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Performance Metric Alerting: A New Design
Approach for Complex Alerting Problems

Lee C. Yang and James K. Kuchar

Abstract—Alerting systems and related decision-making be performed without the appropriate monitoring systems in
automation are widely used to enhance the safety and capability place. Thus, alerting systems play key roles in advancing the

of cpntrolled processes across many applications. Tradltlonal capability and scope of many safety-critical processes.
alerting systems use physical metrics such as temperature, dis- At thei Il alerti ¢ di te deci
tance between vehicles, or time-to-impact as bases for making éir core, all alering systems aré discrete deci-

alerting decisions. Threshold values on these metrics are typically Sion-making elements, continually determining whether to
derived using an iterative process to ensure the achievement of remain silent or to warn the controller to take some action
desired performance goals, defined by higher-level metrics such (whether that controller is a human or automation). Simple
as false alarm, safety, or success probabilities. We generalize th'salerting systems may monitor a single parameter and a certain

problem and develop two state spaces, one representing physical . -
metrics and one representing performance metrics. A traditional 'reéShold mustbe crossed for a warning to be issued. Examples

alerting system operates completely within the physical space, Of simple systems include smoke or fire detectors, flow rate

using decision thresholds that have been developed offline during regulators and blood pressure or heart monitors. Complex
the design process by examining how the physical threshold glerting systems are also in use that make higher-level infer-
translates across to the performance state space. The physmalenCeS about safety using multiple parameters. One example

metrics thus act as an indirect means to control the performance . ) . .
of the system. We propose an alternate approach that enables 'S the Traffic Alert and Collision Avoidance System (TCAS)

the system to operate online in the performance space. Alerting currently in use on jet transport aircraft [2]. TCAS measures
decisions are based directly on the computed values of metrics the relative range and altitude between aircraft to infer whether
such as false alarm probability rather than on surrogate physical g collision is likely and uses a complicated set of algorithms to

metrics. These two design approaches are then contrasted in case;ssign a level of urgency and to provide commands to the pilot
studies of recently-developed alerting systems. to avoid a collision

'”de;‘] Teryr,nfd_ﬁ larm systems, algorithms, decision support sys-  Tg be effective, the alerting system must issue a warning early
tems, threshold logic. enough that corrective action can be taken, but not so early that
unnecessary nuisance alarms occur. This generates a tension in
|. INTRODUCTION the design of these systems that is always present, regardless of
. h lication. Failur roperl lance this tension |
URING the operation of many processes, threats may & anp catq ailure to prope y.baa.l ce t. S tensio . eads
) ; . 10 operator distrust of the system, inefficiencies, or accidents.
encountered that require a human operator’s attennolrh : : . o
; . alerting system must also operate in real time, necessitating
Safety or robustness against these threats is often enhance% . . . ) :
. : sQme concessions in modeling and computation complexity.
through the use of automated alerting systems that indepén-

i . . Due to the complexity of applications and the many com-
dently monitor operations and warn the controller to intervene . : . X
. . ; eting constraints on design, alerting systems today are often
should it be necessary. Alerting systems are becoming Q-

.designed in a relativelgd hocmanner, without the benefit of

creasingly bervasive and are.used n gppl|cat|ons mcludng\ overarching theoretical methodology. Sophisticated tools
aerospace vehicles, automobiles, chemical or power contﬁo

stations, air traffic control, medical monitoring systems andave been developed to design and analyze parts of an alerting
' ' 9 sy roblem, but there is little high-level direction of design efforts

even business and financial markets. In addition to providi o% L . ; .
. . e to current limitations in alerting system theory. A brief
a final safety net for many processes, some alerting systems

actually enable operating in regimes that would not be possitc)1verV|ew of progress in alerting theory will help to put the state

without them. Closely-spaced parallel approaches at airpo(r)tsthIS field in perspective.

in poor VISIbI|Ity,. for example, are only allowed' when certai . Progress in Alerting Theory
automated alerting systems are present to provide the necessary ) ]
level of safety [1]. The additional traffic throughput, then, Alerting systems have actually been in use since well before
is directly reliant on the existence and performance of dRe adventof electronics, with examples ranging from bringing

alerting system. Similarly, critical medical procedures may n§gnaries into mines (to warn workers of asphyxiation danger to
the famous Nightingale Floorboards of Nijo Castle in Kyoto,

. . . Japan (to warn the Shogun of intruders in the night). These
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when any weight over a certain value was placed on them. Thésture efforts so that the most appropriate design path is used
are examples of classical decision theory problems in whiébr a given problem.
there is a clear signal to be detected and two possible decisioifhe design of complex alerting systems would be greatly fa-
errors: false alarm or missed detection. As one analysis toailjtated through the development of a cohesive modeling and
signal detection theory (SDT), was developed in World War Il tdesign approach based on more formal principles. This paper
address radar targeting problems [3]—-[5] and was later extendedlines the fundamental considerations for alerting systems in
to human decision-making problems in general [6], [7]. SD@eneral and proposes a design process based directly on these
provides a formal method by which optimal decision thresholgsinciples. To begin, an overview of alerting system operation
can be determined, given a known signal value corrupted wighprovided in the next section, including a more detailed discus-
sensor noise and is well suited to these types of classical, binaign of SDT and other recent developments. Then, two different
alerting problems. alerting system design processes are examined and a new ap-
Many current alerting problems, however, are too complgroach to design is proposed to make the best use of increasing
to be managed with SDT alone. Consider an aircraft collisi@dvances in computational ability. Finally, two example alerting
warning system, for instance. Numerous dynamic states of systems are discussed to illustrate the differences that the design
formation may be available, such as the positions, velocities gmabcess has on the operation of the system.
accelerations of the aircraft. If an alert is triggered, there may

be many alerting levels or options for action to avoid a colli-|, GenERALIZED MODEL OF ALERTING SYSTEM OPERATION
sion. The human pilot's response to an alert is also uncertain

