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ABSTRACT 

The objective of this research is to design and 
demonstrate an agent-based modeling and analysis tool 
for evaluating General Aviation (GA) pilot situation 
awareness under free flight air traffic management 
(ATM). A computational tool is developed to assess 
free flight’s potential effect on GA operators, by 
combining an agent-based representation of the overall 
pilot/vehicle/ATM system with quantitative model-
based metrics of pilot SA. The model’s performance is 
demonstrated in a set of simulation trials designed to 
measure the pilot agent’s ability to recognize and 
correctly assess protected zone conflicts in free flight 
ATM, using information available from a hypothetical 
cockpit display of traffic information. A set of 
simulations is presented to examine the effect of sensor 
accuracy and attention allocation on pilot awareness of 
protected zone conflict hazards posed by intruder 
aircraft. The results show that reducing sensor accuracy 
leads to an increase in overall SA error, and that the 
pilot agent divides its attention over multiple traffic 
hazards in proportion to each intruder's hazard 
potential. This attention-sharing varies dynamically as 
the conflict situation changes, in a manner that is 
consistent with intuitive expectations. 

INTRODUCTION 
Nascent concepts for free flight air traffic 

management (ATM) will dramatically change human 
roles and tasks in the airspace system. Free flight, which 
has been defined as “a safe and efficient flight operating 
capability under instrument flight rules (IFR) in which 
operators have the freedom to select their path and 
speed in real time” [1], will have profound implications 
on pilot information requirements, pilot/controller roles 
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and responsibilities, workload allocation, 
communication, and decision-making. Such systemic 
changes will inevitably introduce new human factors 
challenges and new sources of human error. It has often 
been the case that human factors issues are normally 
only addressed very late in development, often too late 
to facilitate necessary changes [2].  If it is accepted as 
fact that aviation safety not be compromised in a 
transition to free flight, human factors issues should be 
addressed concurrently with the development of free 
flight technologies and procedures.  

Although continuing advances in on-board 
automation and aiding systems should ameliorate safety 
concerns in the commercial cockpit, there is 
considerable concern regarding the impact of free flight 
on the general aviation (GA) community. This 
community represents approximately 95% of all aircraft 
and 60% of aircraft operations hours in the continental 
United States. Thus far, the consequences of free flight 
on GA have received relatively little attention. The 
safety of GA operations under free flight will hinge on 
the adequacy of the equipment needed for free flight 
and the operating procedures that support it [3]. Of 
specific importance are the requirements for supporting 
adequate pilot situation awareness (SA). 

Situation awareness, which refers to a pilot’s 
internal model of the world around him at any point in 
time [4], is the starting point for pilot decision-making, 
particularly in abnormal or emergency situations [5]). 
The pilot obtains information to maintain awareness of 
the flight situation visually (through aircraft windows 
and from instruments), aurally (from other 
crewmembers and over radio communications), and 
through vestibular senses. The information thus 
obtained forms the basis of the pilot’s decisions. Since 
all of the pilot’s information-gathering skills are subject 
to error, failures in maintaining adequate SA can 
severely impact flight safety. For example, a recent 
study of fatal commercial aircraft accidents involving 
controlled flight into terrain (CFIT) implicates loss of 
SA as a dominant factor [6]. 



     

 2  
American Institute of Aeronautics and Astronautics 

If the search for solutions to problems of human 
situation awareness and decision-making error is to be 
efficient, it is important to leverage the insight gained 
through decades of research in the behavioral sciences 
[7]. An agent-based approach to assessing the human 
factors impact of free flight should account for the 
pilot's fundamental capabilities and limitations in 
processing and acting upon information, starting with 
his limited performance in sensory/perceptual 
processing and data fusion, proceeding to his imperfect 
strategies for situation assessment and decision-making, 
and following through to his sometimes less than 
optimal execution of a range of procedural activities. 
The approach must be able to represent pilot interaction 
with a variety of automation concepts, from full-level 
non-advisory automatic systems, to limited-authority 
advisors. There should also be provision for growth and 
modification of the method, as ATM concepts evolve. 
The approach should account for other on-board design 
factors that impinge upon cockpit workload such as new 
navigation aids, communication protocols, etc., and 
there should exist a means of incorporating these factors 
in a relatively straightforward fashion. 

