
Micropayments, Now!

Probabilistic Micropayments in Bitcoin

Jeremy Rubin

November 26, 2015

In this paper, I introduce a probabilistic micropayments scheme which works
without any modification to the Bitcoin Core Protocol.

Base Protocol

To create a probabalistic payment for amount M from some sender Alice to a
recipient Bob with probability 1

n .
Let XA, XB be (secret) random variables on [0, n−1] for Alice and Bob with

probability P (X∗ = i) = 1
n .

Have Alice and Bob select random strings S∗ of length X∗ +32 bytes. These
strings should also be kept secret. Alice and Bob should share commitments
H(S∗).

Have Alice and Bob construct a transaction as below:

TXIN:

> M*n from Alice

TXO 1:

amount: M*n

probPay1: op_dup op_hash160 <hash S_A> op_equalverify

op_rot op_dup op_hash160 <hash S_B> op_equalverify

op_drop op_nip

probPay2: op_size op_rot op_size op_nit op_numequal

probPay3: op_rot op_dup op_hash160 op_rot

op_if

<hash K2>

op_else

<hash K1>

op_endif

op_nip op_equalverify op_checksig

probPay: {probPay1} {probPay2} {probPay3}

scriptSig: [signature] [key K2] [data S_B] [data S_A] {probPay}

scriptPubKey: OP_HASH160 [20-byte-hash of {probPay} ] OP_EQUAL

TX0 N>1: (Only needed if change is needed)

1



Then Alice should release the preimage of SA to Bob. If Bob sees that TXO
1 was spendable, he should broadcast it to network and wait for it to confirm.

If TXO 1 is spendable to Bob, then Bob should publish it. If it is spendable
to Alice, then it can be ignored as it just spends back to herself.

Essentially what the above script does is checks the hashed committed values
preimage, and using op numequalverify has the following probability of success:

P (XA = XB) =
∑

0···n−1

P (XA = i,XB = i) =
∑

0···n−1

P (XA = i)P (XB = i)

In the honest case, where each party chooses X∗ with probability 1
n ,

P (XA = XB) = 1/n

In the dishonest case,

P (XA = XB) =
∑

0···n−1

P (XA = i)P (XB = i) =
1

n

∑
0···n−1

P (XA = i) =
1

n

Therefore, if one party is honest then the protocol is fair. So Alice and Bob
can both be sure that as long as they draw their length honestly, the transaction
will execute 1

n of the time.

Double Spend Attack

The above protocol has a weakness: nothing prevents Alice from trying to double
spend the coin before Bob can spend it. Any time Alice makes a payment
which ends up not in her favor, she will scramble to issue another transaction or
perhaps one with higher fee. We will explore two potential mitigations to this
problem.

Attempt 1: Probabalistic Release

Instead of ignoring the case where it spends back to Alice, Bob should, with
a probability of 1

(n−1) , publish the transaction. Therefore the probability of

publishing the transaction is 1
n irrespective of who it was spent to1. Because of

this, Alice cannot condition her behavior on this signal. This is not quite true
because if Alice plays the strategy of always attempt Replace-By-Fee (RBF)
double spend if published, then her loss is 02. The key is that should Alice use
replace by fee, n−1

n of the time it will be a loss of Min-RBF-Amount. However,
because this is small, that doesn’t mean much of an expect loss.

1as 1
n

= n−1
n

1
n−1

2however her payments will also not work 2
n

of the time

2



Attempt 2: Punish Script

To eliminate the RBF potential, we have Alice also issue to Bob a punishing
transaction can be used to eliminate RBF usefullness in the malicious case.

