and concludes the proof of the proposition.
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