These capabilities are afforded by an agent-based 
approach founded on a detailed behavioral 
representation of the overall pilot/vehicle/ATM system. 
Such a representation can provide the critical 
information-based linkage between the external 
environment (including the ATM system), the vehicle, 
the cockpit interface, and the pilot. It can serve as a 
framework for integrating the pilot’s knowledge base 
with his procedural knowledge, to provide insight as to 
how the pilot assesses situations, makes decisions, 
executes procedures, and conducts communications.  
The pilot model employed here is based on the 
structured formalization in the Crew/System Integration 
Model (CSIM) [8], which has recently been applied in 
fighter/attack mission and air superiority modeling 
efforts [9]. Such a pilot agent model provides a means 
for locating sources of error at various points in the 
information processing chain, and at various levels at 
each location. This explicit representational approach 
can account for error-free behavior on the part of the 
pilot, and it can also be used to directly evaluate 
alternative hypotheses regarding error sources, their 
effect on nominal information processing by the pilot, 
and their impact on overall pilot/vehicle performance 
and flight safety.  This agent-based modeling approach 
will enable ATM technology designers to: 

•  Use a model-based approach to identify the effects 
of system design on pilot SA and performance 

•  Populate air traffic simulation models with 
“intelligent” air traffic hazards, for evaluation of 
candidate flight deck technologies using a realistic 
air traffic model 

•  Leverage the computational SA technology 
underlying the agent model to support pilot SA in 
the cockpit, by having it drive display content on 
cockpit displays of traffic information 

•  Support human error modeling and analysis under 
NASA’s Aviation Safety Program [10], which 
seeks to improve aviation safety five-fold over the 
next 10 years through technology development for 
accident prevention, accident mitigation, and 
development of system-level concepts for 
improving safety 
The primary objective of this work is to design and 

demonstrate an agent-based modeling and analysis tool 
for evaluating General Aviation (GA) pilot situation 
awareness (SA), performance, and error rates as a 
function of free flight design variables (such as 
separation criteria, adaptive sector strategy, traffic 
density limits, alert zone shape and size, etc.).  

FUNCTIONAL SYSTEM DESIGN 

Overall System Architecture 
Figure 1 presents the overall architecture of the 

agent-based model for evaluation of pilot SA and 
performance under free flight. The system contains the 
following key components: 

•  An analytical model of the GA pilot agent, 
representing the key activities of information 
processing, situation assessment, and decision-
making (IP, SA, and DM, respectively) 

•  A pilot agent SA/performance metric generator, 
which quantitatively estimates model-based metrics 
of pilot SA 

•  The Free Flight ATM Executive, which models the 
free flight setup (flight rules, separation criteria, 
etc.), and plays the role of air traffic control (ATC) 
As shown, the pilot agent is instantiated N times, to 

represent N aircraft operating within the simulation 
(note that a given aircraft may actually contain both a 
pilot and copilot; this would be a straightforward 
extension of what is shown here).  Each of these aircraft 
communicates with ATC via simulated voice and 
datalink, as required. The effect of mixed equipage is 
handled in a straightforward manner by changing the 
definition of the information available to each aircraft; 
new or absent equipment may be represented by adding 
to or removing from the information set available to a 
pilot.  Information accuracy and bandwidth may be 
modulated by changing the information set dynamics 
and noise levels. Varying levels of pilot expertise may 
be represented by changing underlying model 
parameters (situation assessment and decision models, 
control gains, etc.). 
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Figure 1: Overall System Architecture 

The Free Flight ATM executive models the 
“ground-based” portion of the free flight simulation. 
This module includes several components: 

•  A traffic situation generator 

•  A conflict detection and resolution module 

•  An air traffic control/simulation control station 
The traffic situation generator provides aircraft 

flight plans either using scripted plans or through 
statistical techniques (e.g., desired traffic density, 
speeds, and potential routes), which in turn are used to 
define initial conditions and flight plans for each of the 
aircraft/pilot agent instantiations. An air 
traffic/simulation control station will also be interfaced 
with the simulation to incorporate parameters such as 
separation criteria, assumed response time, adaptive 
sectors, and conflict resolution algorithms.  

