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Performance Metric Alerting: A New Design
Approach for Complex Alerting Problems

Lee C. Yang and James K. Kuchar

Abstract—Alerting systems and related decision-making
automation are widely used to enhance the safety and capability
of controlled processes across many applications. Traditional
alerting systems use physical metrics such as temperature, dis-
tance between vehicles, or time-to-impact as bases for making
alerting decisions. Threshold values on these metrics are typically
derived using an iterative process to ensure the achievement of
desired performance goals, defined by higher-level metrics such
as false alarm, safety, or success probabilities. We generalize this
problem and develop two state spaces, one representing physical
metrics and one representing performance metrics. A traditional
alerting system operates completely within the physical space,
using decision thresholds that have been developed offline during
the design process by examining how the physical threshold
translates across to the performance state space. The physical
metrics thus act as an indirect means to control the performance
of the system. We propose an alternate approach that enables
the system to operate online in the performance space. Alerting
decisions are based directly on the computed values of metrics
such as false alarm probability rather than on surrogate physical
metrics. These two design approaches are then contrasted in case
studies of recently-developed alerting systems.

Index Terms—Alarm systems, algorithms, decision support sys-
tems, threshold logic.

I. INTRODUCTION

DURING the operation of many processes, threats may be
encountered that require a human operator’s attention.

Safety or robustness against these threats is often enhanced
through the use of automated alerting systems that indepen-
dently monitor operations and warn the controller to intervene
should it be necessary. Alerting systems are becoming in-
creasingly pervasive and are used in applications including
aerospace vehicles, automobiles, chemical or power control
stations, air traffic control, medical monitoring systems and
even business and financial markets. In addition to providing
a final safety net for many processes, some alerting systems
actually enable operating in regimes that would not be possible
without them. Closely-spaced parallel approaches at airports
in poor visibility, for example, are only allowed when certain
automated alerting systems are present to provide the necessary
level of safety [1]. The additional traffic throughput, then,
is directly reliant on the existence and performance of an
alerting system. Similarly, critical medical procedures may not
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be performed without the appropriate monitoring systems in
place. Thus, alerting systems play key roles in advancing the
capability and scope of many safety-critical processes.

At their core, all alerting systems are discrete deci-
sion-making elements, continually determining whether to
remain silent or to warn the controller to take some action
(whether that controller is a human or automation). Simple
alerting systems may monitor a single parameter and a certain
threshold must be crossed for a warning to be issued. Examples
of simple systems include smoke or fire detectors, flow rate
regulators and blood pressure or heart monitors. Complex
alerting systems are also in use that make higher-level infer-
ences about safety using multiple parameters. One example
is the Traffic Alert and Collision Avoidance System (TCAS)
currently in use on jet transport aircraft [2]. TCAS measures
the relative range and altitude between aircraft to infer whether
a collision is likely and uses a complicated set of algorithms to
assign a level of urgency and to provide commands to the pilot
to avoid a collision.

To be effective, the alerting system must issue a warning early
enough that corrective action can be taken, but not so early that
unnecessary nuisance alarms occur. This generates a tension in
the design of these systems that is always present, regardless of
the application. Failure to properly balance this tension leads
to operator distrust of the system, inefficiencies, or accidents.
The alerting system must also operate in real time, necessitating
some concessions in modeling and computation complexity.

Due to the complexity of applications and the many com-
peting constraints on design, alerting systems today are often
designed in a relativelyad hocmanner, without the benefit of
an overarching theoretical methodology. Sophisticated tools
have been developed to design and analyze parts of an alerting
problem, but there is little high-level direction of design efforts
due to current limitations in alerting system theory. A brief
overview of progress in alerting theory will help to put the state
of this field in perspective.

A. Progress in Alerting Theory

Alerting systems have actually been in use since well before
the advent of electronics, with examples ranging from bringing
canaries into mines (to warn workers of asphyxiation danger) to
the famous Nightingale Floorboards of Nijo Castle in Kyoto,
Japan (to warn the Shogun of intruders in the night). These
alerting systems and many other more modern ones, such as fire
alarms, operate on the principle of triggering a warning when
some state exceeds a certain threshold value. In the examples
above, the canary’s death signals the exceedance of some level
of toxic air; the floors of Nijo Castle were designed to creak
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when any weight over a certain value was placed on them. These
are examples of classical decision theory problems in which
there is a clear signal to be detected and two possible decision
errors: false alarm or missed detection. As one analysis tool,
signal detection theory (SDT), was developed in World War II to
address radar targeting problems [3]–[5] and was later extended
to human decision-making problems in general [6], [7]. SDT
provides a formal method by which optimal decision thresholds
can be determined, given a known signal value corrupted with
sensor noise and is well suited to these types of classical, binary
alerting problems.