and may have a large impact on whether the alerting system ig\€rting systems must predict that an undesirable event will
successful. It becomes extremely difficult to apply convention@fcur before it actually does—the entire reason for having the
SDT tools to problems of this scope, where the “signal” is nG{€rting systemis to allow the controller enough time to respond
readily apparent, noise is complex and time-varying and asin%@d maintain safe operation. Thus, alerting decisions must be
decision threshold may not be easily defined. fas_ed either directly or indirectly on some fprm of future pre-
Complex and successful alerting systems have been de@é@-t"?” of the state of the process. The main factors affecting
oped, despite this difficulty. But, the techniques that are appli&£rting system performance can be captured through the use
are diverse and less formalized than SDT. A review of recent &f State-space trajectory techniques extended to alerting prob-
forts in aircraft collision alerting, for example, found that ovelems by the authors as described below. The state-space view of
60 decision-making methods have been proposed, tested, or#gting developed by the authors facilitates a clear and general-
plemented for that task [8]. Although the fundamental issues igfble description of the important states and metrics (including
false alarm and missed detection still apply, there is no over&ficertainties) for any given problem and provides a means by
ching principled approach by which these complex systems Aybich state trajectories can be examined relative to hazards.
designed, leading to a wide assortment of alternate solutions. Afrirst, a physical state spack is defined to provide a
accompanying effect is long development times. TCAS, megonsistent basis for modeling the current and future states of
tioned in the previous section, required approximately ten yedp§ process relative to safe and unsafe subsets of this state
of development, followed by another decade of modificatiorgace. The states that compd&ecan be thought of as the set
in response to problems observed in the field. TCAS is basetiparameters utilized by the alerting system to characterize the
on relatively simple assumptions that aircraft move in straigfynamics of threat situations. Undesirable or unsafe states are
lines and can only maneuver vertically and the system can ofgiled hazard space and denolddin a transportation system,
provide accurate warnings less than approximately one minffé instance, X could include the positions and velocities of
before a collision. Significantly more complex alerting system¢ehicles and could be any relative vehicle positions smaller
are being proposed and the engineering tools to develop thé1an a certain distance. In a medical examKleould represent
are needed. The Advanced Conflict Management System, f¢ates such as heart rate and blood pressure during surgery and
example, will surpass TCAS and use predictions on the ordertbgre would be regions dff defined for extremely high or low
several minutes with more complex flight trajectories and myalues of these states. In busineXscould describe product
neuvering options [9], [10]. inventory or stock value, with certain limits defined and set
One step toward advancing alerting theory has been the cagart asH.
ation of a linkage between SDT and formal state-space mod-The alerting system uses a set of decision metrics based on
eling methods from the dynamics and control field [11]. Thithe states ifX to determine whether an alert is issued. Contin-
linkage provides the means for recasting a complex, dynantigig the transportation example, relevant metrics could be the
problem as an analog to an SDT problem, allowing conveprojected miss distance of two vehicles or the time until colli-
tional SDT techniques to then be applied. Another recent dgen based on current position and velocity. The choice of ap-
velopment has been the identification of formal categories propriate metrics depends on the ability to reflect changes in the
philosophies of alerting design methods [12]. Decisions matlgeat condition. The better the correlation between the metrics
very early in the design process have a large impact on the aird the threat condition, the higher the potential for an effec-
timate performance of a system. A generalized understanding alerting system. The alert occurs when some combination
of the relationships between these decisions and performancefimetrics passes alerting threshold levels. This can be modeled
just beginning to be developed. Ultimately, a formal taxonomiyy subdividingX to show what state values result in alerts. This
of alerting methods for complex applications will help informsubset ofX is termed alert space and deno&d.
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As a graphical illustration, Fig. 1 shows a generic two-dimen- State Space .
sional (2-D) state spack where the current state of the system X - I;fifi?;yt
is shown atx(0). Regions of hazard space and alert space are
also shown. By definition, no alerts are generated whisrout-
side alert space.

When the state trajectory first enters alert space (p«ii}
in Fig. 1), an alert is given. At this point, the alerting logic has
decided that an intrusion into hazard space is likely (solid line)
if nothing is done to warn the controller. By initiating the alert,
it is expected that some action will be performed (depicted g} 1. Example state-space diagram.
point x(2)) to alter the course of the state trajectory in order

to avoid the hazard (dashed line). There is usually some delay

from pointx(1) to pointx(2) as the controller determines theMetric o P(C D) has also been defined, called the probability
appropriate response to take and due to potential latencieQffuccessful alert’(SA). The value ofP(SA) is the proba-

the system dynamics. Because an alert is a precursor warrfg{gy that hazard space is not entered after an aled (@A) =

to avoid a hazard, alert space should encompass all regiond ol (1 D). These connections allow for techniques analogous
hazard space. Selecting the proper size of alert space is a I&ffOC curves to be applied to alerting decision-making prob-
consideration in the design of the alerting systerX ¥ is too 16MS in which the future state trajectory of a process can be pre-
large (or equivalently, when the system overpredicts the level §ifted with known uncertainty distributions [11].

threat at the current state), there may be unnecessary nuisandg'€ combination of(5A4) and P(£'4) provides a funda-
alarms; ifX# is too small (or the system underpredicts the levEi€ntal basis for quantifying the performance of an alerting
of threat), hazard space may not be avoidable once an alergystem and these two metrics have been used in recent analyses

Initial Projected
State Trajectory

issued. [13]-[15]. These metrics, at a minimum, are needed to examine
the false alarm/missed detection tradeoff that invariably occurs.
A. Alerting Performance Additional metrics could also be defined if more detail is

S . - desired. For example, it may be of interest to separately mea-
Uncertainty is inherent in the prediction of any future out- "
. X ; sure the probability that an alert actually causes a hazardous
come and the same holds true in the design of alerting systeims. :
. . _Incident to occur, contrasted against the total rate of false
Due to random effects, there are variabilities and uncerta|nt|e|s ) . . .
. . .alarms or missed detections [13]. Other metrics may certainly
in the future states of any process and this produces errors in the ; .
- . . e_warranted as well, such as computational requirements,
prediction of a hazard and causes problems in the design of an .
; . implementation and hardware cost, or operator workload.
effective alerting system.