Pilot Agent Model Architecture 
Figure 2 illustrates the central position that 

situation awareness holds in the pilot agent model, and 
in the studies of many researchers, including Klein [11], 
Smith & Sage [12], and Zacharias, Miao, Illgen, Yara & 
Siouris [9]. Six basic steps are involved:  
1) Monitor the environment: Given the situation 

status established by an internal mental model of 
the scenario, a decision maker monitors the 
environment looking for event cues that confirm or 
disconfirm the current assessed situation. 

2) Determine the need for situation assessment: If 
the event cues are consistent with the assessed 
situation, continue monitoring (loop back to step 
1); if they are not, proceed to the next step.  

3) Propagate event cues: Based on the mental model, 
propagate the newly received event cues to start a 
new round of situation assessment. The result of 
this event cue propagation generates a new belief 
distribution among situations, and can lead to a new 
assessment of the situation.  

4) Anticipate events: Based on the updated 
situational beliefs, predict situation-related event 
occurrences. These anticipated or predicted events 

feed back to guide the decision-maker’s event 
monitoring strategy used in step 1. 

5) Assess situation: Determine whether the updated 
situational beliefs support the confident assessment 
of a new situation (or situations). If the answer is 
yes, proceed to step six; otherwise, continue 
monitoring for new events. 

6) Make decision: If a new situation is assessed, a 
new decision procedure associated with the 
situation, is called upon, and acted upon to generate 
new situationally relevant actions. 
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Figure 2: SA-Centered Decision-Making 

Notice the difference between this SA centered 
model and the conventional decision-making model that 
views the decision maker as “faced with alternatives, 
and considering the consequences of each alternative in 
terms of analysis of future states (odds/probabilities) 
weighed against alternative goals (preferences/utilities)” 
[11]. In the SA centered model, no utility or alternative 
is considered; instead, SA becomes the focus of all pilot 
actions. It not only defines a decision maker’s view of 
his/her environment, but also serves to define his/her 
information needs and to drive his/her effective 
experiential (if-then) decision-making. 

Figure 3 decomposes this module into its 
constituent algorithmic components, which are: 

•  An information processor that processes 
information generated by the simulation, to yield 
system states and event cues 

•  A situation assessor that uses event cues to 
generate the current assessed situation  
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•  A decision-maker that selects among alternative 
procedures to produce control actions, based on the 
current flight situation and estimated states 
This model is founded on the Crew/System 

Integration Model [9], which is an information-
processing model of the human operator of a dynamic 
system.  The pilot model employs two key technologies: 
a belief network (BN) [13] representation of the pilot’s 
SA functions; and an expert system (ES) 
implementation of the pilot’s DM activities. The model 
is supported by a scenario-dependent mental model that 
maintains the structure and parameters defining the 
event/situation relationships, as well as the procedural 
rules defining the pilot’s decision-making strategy [14]. 
These procedural rules may specify pilot behavior under 
candidate free flight rules. 
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Figure 3: Architecture of Pilot Mental Model 

Situation Assessment Model 
The first key component of the system architecture 

is the current situation assessment module, which uses 
aircraft information system outputs to generate a high-
level interpretation of the current air traffic situation 
facing the pilot. The system described here relies on 
belief networks [13] for reasoning in the presence of 
uncertainty. 