TXIN:

> c from Bob

> M*n from Alice

TXO 1:

amount: M*n+c

probPay1: op_dup op_hash160 <hash S_A> op_equalverify

op_rot op_dup op_hash160 <hash S_B> op_equalverify

op_drop op_nip

probPay2: op_size op_rot op_size op_nit op_numequal

probPay3: op_if

op_true

op_else

op_rot op_dup op_hash160 <hash K1>

op_equalverify op_checksig

op_endif

probPay: {probPay1} {probPay2} {probPay3}

scriptSig: [signature] [key K2] [data S_B] [data S_A] {probPay}

scriptPubKey: OP_HASH160 [20-byte-hash of {probPay} ] OP_EQUAL

TX0 N>1: (Only needed if change is needed)

Bob cannot use such a script maliciously against Alice, unless Alice has
behaved dishonestly. Alice cannot use the script maliciously against Bob.

Proof: In the case where the payment did not spend to Bob, Alice recovers
funds even if Bob posts this script.

In the case where it spent to Bob, Bob has no incentive to use such a trans-
action as he gets nothing.

Alice cannot use the script maliciously because Alice does not have the script
(as long Bob signs last and keeps the transaction hidden from Alice).

Miners would need to be aware of the Probabilistic Payment scheme should
see what such a transaction will be worth M*n to them if they see one, as it would
only be useful to post in a case where Alice tried to double spend. (Generous
miners could even attempt to return funds to Bob). It is in the interest of miners
to become aware of this rule as they can get more fees. However, this is not a
consensus critical change.

Less Draconian

As a modification, we can generate the set of transaction as follows 3, and Bob
can issue the ”best fit” one based on how much RBF Alice attempts.

3this can be done efficiently with a sighash type that allows for the final signer to designate
amounts

3



for i in 1..n by \phi:

TXIN:

> c from Bob

> M*n from Alice

TXO 1:

amount: M*i+c

probPay1: op_dup op_hash160 <hash S_A> op_equalverify

op_rot op_dup op_hash160 <hash S_B> op_equalverify

op_drop op_nip

probPay2: op_size op_rot op_size op_nit op_numequal

probPay3: op_if

op_true

op_else

op_rot op_dup op_hash160 <hash K1>

op_equalverify op_checksig

op_endif

probPay: {probPay1} {probPay2} {probPay3}

scriptSig: [signature] [key K2] [data S_B] [data S_A] {probPay}

scriptPubKey: OP_HASH160 [20-byte-hash of {probPay} ] OP_EQUAL

TXO 2:

amount: M*(n-1)

probPay1: op_dup op_hash160 <hash S_A> op_equalverify

op_rot op_dup op_hash160 <hash S_B> op_equalverify

op_drop op_nip

probPay2: op_size op_rot op_size op_nit op_numequal

probPay3: op_rot op_dup op_hash160 op_rot

op_if

<hash K2>

op_else

<hash K1>

op_endif

op_nip op_equalverify op_checksig

probPay: {probPay1} {probPay2} {probPay3}

scriptSig: [signature] [key K2] [data S_B] [data S_A] {probPay}

scriptPubKey: OP_HASH160 [20-byte-hash of {probPay} ] OP_EQUAL

TXO N>1: (Only needed if change is needed)

Acknowledgments

Thanks to Neha Narula for a great conversation about such topics from which
this was derived, and Bryan Bishop for helping locate the prior work on this
topic.

4



References

[a] https://bitcointalk.org/index.php?topic=62558.0.

[d] https://blog.ethereum.org/2014/10/21/scalability-part-2-hypercubes/.

[f] https://download.wpsoftware.net/bitcoin/

bitcoin-probabilistic-payments.pdf.

[g] https://botbot.me/freenode/bitcoin-wizards/2014-12-18/?msg=

27851314&page=1.

[h] https://bitcointalk.org/index.php?topic=201920.0.

[i] https://eprint.iacr.org/2013/784.pdf.

[j] http://diyhpl.us/~bryan/papers2/bitcoin/Secure%20multi-party%

20computation%20with%20identifiable%20abort.pdf.

[k] http://diyhpl.us/~bryan/papers2/bitcoin/Publicly%20auditable%

20secure%20multi-party%20computation.pdf.

[s] http://lists.linuxfoundation.org/pipermail/bitcoin-dev/

2013-May/002564.html.

5