Methods to quantify the impact of uncertainty on deci-
sion-making have been developed and applied over the pgs
several decades. As discussed above, of particular relevancg&he application of SDT can have valuable benefits in the de-
to alerting systems is signal detection theory (SDT) [3]-[7kign and evaluation of alerting systems. However, use of SDT
Specific performance metrics are defined in SDT, includingchniques assumes that the underlying dynamic models and un-
the probability of false alarmP(F A), probability of cor- certainty distributions are known accurately. Typically, such ac-
rect detection,”(CD) and probability of missed detection,curacy may be limited, leading to additional performance losses,
P(MD). By plotting P(CD) againstP(F A) as a function of discussed as follows.
the signal detection threshold, the performance tradeoffs of theTo begin, first consider a model denot€dhat represents the
system can be observed in a receiver operating characteribtist engineering estimate of the future trajectory of the process,
(ROC) curve. The ROC curve can then be used to determineluding uncertaintiesT is what would be used in an offline
the appropriate threshold setting to best balance false alammalysis, for example, to assess the performance of the system.
against missed detections for the given application. Due to sensor and computational limitations, complete knowl-

SDT as originally posed required that the value of the signatige of the uncertainties and the most accurate prediction of the
and the probability density function of the noise are knowfuture state often cannot be attained by the alerting system it-
and was based on a single decision metric. These assumptieelf Instead, an approximate working trajectory mod¥l, is
are often sufficient in fixed decision-making problems, but actually used by the alerting system for its decision making. For
problematic in dynamic and more complex multivariable casegample, in air traffic collision alerting systems, it is typical to
where the system states and uncertainties change with timgsume that aircraft travel in straight lines. The working model
SDT has since been reformulated to more directly relate to diken is a simplification of actual aircraft trajectories, which may
crete alerting decisions in dynamic systems [11]. The use iatlude turns or other maneuvers.
state-space modeling described above is central to this connedeeally, one would likéW to be an exact copy of the best-es-
tion. It can be shown that the probability of entering hazatimate probabilistic trajectoryI’. The probability of entering
space along the nonalert trajectory (the solid line in Fig. 1) lazard space predicted from the working model would then be
analogous tal — P(F'A) in SDT and the probability of en- the same as the probability during offline evaluation. Unfortu-
tering hazard space along the alert trajectory (the dashed lisely, differences betwed&V andT make this unlikely except
in Fig. 1) is analogous td’(M D) in SDT. A corresponding for a short time step into the future. For example, two models,

tTrajectory Models
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‘W andT, are depicted in Fig. 2. As shown, the working trajec-
tory model used by the alerting system underpredicts the actual I
variability in the future trajectory that is assumed during evalu-
ation. This may then lead to observing late alerts or missed de-
tections from the system. Additional errors are introduced when
the best-estimate trajectory modElis not an accurate repre- _ _ _ _
sentation of what actually occurs in operation. These errors dafj 2 Example working trajectory modd() and evaluation modefi).
be reduced by attempting to make the evaluation scenarios in
T match as well as possible what is actually expected to occur.
However, some residual error will in general always be present.

After a recent survey of alerting methods, it is apparent that
working models of trajectories can generally be reduced to one
of three categories: single path, worst case and probabilistic [8].
In the single path approach, the current states are projected intc
the future along a single trajectory without direct consideration ’i\ ’i\ ’i\
of uncertainties. An example would be extrapolating a vehicle’s Single Path Worst case Probabilistic
position based on its current velocity vector [Fig. 3(a)]. The @) (b) ©
single path projection method is straightforward and provid|e_|s
a best estimate of where the state will be, based on the currefit
state information. In situations where state trajectories are very . S : . .

dictable (such as when projecting only a few seconds into %er_wsmered subsets of probab|I|st_|c traj_ectorles. The _smgle path

pre proj gonly
rwectory corresponds to a case in which the state will follow a

future), a single path model may be quite accurate. Single p(?gven (e.g., maximum likelihood) trajectory with probability 1;

3. State propagation methods.

projections, however, do not directly account for the possibili e worst case model is one in which the state may follow an
that the process or environment may not behave as expected—a y y

factor that is especially important in long-term decision makingr."’“edory with equal fikelihood.
Generally, this uncertainty is managed by introducing a safety
buffer (e.g., minimum miss distance between vehicles) to reduce
the likelihood of missed detections. Having introduced several underlying performance issues
The other extreme of dynamic modeling is to examine a worgtlevant to alerting systems, it is appropriate to discuss the
case projection. Here, itis assumed that the state trajectory cdalger-scale design process typically used in recent applications.
follow any of a range of behaviors. If any one of these traject&ollowing this examination, an alternative design approach
ries could result in entry to hazard space, then an alert is issuiédproposed to improve alerting system performance and the
The resultis a swath of potential trajectories which is monitoreafficiency of the engineering development process.
[Fig. 3(b)]. Worst case approaches are conservative in that they , )
can trigger alerts whenever there is any possibility of enteridyy 1YPical Alerting System Design Process
hazard space within the definition of the worst case trajectoryFig. 4(a) diagrams the general, iterative design process often
model. If such trajectories are unlikely, protecting against theused today in setting alerting threshold metrics, termed here the
may resultin a high false alert rate. Accordingly, the worst-caphiysical metric method. The design process originates with the
approach may be appropriate when it is desirable to be consgorking trajectory modelW, that the alerting system uses to
vative, or when dynamics are constrained within known boundsstimate the future states of the process.
Note that a simple threshold test against the current state of th®&ased on this model, physical metrics are then computed in
process (e.g., a blood pressure alarm for a patient) is essentitilly spacéX (e.g., temperature, distance, or time to impact) to
using a worst case trajectory model, under the assumption thpécify the alert threshold criteria that delineate alert space.
passing the threshold could result in a serious medical em&hese physical metrics are typically readily available through
gency. sensors (either directly or through some additional filtering or
In the probabilistic modeling method, uncertainties arestimation) and so until recently have been the only practical
explicitly used to develop a set of possible future trajectorieshoices for use in a real-time system. Advances in computing
each weighted by its probability of occurrence. For examplppwer, however, are now opening up new possibilities to use
a distribution of future vehicle positions could be obtained byore complex, derived decision metrics. This opportunity is dis-
modeling uncertainties in guidance [Fig. 3(c)]. A probabilisticussed in the next section.
approach provides an opportunity for a balance between relyingContinuing for now to focus on the physical metric design
too heavily on the state adhering to a single trajectory versagproach, the alerting thresholds X are initially set based
relying too heavily that the state exhibits a worst case behavion a combination of analysis and user expertise, but usually
The advantage of a probabilistic approach is that decisiorexjuire some fine tuning from test scenarios through simula-
can be made on the fundamental likelihood of entering hazarons or through observed performance in the field, as shown
space—safety and false alarm probabilities can be assedsellig. 4(a). These test scenarios form the best-estimate set of
and considered directly. The probabilistic method is also theajectories;T’, that the system is to be exposed to and evaluated
most general, since single path and worst case models carabainst.