Any robust computational model of situation 
assessment requires a technology that has: 1) a 
capability to quantitatively represent the key SA 
concepts such as situations, events, and the pilot’s 
mental model; 2) a mechanism to reflect both diagnostic 
and inferential reasoning; and 3) an ability to deal with 
various levels and types of uncertainties, since most 
real-world systems of any complexity involve 
uncertainty. Russell & Norvig [14] cite three principal 
reasons for this uncertainty: 
•  Theoretical ignorance: All models of physical 

systems are necessarily approximations 

•  Laziness: Truly exceptionless rules require 
numerous antecedents and consequents (cf. 'Frame 
Problem' [16]) and are computationally intractable 

•  Practical ignorance: Even if all rules are known, 
we do not always have time to measure all 
properties of the objects that must be reasoned over 
The principal advantages of belief networks over 

other uncertain reasoning methods are: 

•  Its probability estimates are guaranteed to be 
consistent with probability theory 

•  It is computationally tractable. Its efficiency stems 
principally from exploitation of conditional 
independence relationships over the domain 

•  The structure of a BN captures the cause-effect 
relationships that exist among variables of the 
domain. The ease of causal interpretation in BN 
models makes them easier to construct [17] 

•  The BN formalism supports many reasoning 
modes: causal reasoning, diagnostic reasoning, 
mixed causal and diagnostic reasoning, and 
intercausal reasoning (multiple causes for a given 
effect). No other uncertain reasoning formalism 
supports this range of reasoning modes [15] 
Belief networks provide the capability and 

flexibility of modeling SA with its full richness. They 
also provide a comprehensible picture of the SA 
problem by indicating dependent relationships among 
variables, at both high-levels (symbolic) and low-levels 
(numeric). This provides a clearer view of how each 
individual piece of evidence affects the high-level 
situation characterization. They allow the incremental 
addition of evidence at any network node as it arrives, 
thus allowing for real-time SA update. Finally, BNs 
enable a designer to partition a large knowledge base 
into small clusters, and then specify probabilistic 
relationships among variables in each cluster (and 
between neighboring clusters). This approach facilitates 
construction of large, robust knowledge bases without 
explicitly specifying the relationships between all 
possible combinations of variables.  

The belief network model shown in Figure 4 was 
developed to model the pilot’s assessment of the 
protected zone conflict hazard posed by an intruder 
aircraft (and visible to the pilot via a hypothetical 
cockpit display of traffic information). As shown, the 
conflict hazard (which may be none, low, medium, or 
high) is expressed as a function of four quantities: 
1) The range rate (i.e., the rate of change of distance 

between the intruder and self), which may be 
positive large, positive small, zero, negative small, 
or negative large. 

2) The aspect angle, which may be zero, low, 
medium, or high. The aspect angle is the angle 
between the bearing line to the intruder and the 
intruder’s velocity vector (between -180° and 
180°), and it is defined such that when aspect is 
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zero, the intruder is heading directly away from 
ownship.  When the absolute value of the aspect 
angle is 180°, the intruder is heading directly 
towards ownship. 

3) The intruder’s maneuvering actions in the lateral 
plane (turning towards self, turning away from 
self, or not maneuvering). 

4) The predicted point of closest approach, which 
may lie inside or outside the protected zone of 
ownship. In turn, this depends on where the point 
of closest approach is in terms of altitude and 
range. 
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Figure 4: Belief Network Model of Protected 

Zone Conflict Hazard 
A simple conflict model was developed to declare a 

conflict if the predicted point of closest approach of an 
intruder lies within the protected zone. Figure 5 
illustrates the conflict model, which shows the 
intruder’s position and velocity in a frame of reference 
fixed to the ownship. 
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Figure 5: Protected Zone Conflict Model 

In terms of the intruder’s position rintruder and 
velocity vector vintruder, the point of closest approach 
rCA may be expressed as (assuming constant closure 
rate): 
 rCA = rintruder + tCAvintruder  (1) 
where tCA is the time to closest approach. This leads to 
an equation for the time to closest approach: 

 tCA = 
-1
V2 ( rintruder . vintruder);  V = || vintruder || (2) 

This expression can be used to compute rCA. Since 
the range at conflict is known (the radius of the 
protected zone, rmin), another equation can be 
developed to estimate the intruder’s position at the 
instant of conflict, rconflict. A conflict is declared if rCA 
lies within the protected zone, both in altitude and 
range. 