Many current alerting problems, however, are too complex
to be managed with SDT alone. Consider an aircraft collision
warning system, for instance. Numerous dynamic states of in-
formation may be available, such as the positions, velocities and
accelerations of the aircraft. If an alert is triggered, there may
be many alerting levels or options for action to avoid a colli-
sion. The human pilot’s response to an alert is also uncertain
and may have a large impact on whether the alerting system is
successful. It becomes extremely difficult to apply conventional
SDT tools to problems of this scope, where the “signal” is not
readily apparent, noise is complex and time-varying and a single
decision threshold may not be easily defined.

Complex and successful alerting systems have been devel-
oped, despite this difficulty. But, the techniques that are applied
are diverse and less formalized than SDT. A review of recent ef-
forts in aircraft collision alerting, for example, found that over
60 decision-making methods have been proposed, tested, or im-
plemented for that task [8]. Although the fundamental issues of
false alarm and missed detection still apply, there is no overar-
ching principled approach by which these complex systems are
designed, leading to a wide assortment of alternate solutions. An
accompanying effect is long development times. TCAS, men-
tioned in the previous section, required approximately ten years
of development, followed by another decade of modifications
in response to problems observed in the field. TCAS is based
on relatively simple assumptions that aircraft move in straight
lines and can only maneuver vertically and the system can only
provide accurate warnings less than approximately one minute
before a collision. Significantly more complex alerting systems
are being proposed and the engineering tools to develop them
are needed. The Advanced Conflict Management System, for
example, will surpass TCAS and use predictions on the order of
several minutes with more complex flight trajectories and ma-
neuvering options [9], [10].

One step toward advancing alerting theory has been the cre-
ation of a linkage between SDT and formal state-space mod-
eling methods from the dynamics and control field [11]. This
linkage provides the means for recasting a complex, dynamic
problem as an analog to an SDT problem, allowing conven-
tional SDT techniques to then be applied. Another recent de-
velopment has been the identification of formal categories or
philosophies of alerting design methods [12]. Decisions made
very early in the design process have a large impact on the ul-
timate performance of a system. A generalized understanding
of the relationships between these decisions and performance is
just beginning to be developed. Ultimately, a formal taxonomy
of alerting methods for complex applications will help inform

future efforts so that the most appropriate design path is used
for a given problem.

The design of complex alerting systems would be greatly fa-
cilitated through the development of a cohesive modeling and
design approach based on more formal principles. This paper
outlines the fundamental considerations for alerting systems in
general and proposes a design process based directly on these
principles. To begin, an overview of alerting system operation
is provided in the next section, including a more detailed discus-
sion of SDT and other recent developments. Then, two different
alerting system design processes are examined and a new ap-
proach to design is proposed to make the best use of increasing
advances in computational ability. Finally, two example alerting
systems are discussed to illustrate the differences that the design
process has on the operation of the system.

II. GENERALIZED MODEL OFALERTING SYSTEM OPERATION

Alerting systems must predict that an undesirable event will
occur before it actually does—the entire reason for having the
alerting system is to allow the controller enough time to respond
and maintain safe operation. Thus, alerting decisions must be
based either directly or indirectly on some form of future pre-
diction of the state of the process. The main factors affecting
alerting system performance can be captured through the use
of state-space trajectory techniques extended to alerting prob-
lems by the authors as described below. The state-space view of
alerting developed by the authors facilitates a clear and general-
izable description of the important states and metrics (including
uncertainties) for any given problem and provides a means by
which state trajectories can be examined relative to hazards.

First, a physical state space is defined to provide a
consistent basis for modeling the current and future states of
the process relative to safe and unsafe subsets of this state
space. The states that composecan be thought of as the set
of parameters utilized by the alerting system to characterize the
dynamics of threat situations. Undesirable or unsafe states are
called hazard space and denoted. In a transportation system,
for instance, could include the positions and velocities of
vehicles and could be any relative vehicle positions smaller
than a certain distance. In a medical example,could represent
states such as heart rate and blood pressure during surgery and
there would be regions of defined for extremely high or low
values of these states. In business,could describe product
inventory or stock value, with certain limits defined and set
apart as .