Ill. ALERTING SYSTEM DESIGN METHODS
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Fig. 4. Physical metric design process and operational process.

The values used to describe and evaluate the resulting perforfhe specific performance requirements that must be met are
mance themselves form a state space which is denot&dAs represented by a subset BfdenotedZ®. For example ZR
2-D example ofZ could have states of probability of successfutould be the region of performance state space where the prob-
alert P(SA) and probability of false alarn?(F' A). Whatis ul-  ability of false alarm is less than 0.05 and the probability of suc-
timately happening is that the alert spacé&ins being mapped cessful alert is greater than 0.99. If these requirements are not
into performance space #. In a transportation application, for met, then the metrics of the alerting threshold are iteratively ad-
instance, the alerting thresholds (in the state s@agrenight justed until satisfactory performance is achieved. In some cases,
be based on the current rang9, (fange rates() and predicted it may also be necessary to modify the decision metrics that are
miss distancern) between vehicles. Given a set of evaluationsed or to alter the working trajectory model (e.g., through the
scenarios, the probabilities of false alarm and successful akeddition of new sensors that provide additional state informa-
would be some function of these threshold valuB§F A) = tion).
g(r,7,m) and P(SA) = h(r,7,m), respectively. The func- Once the system has been designed in the manner discussed
tions g() and 2() would be specific to the scenarios used foabove, the alerting thresholds are encoded and used in the
evaluation inT. The resulting performance of the system careal-time operation of the alerting system [Fig. 4(b)]. In opera-
be thought of as forming a new vectafs = [P(FA) P(SA)], tion, a physical metric system takes in the current measured or
in the state spack. In general, the system performance can bestimated state of the process, compares these physical states
expressed as a mapping from the threshold settings in physi@gainst the predefined alerting threshol®s® and issues an
state spaceX®, to the performance state space: alert as appropriate. This is relatively simple and generally can
be performed in real time.
Returning to the design process, Fig. 5 shows a conceptual
A =7 (XA) (1) illustration of mapping the alerting thresholds in the physical
state space oK to the state space of performance measures,
wheref() is a function that also depends on the evaluation sc&: The alert space iX is denoted by the regioX* and the
narios inT. The governing functionf(), can generally not be required performance region to be metdris designate&®.
explicitly expressed or defined during the design process. Thighen X4 is mapped intdZ, it becomes a single state vector
it becomes difficult to predict the outcome of changes or evert as described by (1). #2 is outside the region &%, as de-
to make informed comparisons between different sets of sinpieted in the leftmost illustration of Fig. 5, then the performance
lation runs. requirement is not met and the threshold metrics need to be ad-



128 IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 32, NO. 1, JANUARY 2002

P(SA) P(SA) P(SA)

P(FA) P(FA) P(FA)

Fig. 5. Mapping to performance state space.

justed until suitable performance is obtained. This is shown gituations, the overall performance of the system would be a
the series of drawings going from left to right and representgeighted average of each of the individual outcomes. If situ-
the iterative search and fine tuning of the feedback loop froations 2 and 3 were rare relative to situation 1, it is possible that
Fig. 4(a). Notice thalX# is changed in each step. the system design shown in Fig. 6(a) would satisfy overall per-

There are several important insights when the design procémsnance constraints. Should situation 2 or 3 be encountered in
is portrayed in the manner shown in Figs. 4(a) and 5. Becausgeration, however, performance would not meet the specifica-
of the feedback loop in the design process, the final settingstmns.

the alerting thresholds (e.g:, 7 andm) are actually surrogate |, an attempt to improve system performance, Fig. 6(b)

values for the desired performance metrics. This is quite similgfqys two modifications to the alerting logic. First, the original
to a neural network scheme where the evaluation scenarios Ql%'rting threshold XA) was split into two forms XA for

fine a reference model from which the thresholds are adjustedia types of threat encounters representedfkyy and X2

meet or optimize performance metrics [16]. Even if the evalugs encounters represented By(). Second, a different state

tion scenarios or the dimensions of alert space are Changed’éﬁﬁcex’ was formed based on different metrics tHér(e.g
specification for the minimum level of performan&t) would through the use of different sensor information). In the space

likely remain unaltered. Thus, the alerting thresholds definedbrfn X', a third alerting threshol&/A was defined for the con-

X are actually indirect controls qf the alerting pgrformance Bitions represented bys(). These new thresholds then allow
.Z' _D|fferences between the workmg "’?”d e\{aluatlon models_ e system performance to map into the desired specification
indirectly managed through the iterative, trial-and-error desgggioan However, this performance comes at the cost of an

process. A . increased number of threshold metrics designed and tailored
If an acceptabléX“* cannot be found to satisfy the perfor- o . X