Implementation of Information Processor using 
Modern Estimation Technology 

The Information Processor was modeled using two 
interconnected sub-models: a continuous state estimator 
and a discrete event detector, emulating a pilot’s 
continuous state estimation and event detection 
(monitoring) functions. Notice that the latter function 
also depends upon the events anticipated by the 
situation assessor. 

In the system development, the state estimator was 
modeled using a Kalman filter [18], with its system 
model controlled by the detected events as shown in 
Figure 6. The use of a Kalman filter to model human 
continuous information processing was first established 
in the Optimal Control Model (OCM) by Kleinman & 
Baron [19]. It has been validated against experimental 
data in a series of human-machine tasks (e.g. flight-path 
control), and has been widely accepted as a good 
representation of human continuous state information 
behavior. The Kalman filter developed here models the 
pilot’s assessment of an intruder’s trajectory with 
respect to ownship. 
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Event Cue
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state information

event cues
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Figure 6: Information Processor Model Using 

Modern Estimation Techniques 
Attention-Sharing Model 

For the purposes of implementing a model of 
human information processing of intruder aircraft 
information (as seen on a hypothetical CDTI), a means 
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of simulating the pilot’s attention distribution over 
multiple potential air traffic hazards is required. It 
seems reasonable to expect that a pilot would have 
degraded SA of those intruders receiving less attention 
(for example, on the basis of their conflict hazard - less 
threatening intruders would likely receive less 
attention). Attention distribution was modeled as an 
effective increase in nominal noise-to-signal ratio on the 
simulated display [20], via an equation of the form: 

 Pi = P0 
1
ft
  ⋅ 

1
fs

  ⋅ 
1
fi
  (3) 

where ft is the fraction of attention devoted to a control 
task i as a whole, fs is the attention fraction devoted to 
subtask s, fi is the attention fraction devoted to the ith 
display in subtask s, and P0 is the nominal noise/signal 
ratio associated with full attention to the display 
(typically set to 10% of signal magnitude). 

It was assumed that all of the attention is devoted to 
observing the cockpit display of traffic information, and 
that the pilot’s attention was divided over multiple air 
traffic hazards (if any) on the basis of a conflict hazard 
derived from the belief network described earlier. The 
BN hazard model provided us with a scalar parameter 
between 0 and 1, where 0 represented no threat, and 1 
represented high threat (with a network instantiated for 
each threat visible to the agent). 

The total hazard H posed by all visible intruder 
aircraft was defined as 

 H = ∑
i = 1

n
hi  (4) 

where hi is the perceived hazard (between 0 and 1) of 
intruder i and n is the number of detected intruder 
aircraft. The attention fraction fi on monitoring intruder 
i was then defined as: 

 fi = 
hi
H  fs;           0 < fi ≤ 1 and ∑

i

 
fi  = 1 (5) 

where fs is the fraction of total attention for monitoring 
air traffic (defined as 1.0). When multiple air traffic 
hazards are present, the pilot agent’s attention is 
distributed over them in accordance to their perceived 
conflict threat. It will be shown in the system 
demonstration that this approach produces intuitively 
sensible results in a set of simulation trials. 

Implementation of Metrics of Pilot Situation 
Awareness 

A principal goal of this work was to develop a 
methodology for quantitatively predicting pilot SA as a 
function of free flight rules and configuration in a multi-
agent flight environment.  Accordingly, a means of 
extracting quantitative SA/DM performance measures 
from the pilot agent was required.  

The pilot agent architecture provides internal 
estimates of pilot IP, SA, and DM activities and a 
timeline of these activities. As a result, a dual metric 
computation scheme as illustrated in Figure 7 can be 
employed. For each simulation, two agent models for 
each vehicle were created: 
1) A reference pilot agent who receives perfect 

information from the simulation but does not 
control the aircraft. 