The alerting system uses a set of decision metrics based on
the states in to determine whether an alert is issued. Contin-
uing the transportation example, relevant metrics could be the
projected miss distance of two vehicles or the time until colli-
sion based on current position and velocity. The choice of ap-
propriate metrics depends on the ability to reflect changes in the
threat condition. The better the correlation between the metrics
and the threat condition, the higher the potential for an effec-
tive alerting system. The alert occurs when some combination
of metrics passes alerting threshold levels. This can be modeled
by subdividing to show what state values result in alerts. This
subset of is termed alert space and denoted .
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As a graphical illustration, Fig. 1 shows a generic two-dimen-
sional (2-D) state space where the current state of the system
is shown at . Regions of hazard space and alert space are
also shown. By definition, no alerts are generated whenis out-
side alert space.

When the state trajectory first enters alert space (point
in Fig. 1), an alert is given. At this point, the alerting logic has
decided that an intrusion into hazard space is likely (solid line)
if nothing is done to warn the controller. By initiating the alert,
it is expected that some action will be performed (depicted at
point ) to alter the course of the state trajectory in order
to avoid the hazard (dashed line). There is usually some delay
from point to point as the controller determines the
appropriate response to take and due to potential latencies in
the system dynamics. Because an alert is a precursor warning
to avoid a hazard, alert space should encompass all regions of
hazard space. Selecting the proper size of alert space is a key
consideration in the design of the alerting system. If is too
large (or equivalently, when the system overpredicts the level of
threat at the current state), there may be unnecessary nuisance
alarms; if is too small (or the system underpredicts the level
of threat), hazard space may not be avoidable once an alert is
issued.

A. Alerting Performance

Uncertainty is inherent in the prediction of any future out-
come and the same holds true in the design of alerting systems.
Due to random effects, there are variabilities and uncertainties
in the future states of any process and this produces errors in the
prediction of a hazard and causes problems in the design of an
effective alerting system.

Methods to quantify the impact of uncertainty on deci-
sion-making have been developed and applied over the past
several decades. As discussed above, of particular relevance
to alerting systems is signal detection theory (SDT) [3]–[7].
Specific performance metrics are defined in SDT, including
the probability of false alarm, , probability of cor-
rect detection, and probability of missed detection,

. By plotting against as a function of
the signal detection threshold, the performance tradeoffs of the
system can be observed in a receiver operating characteristic
(ROC) curve. The ROC curve can then be used to determine
the appropriate threshold setting to best balance false alarms
against missed detections for the given application.

SDT as originally posed required that the value of the signal
and the probability density function of the noise are known
and was based on a single decision metric. These assumptions
are often sufficient in fixed decision-making problems, but are
problematic in dynamic and more complex multivariable cases
where the system states and uncertainties change with time.
SDT has since been reformulated to more directly relate to dis-
crete alerting decisions in dynamic systems [11]. The use of
state-space modeling described above is central to this connec-
tion. It can be shown that the probability of entering hazard
space along the nonalert trajectory (the solid line in Fig. 1) is
analogous to in SDT and the probability of en-
tering hazard space along the alert trajectory (the dashed line
in Fig. 1) is analogous to in SDT. A corresponding

Fig. 1. Example state-space diagram.

metric to has also been defined, called the probability
of successful alert, . The value of is the proba-
bility that hazard space is not entered after an alert, or

. These connections allow for techniques analogous
to ROC curves to be applied to alerting decision-making prob-
lems in which the future state trajectory of a process can be pre-
dicted with known uncertainty distributions [11].

The combination of and provides a funda-
mental basis for quantifying the performance of an alerting
system and these two metrics have been used in recent analyses
[13]–[15]. These metrics, at a minimum, are needed to examine
the false alarm/missed detection tradeoff that invariably occurs.
Additional metrics could also be defined if more detail is
desired. For example, it may be of interest to separately mea-
sure the probability that an alert actually causes a hazardous
incident to occur, contrasted against the total rate of false
alarms or missed detections [13]. Other metrics may certainly
be warranted as well, such as computational requirements,
implementation and hardware cost, or operator workload.

B. Trajectory Models

The application of SDT can have valuable benefits in the de-
sign and evaluation of alerting systems. However, use of SDT
techniques assumes that the underlying dynamic models and un-
certainty distributions are known accurately. Typically, such ac-
curacy may be limited, leading to additional performance losses,
discussed as follows.