. ) . specifically for different types of encounters. Finally, how these

mance constraints, then there are four possible corrective gp-

tions. The first is to change to a different set of threshold mets v thresholds WOUId. be de_termlned is complex an(_j .WOUId
rics (i.e., change the states that defiip The threshold metrics probably involve a series of trial-and-error tests. The difficulty

may not have been appropriate for the types of situations that g}getermmmg how to adjust thresholds to achieve performance

encountered, or else there may have been an insufﬁcientnum%%‘?c'ﬁCa“onS is one of the drawbacks of the physical metric

of metrics to handle the complexity of situations. This is analgjethOd'
gous to regression modeling in which a different set of metrics The third corrective option is to limit the use of the alerting
may provide a better correlation with known data. system to specific types of encounters. In problematic situations,
A second option is to partition out the thresholds to handtbe alerting system may need to be inhibited to prevent false
more situation-specific groupings: different sets of threshoflarms. For example, a collision warning system may have to
criteria are used for different threat conditions. Take the eke modified to not alert during proximate situations when two
ample shown in Fig. 6(a), where one alerting threshl®,, aircraft are flying on parallel courses. This corrective measure
is used for three different types of threat encounters, with thefact is used with TCAS during closely-spaced parallel ap-
corresponding mapping functions(), f2() and f3(). In this proaches to reduce false alarm rate. Inhibiting alerting systems,
case, onlyf;() maps adequately to the required performandewever, reduces their utility because certain threat conditions
specifications. XA were to be utilized for all three encountermay no longer be protected.
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(performance requirements) denoted B¥. In general,Z
could be composed of the states/&fSA) and P(F A), though
other performance metrics could be used. Overall system
performance can still be tested through a simulation if desired.
This could lead to modifications in the trajectory models that
are used, as diagrammed in Fig. 7(a).

In actual operation [Fig. 7(b)], the PMA system performs
a probability estimation using the sensed state combina-
tion with the working probabilistic trajectory model. This prob-
ability estimation can be performed online using an analytical
solution or Monte Carlo simulation [18]-[20], depending on the
complexity of the problem and on computational constraints.
PER) Py The probabilistic trajectory model that is used may itself be a
function ofx. For example, a baseline trajectory model may be
used in most cases to propagate the current state into the future
Fig. 6. Use of situation-specific thresholds. and thereby estimate the probability of entering hazard space.
If additional information were available to the alerting system
(e.g., specific intentions of the operator to turn the vehicle), then

The fourth and final corrective option is to utilize a differenfy, o trajectory model can be modified online and a new proba-
threat resolution strategy. Given that the performance is pargmty estimate can be attained.

pgsed on the ability to avoid a hazarq after an alert is. issuedipe probabilistic outputs of the trajectory model are the
it is natural to assume that some metric suchPéSf_l), which _performance measures of interest, suctPé§A) or P(FA),
_reflects the_ performance of a specific hazard a\(0|dance actigfhich can be represented by the stafe This state is then
is included in the performance state space. The idea would b nared against the performance criteria that form the alerting
use a different or a more drastic avoidance maneuver, modifyifjgesholds and an alert is issued only when the appropriate
the d.ash.eq line in the ;tate space dlagrgm_ in Fig. 1. performance measures are satisfied.
. It is difficult to provide a general prmqple as to how_or In order to compute the state of the process in spcit
in what order the_ four possible corrective actions outlinegd necessary to use significantly more complex computations
above should be implemented. The methods to use depgRgh are required for physical metrics. Whereas physical met-
largely on the specific alerting problem under investigationcs may be immediately available from sensors, performance
Whichever corrective actions are taken must generally Rgrics must be derived through a series of computations per-
applied through trial-and-error, further illustrating the desigpymed on a probabilistic trajectory model. Since the alerting
challenges inherent in physical metric alerting methods.  gystem must estimate these metrics online, there are stringent
requirements on computation ability if PMA is to be used. PMA
B. Performance Metric Alerting (PMA) System Design has not been a practical option until recently; however, current
In the previous section, the relationship between performare@mputational power is now enabling PMA to be used in some
metrics and physical metric alerting thresholds was examind@al-time applications, as is described through an example in the
It was explained that the performance requirement values (18Xt section.
spaceZ) were actually driving the threshold settings (in space As indicated by the dashed line in Fig. 7(a), it may also be
X) in the physical metric approach. Given current computirgPssible to map the probabilistic performance values to other
capability, the performance metrics may now be obtained dnetrics in a physical state spack, with its corresponding
rectly in real-time in some cases, thereby negating the neecht@rt spacé&X* . This may allow for easier interpretation of the
implement the additional iterative steps during design to mapreshold logic. However, this translation may not always be
physical metrics into performance metrics. possible unless a one-to-one mapping of variables exists. The
In Fig. 7(a), a new, more direct approach to the alertingfoblem is akin to the same type of dilemma associated with in-
process is presented, termed the performance metric alertig§se kinematics.
(PMA) method [17]. Here, the performance metrics (in the i .
space ofz) are directly computed in real time by the alerting>: Discussion of the Two Design Approaches
system and alerting decisions are based explicitly on themThe physical metric process leaves open many different pos-
rather than on ersatz metrics in the spac&ofThus, the core sible variables for use as metrics in the physical state space. Sev-
performance values determine when and where to alert. eral surveys of air traffic alerting algorithms developed through
In the PMA concept of Fig. 7(a), the working trajectorythe physical metric process found scores of different metrics
model used by the alerting system is the same as the mobeing used by different researchers as a basis of alerting de-
upon which performance would be judgé@(= T). In doing cisions [8], [12]. Yet, the core performance specifications are
so, the alerting algorithm is obtaining a direct prediction afearly always in terms of false alarm and safety probabilities.
the likelihood of hazards and also the ability to avoid thenin essence, the physical metric approach is bypassing an accu-
These values can then be utilized as the threshold metricgate dynamic model either completely or partially while leaving
the performance state-space Bf with the alerting criteria the fine tuning to pattern matching. The reason for the required