2) An acting pilot agent that receives the information 
processed by simulated onboard subsystems (which 
may contain error) such as flight instruments, 
datalink, etc., and controls the aircraft simulation. 
The reference pilot agent generates ideal IP, SA, 

and DM activities that are not affected by the onboard 
subsystems, while the acting pilot agent produces the 
IP, SA, and DM activities that reflect the limitations 
imposed by the onboard subsystems and human 
cognitive capabilities. Comparing the reference and 
actual IP, SA, DM activities provides a means of 
measuring the disparity between the ideal activities and 
the pilot activities, broken down by IP, SA, and DM 
behaviors. This disparity, in turn, provides a direct 
metric reflecting how far the active pilot is from the 
ideal reference pilot, in a set of objective pilot-
referenced dimensions characterizing appropriate pilot 
behavior under free flight. 

Reference
Pilot  Model

Act ing
Pilot  Model

perfect  informat ion act ual informat ion available
via aircraf t  informat ion syst ems

ideal IP, SA, DM
    act ivit ies

inferred IP, SA, DM
    act ivit ies

Model-Based
Me t r ic

Comput er

model-based
   met rics

Out put s:
Exact  St at e x
Correct  Sit uat ion S*
Correct  Procedure P*

Out put s:
St at e Est imat e x
Est imat ed Sit uat ion SP
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Figure 7: Pilot Agent SA/Performance Metric 

Generator 
A metric of information processing accuracy was 

obtained by comparing the exact state of an intruder 
aircraft with that estimated by the pilot agent’s Kalman 
filter tracking the intruder’s motion. A measure of 
information disparity was defined by comparing the 
exact state x with the state estimate x̂ : 
 ID = [x(t) - x̂ (t)]T ΣΣΣΣ-1 x(t) [x(t) - x̂ (t)] (6) 
where ΣΣΣΣ is a square matrix used to weight individual 
terms in the state vector and normalize the result to lie 
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between 0 and 1. The state estimate x̂ feeds the acting 
pilot model’s BN that is tracking the intruder, while the 
actual state x feeds a “shadow” BN in the reference 
pilot model, which computes the true conflict hazard to 
the ownship posed by the intruder.  

A normalized Euclidean distance between the 
belief values in the acting pilot and reference BNs was 
then computed, to obtain an overall measure of belief 
disparity (scaled between 0 and 1, where 0 represents 
no error and 1 represents the maximum possible error). 
When the acting BN and the reference BN have the 
same topology (i.e., the same number of nodes and 
identical node definitions), the total belief disparity BD 
is defined as: 

 BD = 
1
n ∑

i = 1

n
 di;   0 ≤ di ≤ 1 (7) 

where n is the number of nodes in the belief network, 
and di is the disparity at the ith node. The node disparity 
is computed as follows. At a given node j, assume that 
there are k mutually exclusive hypotheses for the node’s 
value (e.g., low, medium, high, etc.). The belief vector 
bj at that node can then be expressed as 

 bj = [x1 x2 … xk];      ∑
r = 1

k
xr  = 1 and 0 ≤ xr ≤ 1 (8) 

 where the xr are the belief values in each of the 
hypotheses. The node disparity di is defined as 

  
k

d actualjreferencej

i

bb −

=  (9) 

The total situational disparity may then be 
expressed as a weighted average of the terms BD and 
ID.  Preliminary evaluation of these metrics over a 
range of free flight scenarios discussed in the next 
section. While these metrics provide an overall measure 
of SA disparity and support the model feasibility 
demonstration, they have a number of limitations that 
will be addressed in the future. In particular, the metrics 
weight all elements of the belief network disparity 
equally. This could be remedied easily by introducing a 
weighting term into equation (7): 

 BD = 
1
n ∑

i = 1

n
 kidi (10) 

where the ki enables weighting of the individual node 
disparities on the basis of some measure of each node’s 
relevance to overall piloting operations. 