To begin, first consider a model denotedthat represents the
best engineering estimate of the future trajectory of the process,
including uncertainties. is what would be used in an offline
analysis, for example, to assess the performance of the system.
Due to sensor and computational limitations, complete knowl-
edge of the uncertainties and the most accurate prediction of the
future state often cannot be attained by the alerting system it-
self. Instead, an approximate working trajectory model,, is
actually used by the alerting system for its decision making. For
example, in air traffic collision alerting systems, it is typical to
assume that aircraft travel in straight lines. The working model
then is a simplification of actual aircraft trajectories, which may
include turns or other maneuvers.

Ideally, one would like to be an exact copy of the best-es-
timate probabilistic trajectory, . The probability of entering
hazard space predicted from the working model would then be
the same as the probability during offline evaluation. Unfortu-
nately, differences between and make this unlikely except
for a short time step into the future. For example, two models,
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and , are depicted in Fig. 2. As shown, the working trajec-
tory model used by the alerting system underpredicts the actual
variability in the future trajectory that is assumed during evalu-
ation. This may then lead to observing late alerts or missed de-
tections from the system. Additional errors are introduced when
the best-estimate trajectory modelis not an accurate repre-
sentation of what actually occurs in operation. These errors can
be reduced by attempting to make the evaluation scenarios in

match as well as possible what is actually expected to occur.
However, some residual error will in general always be present.

After a recent survey of alerting methods, it is apparent that
working models of trajectories can generally be reduced to one
of three categories: single path, worst case and probabilistic [8].
In the single path approach, the current states are projected into
the future along a single trajectory without direct consideration
of uncertainties. An example would be extrapolating a vehicle’s
position based on its current velocity vector [Fig. 3(a)]. The
single path projection method is straightforward and provides
a best estimate of where the state will be, based on the current
state information. In situations where state trajectories are very
predictable (such as when projecting only a few seconds into the
future), a single path model may be quite accurate. Single path
projections, however, do not directly account for the possibility
that the process or environment may not behave as expected—a
factor that is especially important in long-term decision making.
Generally, this uncertainty is managed by introducing a safety
buffer (e.g., minimum miss distance between vehicles) to reduce
the likelihood of missed detections.

The other extreme of dynamic modeling is to examine a worst
case projection. Here, it is assumed that the state trajectory could
follow any of a range of behaviors. If any one of these trajecto-
ries could result in entry to hazard space, then an alert is issued.
The result is a swath of potential trajectories which is monitored
[Fig. 3(b)]. Worst case approaches are conservative in that they
can trigger alerts whenever there is any possibility of entering
hazard space within the definition of the worst case trajectory
model. If such trajectories are unlikely, protecting against them
may result in a high false alert rate. Accordingly, the worst-case
approach may be appropriate when it is desirable to be conser-
vative, or when dynamics are constrained within known bounds.
Note that a simple threshold test against the current state of the
process (e.g., a blood pressure alarm for a patient) is essentially
using a worst case trajectory model, under the assumption that
passing the threshold could result in a serious medical emer-
gency.

In the probabilistic modeling method, uncertainties are
explicitly used to develop a set of possible future trajectories,
each weighted by its probability of occurrence. For example,
a distribution of future vehicle positions could be obtained by
modeling uncertainties in guidance [Fig. 3(c)]. A probabilistic
approach provides an opportunity for a balance between relying
too heavily on the state adhering to a single trajectory versus
relying too heavily that the state exhibits a worst case behavior.
The advantage of a probabilistic approach is that decisions
can be made on the fundamental likelihood of entering hazard
space—safety and false alarm probabilities can be assessed
and considered directly. The probabilistic method is also the
most general, since single path and worst case models can be

Fig. 2. Example working trajectory model (W ) and evaluation model (T ).

Fig. 3. State propagation methods.

considered subsets of probabilistic trajectories. The single path
trajectory corresponds to a case in which the state will follow a
given (e.g., maximum likelihood) trajectory with probability 1;
the worst case model is one in which the state may follow any
trajectory with equal likelihood.

III. A LERTING SYSTEM DESIGN METHODS

Having introduced several underlying performance issues
relevant to alerting systems, it is appropriate to discuss the
larger-scale design process typically used in recent applications.
Following this examination, an alternative design approach
is proposed to improve alerting system performance and the
efficiency of the engineering development process.

A. Typical Alerting System Design Process

Fig. 4(a) diagrams the general, iterative design process often
used today in setting alerting threshold metrics, termed here the
physical metric method. The design process originates with the
working trajectory model, , that the alerting system uses to
estimate the future states of the process.