(a) Global Threshold (b) Situation-Specific Thresholds
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Fig. 7. Performance metric design process and operational process.

mapping is because of the disparity between the working trajdications when considered over the sum of the evaluation sce-
tory model,W and the best-estimate moddl, For example, a narios. In contrast, the performance metric approach ensures
collision avoidance time-to-impact metric is typically based othat the desired performance is met every time that an alert is
the assumption foW that the closure rate between two vehiissued. It can be shown that a global threshold exhibits a higher
cles is constant. The threshold value of time to impact at whitéwel of uncertainty and reduced overall level of performance
an alert is generated, however, is generally determined throubhn a situation-specific solution [17]. The result of a global
iteration over a series of simulations wilhwhere closure rate threshold is a compromised design that achieves the desired per-
actually does vary. Without the ability to obtain an accurate prisrmance constraintsn average but which may not achieve
diction of a hazard encounter directly from its own trajectorthem in a given specific situation.
model (sinceW # T), the physical metric alerting logic is When operating a performance metric system as shown in
forced to trial-and-error methods and performance in genefay. 7(b), there is a need to continuously update the dynamic
deteriorates. model, W, utilized by the alerting system to keep up with the
However, there may really be no need for this mapping sincarrent situation. As long as the uncertainties in the trajectories
a prediction of alerting performance may be obtained directtan be modeled, the update process is a natural progression of
by using probabilistic trajectory modeling. This can occur whemew states and other data that is brought in to mo#ify At
W = T. The working trajectory modeNV, is therefore a rep- any instant in time, the current states are projected into the fu-
resentation of the same simulation scenarios that were usedut® usingW and the probabilistic performance metrics, such
evaluate performance in Fig. 4(a). In order to do tMé,must asP(F A) and P(SA), are computed. The decision to alert is
be allowed to exhibit any trait that would have been charactehen made directly from these performance estimates. So, with
ized in the evaluation simulations, including the likelihood oPMA, the trajectory model is tailored or adjusted to best match
human errors and blunders. the current scenario in real time but the ultimate alerting thresh-
The approach shown in Fig. 7(a) requires a direct modelingoids (Z®) are static. In contrast, in physical metric alerting,
the uncertainties in the state trajectories of the process, whichitie trajectory model may be fixed, but the alerting thresholds
turn can help determine the impact and influence of each sournay be modified in response to the specific situation being en-
of uncertainty on the alerting performance. It should also l®untered (recall the discussion of Fig. 6). But, because it is
noted that the physical metric method tends to develgiplbal not directly apparent how these physical thresholds should be
threshold setting as opposed tcsiduation-specificthreshold modified to still meet performance specifications, the overall
(one that is individually tailored to the current encounter sitsystem performance may suffer. For example, TCAS (designed
ation). Due to the offline nature in which thresholds are set, thising physical metrics) uses a single trajectory model based on
physical metric system achieves the desired performance spéue currently-estimated range between aircraft and their closure
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rate, regardless of aircraft altitude. The alerting thresholds theemResolution Advisory (RA). RAs provide vertical avoidance
selves, however, are adjusted depending on aircraft altitudectiommands; TAs are merely attention-getting alerts and lack any
account for higher closure rates and reduced altimeter accuraegolution guidance. The following discussion focuses on RA
The PMA approach is situation-specific since the alert dederts only.
cision is based entirely on current information specific to the Though the TCAS thresholds are more complex, they can be
encounter. All knowledge of the current situation, including theummarized by what is commonly referred to as the Tgu (
effects of uncertainties, is containedTh The idea behind the Criterion:
performance metric approach is to allow the computation of the r— DMOD
threat condition online as the situation occurs, using robust de- _
cision thresholds that are invariant with the situation. It is anal-
ogous to computer chess programs that wait for a move to RRerer is a threshold parameter with units of time and DMOD
made; then based on the current configuration, they propagite safety buffer distance. Essentially, if the predicted time to
the probable moves of each chess piece (out to a finite numbgsgiching a distance of DMOD between aircraft is less than a
of moves ahead) and make a decision based on the results. E#egshold timer, an RA alert is issued. Similar metrics are used
in the limited confines of the chess board and the incredible prig-the vertical dimension. The TCAS logic assumes a straight
cessing power of today’s supercomputers, itis nearly impossiliilge, single path working trajectory model and DMOD acts as
to determine what all the moves should be prior to the start @fbuffer to account for possible deviations or sources of error.
the game (except possibly for initial standard opening “booletrics such as DMOD and effectively determine the fre-
moves). There are just too many possible configurations evglency with which RAs are given. Reducing these values will
on the discrete space of a chess board. Instead, the simulatiesgiice the alert rate and number of disruptions caused by false
are performed by the computers on the run as the situation @iarms [25]. However, the tradeoff is the risk of missed or late
folds and the decisions are situation-specific based on the callerts due to insufficient warning time. The desire is a balance
rent configuration. between false alarms and collision protection that TCAS is in-
By keepingW = T, the alerting decision is tailored speciftended to provide.
ically to the best estimate of the current conditions of the en-To achieve this balance, the various design metrics were set
counter. Any changes to the system state or knowledge of the §iffline using anad hociterative approach through Monte Carlo
ture trajectory are accounted for directly and implemented as #ighulations of aircraft encounters. Modifications were also
situation occurs. This resolves the problem of pre-determiningade from data and user comments during actual in-flight op-
separate threshold metrics for every possible encounter situai@ations. In one set of evaluations of TCAS, for instance, a large
as was shown in Fig. 6. PMA does require, though, a significagiitabase of pairwise aircraft encounters was generated from
increase in real-time computation. However, given advancesgtual recorded tracks in the United States airspace [26], [27].
computational power, such an approach is now becoming fegsing this database, ten types of vertical encounter geometries
sible in some cases as is discussed below. In the following twere defined (Fig. 8) which were considered to encompass
sections, case studies of the physical metric and performamggical aircraft maneuvers. In evaluating the performance of the
metric approaches are presented to compare and contrast thegétem, a large number of different simulation runs were used
sign methods that are used. to cover each of these ten encounter classes, leading to millions
of simulation runs [25]-[27]. Changes to the threshold metrics
were then suggested due to the results of these simulations
IV. EXAMPLE OF THE PHYSICAL METRIC in terms of false alarms and collision rates (metrics in the
DESIGN APPROACH performance spacg). In the framework presented above, these
different encounter scenarios form the evaluation trajectory
The Traffic Alert and Collision Avoidance System (TCAS)model T, since it is on their basis that the alerting system is
has been implemented on U.S. jet transports since the eattemed acceptable or not.
1990s as concern grew over the potential of future midair col- As was the case in the example in Fig. 6(a), TCAS is unable
lisions. TCAS has been credited with several “saves” in neao satisfy performance constraints using a single threshold set-
collision situations and has also been accused of causing falag for all encounter situations. The logic was modified with a
alarms that nearly led to accidents [21]. The system is quite comsmber of if-then branches to manage different encounters and
plex; the discussion here only focuses on a simplified set of medditionally the values of metrics such asand DMOD vary
rics and logic. The interested reader is referred to [2], [22]-[23F a function of altitude and flight condition. Thus, there is a
for more detailed descriptions of TCAS. large amount of tuning of the alerting threshold metrics, even
In abbreviated terms, the TCAS logic calculates a collisidior a seemingly simple design in which aircraft are assumed to
threat in the horizontal and vertical dimensions separately affylon straight, constant velocity paths and only use vertical eva-
issues alerts if both criteria are met. The algorithm is based sime maneuvers. Still, TCAS is a remarkably effective system,
the relative ranger{ and range rate*j and also the relative alti- especially considering the limited amount and quality of infor-
tude ¢) and altitude rate/() between two aircraft. In the frame-mation upon which it must base its decisions.
work presented in this paper, these metrics form the physicalThese modifications to the alerting system can involve a te-
state spacX. TCAS uses a two-stage process with a cautionadjous process of breaking up and grouping the scenarios to cover
alert called a Traffic Advisory (TA) and a warning alert calledll possible encounter geometries and flight conditions. In a