SIMULATION RESULTS 
A set of simulation results are now presented to 

demonstrate the performance of the agent model. First, 
a two-aircraft scenario is provided to illustrate the 
effects of sensor accuracy on pilot agent situation 

awareness metrics. Next, the effects of pilot attention 
distribution in a three aircraft scenario is investigated.  
Here, the subject pilot must divide his attention over 
two potential traffic hazards. Finally, results are 
presented for a scenario examining the effect of 
dynamic maneuvering by intruder aircraft on pilot SA. 

Effect of Sensor Accuracy 
Figure 8 illustrates the first and second scenarios, 

used to evaluate the effect of sensor accuracy. Our 
interest is in the SA of pilot AE1022, shown at the 
bottom of the diagram. The other aircraft, AC1111, has 
been positioned such that it will cause a protected zone 
conflict. The simulated CDTI used by AE1022’s 
information-processing model provides the type of 
information that might be available from ADSB-B, with 
an error standard deviation of 7.5% in the underlying 
sensor data. Scenario 2 has the same geometry, except 
that the error in sensor data available to AE1022 has a 
standard deviation of only 2.5%. 
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Figure 8: Traffic Scenarios #1 and #2 for 

Evaluation of Sensor Accuracy Effects 
Figure 9 shows the perceived and actual conflict 

hazard perceived by AE1022 in scenario 1 and 2, 
respectively. It is apparent that reducing the sensor 
noise reduces the fluctuation and error in the perceived 
conflict hazard. 

Figure 10 compares the SA disparity in Pilot 
AE1022’s awareness of AC1111 across both scenarios. 
It is quite apparent that the SA disparity is much higher 
in Scenario 1, in which AE1022’s sensor data contained 
3 times as much error as in Scenario 2. This finding 
supports the objective to use model-based metrics as a 
basis for evaluating the effect of sensor accuracy on 
pilot SA. Such evaluations would be useful in the 
development of technologies to enable safe operations 
under free flight.  Specifically, information regarding 
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the requirements for information accuracy would aid in 
the development of sensor hardware and cockpit 
displays capable of providing adequate situation 
awareness and appropriate decision support for pilots 
operating in the free flight environment. 
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Figure 9: Perceived Hazard Measures in 

Scenarios #1 and #2 
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Figure 10: Belief Disparity for Pilot AE1022 in 

Scenarios #1 and #2 

Effect of Attention Distribution 
The next scenario, shown in Figure 11, examines 

the effect of attention-sharing on pilot SA. Sensor noise 
in monitoring both intruders is set to 2.5%. This 
scenario is the same as the previous one, except that a 
third intruder aircraft (UA103) is added. This intruder 
has been placed such that its flight path will not pose a 
conflict hazard to AE1022. The aircraft AC1111 has 
been placed in the same position with the same speed as 
scenarios 1 and 2 presented above. 

Figure 12 shows the hazard perceived by AE1022 
from both intruders during the scenario. AC1111 poses 
a high hazard until approximately 100 sec, at which 
point it begins increasing its distance from AE1022 
(although it is still inside AE1022’s protected zone). By 
about 140 sec, it exits AE1022’s protected zone, 
causing the perceived hazard to drop even further. The 
hazard index for UA103 never rises above 0.35 
(representing a low hazard), as it never poses any 
conflict hazard. 
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Figure 11: Scenario #3 for Evaluation of 

Attention Sharing Effects on SA 
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Figure 12: Perceived and Actual Hazard 
Measures for AE1022 in Scenario #3 

Figure 13 illustrates the effect of pilot AE1022’s 
attention distribution over the two potential hazards 
during the scenario. Figure 13(a) shows AE1022’s 
belief disparity in monitoring both hazards. Although 
the sensor error on tracking both intruders is the same, 
the agent’s SA disparity in its awareness of UA103 is 
generally higher throughout the simulation. This is a 
direct result of the attention distribution over the two 
intruders, illustrated in Figure 13(b). Until AC1111 
exits AE1022’s protected zone, AE1022 has about 70% 
of its attention on monitoring AC1111, and only 30% of 
its attention on UA103. This arises directly from the 
perceived conflict hazards from both intruders, shown 
in Figure 12. This result indicates that BN-derived 
threat measures can be used as a sensible utility function 
for allocating finite attentional resources during a 
simulation. Once AC1111 exits the protected zone, the 
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attention allocation shifts so that it only receives 50% of 
AE1022’s attention, as does UA103. 
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Figure 13: Attention Distribution Effects in 

Scenario #3 

Effect of Dynamic Maneuvering 
The final scenario, shown in Figure 14, examines 

the effect of dynamic maneuvering by an intruder 
aircraft on pilot SA. Sensor noise in monitoring both 
intruders is set to 2.5%. This scenario is the same as the 
previous one, except that both intruders (AC1111 and 
UA103) initiate flight path changes that change their 
conflict hazard to AC1111.  AC1111 begins climbing at 
30 seconds to prevent the conflict with AE1022. Then, 
at 60 seconds, UA103 begins descending in such a way 
as to create a conflict with AE1022. 
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Figure 14: Traffic Scenario #4 for Evaluation of 

Maneuvering Effects 
Figure 15 shows the hazard perceived by AE1022 

from both intruders during the scenario.  AC1111 poses 
a high hazard until approximately 45 seconds into the 
simulation, at which point its climbing maneuver causes 
it to no longer pose a conflict hazard with AE1022.  

UA103 does not pose a significant hazard to AE1022 
until approximately 70 seconds into the simulation, at 
which time its descent causes its projected flight path to 
intersect AE1022’s protected zone.  So, the perceived 
conflict potential of an intruder does change 
dynamically in response to maneuvering by the intruder. 
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Figure 15: Hazards to AE1022 in Scenario #4 

0.1

0.2

0.3
0.4

0.5
0.6

0.7
0.8

0 50 100 150 200

(a) Belief Disparity of Pilot AE1022

Disparity in SA of AC1111
Disparity in SA of UA103

Be
lie

f D
is

pa
rit

y

Time (sec)

AC1111 climbs

UA103 descends

 

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200

(b) Attention Fraction of Pilot AE1022

Attention on AC1111
Attention on UA103

At
te

nt
io

n 
Fr

ac
tio

n

Time (sec)

AC1111 climbs UA103 descends

 
Figure 16: Attention Distribution Effects in 

Scenario #4 
Figure 16 illustrates the effect of pilot AE1022’s 

attention distribution over the two potential hazards, 
and how the attention distribution is affected by the 
flight path changes initiated by the two intruders. 
Initially, most of the pilot’s attention is focused on 
AC1111 since it poses a higher conflict hazard. After 
AC1111 begins climbing to prevent the conflict, 
AE1022’s attention is divided equally between the two 
intruders, until approximately 70 seconds into the 
simulation. At this point, UA103’s conflict hazard rises 
(once its projected flight path intersects AE1022’s 
protected zone). The attention distribution of AE1022 
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then shifts to pay more attention to UA103, since it 
poses a higher conflict hazard. AE1022’s drop in 
attention fraction on monitoring AC1111 correlates with 
the rise in belief disparity seen in Figure 16(a). 

CONCLUSIONS 
The approach to pilot behavioral modeling via 

representation of information processing, situation 
assessment, and decision-making presented here allows 
for the identification of specific errors within this 
information chain, and lays the groundwork for 
identifying pilot behavioral errors as they occur. This 
model-based approach enables the characterization of 
the pilot’s internal awareness of the overall air traffic 
situation explicitly. This approach, which constructs 
both an acting pilot model and a reference pilot model, 
clearly distinguishes between what the pilot does know 
and what he should know, while relying on a shared 
mental model of the air traffic environment. 

The quantitative SA error metrics employed 
provide an overall indication of error level, although 
they do not provide diagnostic information as to error 
type or cause. However, the modeling approach is 
general enough that adding these features would be a 
straightforward extension of the existing model. The 
simulation results demonstrate the feasibility of a 
model-based approach for modeling pilot SA and 
performance in free flight ATM, and lay the foundation 
for the development of a full-scope tool for pilot 
performance assessment under free flight 
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