<T (2)

—r
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changes. The trajectory model was continually modified in re-

Class 0 Class 1 Class 2 Class 3 Class 4 sponse to any additional intent information (e.g., through a data
link of the aircraft’s future flight plan). If such intent informa-
— N N tion was not available, more uncertainty was injected into the
. -— < trajectory model to dilute the confidence with which an alerting

decision was made. Thus, the working model used by the system
included as much information as possible regarding the future

Class 5 Class 6 Class 7 Class 8 Class 9 trajectory of each aircraft. A more complete discussion of the
trajectory models can be obtained from [18] and [19].
N\ -— | A — - The probability of a conflict?(C'), was defined as the proba-
N i y y~ bility that one aircraft will enter another’s protected zone given

that no alert is issued and that the aircraft follow the working
trajectory model. To calculat®(C), the positions of the two

aircraft must be projected into the future to determine the like-
Fig. 8. TCAS evaluation situations (adapted from [27]). lihood of a.pro.tected zone violation. D.ue to .the complexity of
the dynamics involved, Monte Carlo simulations were used to

. , : : . estimate this probability.
more general air traffic conflict alerting environment when way- Each Monte Carlo run consisted of examining the trajectories

pmoé?]g’ofnu;Eg_'gt)egggglj:Igglgtrfr;"r?:gg daigcrzmﬂ ttrt;reesc;?n%ansd determining whether separation minimums of the protected
9 ' Pne were violated. The trajectories varied randomly with each

extremely difficult to utilize such a scheme to amalgamate Z[m according to the uncertainty distributions chosen to define

tehaecr:ngr',\gd:Jr?lthsétuﬁ“gga;gtgféelofojfﬁ ai;ar;ea thggsnhgggzs rre trajectory model. After a certain number of Monte Carlo
' physica PP  ft may %Xs a count of the number of protected zone intrusions was
to perform the task iteratively for each scenario in order to map

. Con . made. Dividing the number of intrusions by the total number
out a different alert spac&#, for individual encounters. This g y

. of Monte Carlo runs was then an estimatodtfC). As imple-
would be true unless, of course, one could pick a set of thresh%@: 7C) P

metrics that would allow settings to be virtually invariant of th ted P(C') was estimated to within 0.015 (with 99% confi-
L > o . n r roximately 1 s of com ion time on a Silicon
encounter situation. In fact, this is the principle behind the d%ée ce) after approximately 1 s of computation time on a Silico

rect performance metric approach shown in Fig. 7 sraphics In(_jigo Wo_rksta_tion. Thisis based on 10 OOQ simulation

T runs assuming a binomial process. The computation time was
small enough that the system could be implemented in real-time
human-in-the-loop studies.

A multistaged threshold approach was used to provide a series

A prototype alerting logic for detecting air traffic conflictsof alerts to indicate trends in conflict hazard. The multi-stage
was developed by the authors using the performance metjaproach allowed the type of alert to be tailored to the level
design approach discussed above [17]-[19]. The design of thfghreat. Low-probability threats resulted in relatively passive
system is useful as an example to discuss how the performaatasts such as changing the color of a traffic symbol on a cockpit
metric approach can be implemented. Whereas TCAS ustsplay. High-probability, urgent threats produced aural warn-
physical metrics such as range or time as the basis for alertings to actively inform the pilots of the conflict. The appropriate
decisions, the system discussed here uses performance mestiage to use in a given situation depended on the state vector in
related to false alarm and success probabilities to determihe performance spadg, rather than in a physical state space
whether to issue an alert. Although shown in contrast to TCAX.
the prototype system is not meant to replace or otherwise comThe performance spaéhad two dimensions. The first was
pete against TCAS. Instead, it serves as an illustrative exampleF' A), which is related to the probability of conflict that is
only. It should also be mentioned that other performance metegpected should the aircraft continue along their planned paths.
designs are appearing. See, for example, [20] or [28]. The higher the value aP(C), the smaller the value dP(£'A).

In the design of the prototype system, it was presumed thite second dimension 4 was represented by the flexibility
state information from surrounding aircraft (position, speed amdth which a conflict could be successfully avoided with 95%
heading) was available through inter-aircraft data link commuaenfidence. This involved determining what types of standard
nication. These metrics can be considered to form the physio@neuvers (turns, climbs, descents, or speed changes) would re-
state spac& since they are useful in describing trajectoriesolve the conflict with probability 0.95, computed through ad-
and whether hazard space is entered. Hazard space was rdatitenal Monte Carlo simulations. These maneuvers served as
sented by a traffic conflict, defined as a situation in which ongenchmarks for estimating the ability of the aircraft to avoid
aircraft enters a cylindrical protected zone around another ar€onflict. The number of available avoidance maneuvers then
craft five nautical miles in radius and extending 1000 feet aboweas defined as the second dimensiorZofProbability of col-
and below the aircratft. lision could also have been used in this example as a perfor-

The aircraft trajectory working model included uncertainty imance metric if desired. Whereas TCAS was concerned with
the current position estimate, future along- and cross-track pmllision avoidance (and thus used probability of collision as a
sition variability and the potential for and magnitude of courggerformance metric), the prototype system here was intended

Arrows represent aircraft vertical profiles

V. EXAMPLE OF THE PERFORMANCE METRIC
DESIGN APPROACH
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for earlier, less urgent warnings so that less aggressive avoi 3+
ance actions would be required. Thus, the use of a probabilist
maneuver flexibility metric irZ is appropriate in this case.

Fig. 9 shows a schematic of the performance state space, i
cluding the alerting requirementg®, for the four alert stages.
When aircraft are far from one anothét{ ¥ A) will be close
to 1 and many maneuvers could be used to successfully avo:
a conflict. Thus, the state would be located in the upper righ
corner of Fig. 9. As a threatening intruder aircraft nears anothe
P(FA) generally decreases as it becomes more certain that
alert will be needed. Additionally, flexibility is lost as the air-
craft get closer or if there are other aircraft in the vicinity, re-
sulting in movement downwards in Fig. 9. As the state crosse
the boundaries shown in Fig. 9, the alert level would change t 0 0.5 1.0
reflect the increased threat level. The prototype alerting logi Probability of False Alarm
based on the performance metric approach has been succe__ P(FA)
experiments at the NASA Ames Reseatch Center see, for G5 & Peromance e s proaye alring ysen
ample, [29] and [30].

The specific makeup of the different regions@® in this N the proposed approach, the core event-based performance
example is not of importance here; rather, the intent is gpecifications themselves are used as the decision metrics or
demonstrate the real-time use of higher-level performangerting thresholds. This bypasses the need to map physical met-
metrics (e.g.,P(FA)) as the alerting thresholds instead oficS into the performance specifications and can lead to a more

lower-level physical surrogate metrics (e.g., time to impact, &fficient and more effective system design. The critical prereq-
miss distance). uisite in order to use the proposed approach is that the perfor-

mance specifications must be defined at the start and must be
calculated during system operation. Given advances in compu-
tational power, it is now becoming practical to estimate prob-
abilistic measures such as false alarm probability online and
The development of formalisms behind the design of conthus it may be feasible to base alerting decisions on these fun-
plex hazard alerting systems would greatly facilitate the develamental metrics. Performance metrics other than probabilistic
opment of effective systems in an efficient manner. This papereasures are also certainly possible (e.g., economic costs). The
outlines several key performance considerations and modelk®y concept for using performance metric design is to clearly
approaches, including the application of state space methddisntify those metrics that best define whether a given alerting
and the need to consider the relationship between the workitecision is acceptable and then compute and use those metrics
model used by an alerting system and the evaluation modelaafthe decision metrics in operation.
the environment in which it will operate. To summarize, both the physical and performance metric
Ultimately, any alerting system is designed based on predioethods typically require some form of probabilistic mod-
tions of future events. Itis the accuracy of these predictions corling to predict event outcomes. The difference, however, is
pared against what actually would occur that determines how #fat physical metric systems apply this modeling offline in
fective the system is. Prediction accuracy, in turn, is directly abrder to set the alert thresholds, while performance metric
fected by what trajectory models and decision metrics are ussgstems apply this modeling online during operation to trigger
Physical metrics such as temperature, pressure, distance, or tileets. The benefit to performing the modeling online is that
to impact have traditionally been used as the basis for definisguation-specific information can generally be included more
and setting alerting thresholds across a variety of applicatiod&ectly than is possible during an offline evaluation, simply
These metrics are often directly measured by sensors and dwe to the large number of possible situations that could be
easily processed online and thus are natural choices for usemasountered priori. An analogy is determining chess moves
decision metrics. However, a different set of metrics is usualbefore a game versus determining them online in response to
applied to evaluate system performance. Performance spedhie current situation.
cations are generally based on event outcomes, including fals©ur intent is to illuminate those issues that are at the core
alarm rates and probabilistic measures of safety, as these nadaalert decision-making and how the design of systems may
sures are at the essence of the alerting design tradeoff. The bi@more directly tied to those issues than has been the case in
ditional alerting system design process is shown to fundamemnany current applications. Certainly there are applications for
tally involve tuning the physical decision metrics so that thehich the performance metric approach would not be effective
system meets the desired performance specifications. Becamsgesirable. Yet, it is important to begin articulating the poten-
this tuning is done iteratively offline, the system in operatiotial design options that exist, with the goal of generating a useful
is less flexible in adapting to a specific situation. Although thitaxonomy of alerting system designs. We hope that efforts con-
design process can and has led to effective alerting systemsinae in the future across many disciplines to explore these and
more direct approach is proposed in this paper. other methods when developing alerting systems.
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