Based on this model, physical metrics are then computed in
the space (e.g., temperature, distance, or time to impact) to
specify the alert threshold criteria that delineate alert space.
These physical metrics are typically readily available through
sensors (either directly or through some additional filtering or
estimation) and so until recently have been the only practical
choices for use in a real-time system. Advances in computing
power, however, are now opening up new possibilities to use
more complex, derived decision metrics. This opportunity is dis-
cussed in the next section.

Continuing for now to focus on the physical metric design
approach, the alerting thresholds in are initially set based
on a combination of analysis and user expertise, but usually
require some fine tuning from test scenarios through simula-
tions or through observed performance in the field, as shown
in Fig. 4(a). These test scenarios form the best-estimate set of
trajectories, , that the system is to be exposed to and evaluated
against.
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Fig. 4. Physical metric design process and operational process.

The values used to describe and evaluate the resulting perfor-
mance themselves form a state space which is denoted as. A
2-D example of could have states of probability of successful
alert and probability of false alarm . What is ul-
timately happening is that the alert space inis being mapped
into performance space in. In a transportation application, for
instance, the alerting thresholds (in the state space) might
be based on the current range (), range rate () and predicted
miss distance ( ) between vehicles. Given a set of evaluation
scenarios, the probabilities of false alarm and successful alert
would be some function of these threshold values:

and , respectively. The func-
tions and would be specific to the scenarios used for
evaluation in . The resulting performance of the system can
be thought of as forming a new vector, ,
in the state space. In general, the system performance can be
expressed as a mapping from the threshold settings in physical
state space, , to the performance state space:

(1)

where is a function that also depends on the evaluation sce-
narios in . The governing function, , can generally not be
explicitly expressed or defined during the design process. Thus,
it becomes difficult to predict the outcome of changes or even
to make informed comparisons between different sets of simu-
lation runs.

The specific performance requirements that must be met are
represented by a subset ofdenoted . For example,
could be the region of performance state space where the prob-
ability of false alarm is less than 0.05 and the probability of suc-
cessful alert is greater than 0.99. If these requirements are not
met, then the metrics of the alerting threshold are iteratively ad-
justed until satisfactory performance is achieved. In some cases,
it may also be necessary to modify the decision metrics that are
used or to alter the working trajectory model (e.g., through the
addition of new sensors that provide additional state informa-
tion).

Once the system has been designed in the manner discussed
above, the alerting thresholds are encoded and used in the
real-time operation of the alerting system [Fig. 4(b)]. In opera-
tion, a physical metric system takes in the current measured or
estimated state of the process, compares these physical states
against the predefined alerting thresholds, and issues an
alert as appropriate. This is relatively simple and generally can
be performed in real time.

Returning to the design process, Fig. 5 shows a conceptual
illustration of mapping the alerting thresholds in the physical
state space of to the state space of performance measures,

. The alert space in is denoted by the region and the
required performance region to be met inis designated .
When is mapped into , it becomes a single state vector

as described by (1). If is outside the region of , as de-
picted in the leftmost illustration of Fig. 5, then the performance
requirement is not met and the threshold metrics need to be ad-
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Fig. 5. Mapping to performance state space.

justed until suitable performance is obtained. This is shown in
the series of drawings going from left to right and represents
the iterative search and fine tuning of the feedback loop from
Fig. 4(a). Notice that is changed in each step.

There are several important insights when the design process
is portrayed in the manner shown in Figs. 4(a) and 5. Because
of the feedback loop in the design process, the final settings of
the alerting thresholds (e.g.,, and ) are actually surrogate
values for the desired performance metrics. This is quite similar
to a neural network scheme where the evaluation scenarios de-
fine a reference model from which the thresholds are adjusted to
meet or optimize performance metrics [16]. Even if the evalua-
tion scenarios or the dimensions of alert space are changed, the
specification for the minimum level of performance () would
likely remain unaltered. Thus, the alerting thresholds defined in

are actually indirect controls of the alerting performance in
. Differences between the working and evaluation models are

indirectly managed through the iterative, trial-and-error design
process.

If an acceptable cannot be found to satisfy the perfor-
mance constraints, then there are four possible corrective op-
tions. The first is to change to a different set of threshold met-
rics (i.e., change the states that define). The threshold metrics
may not have been appropriate for the types of situations that are
encountered, or else there may have been an insufficient number
of metrics to handle the complexity of situations. This is analo-
gous to regression modeling in which a different set of metrics
may provide a better correlation with known data.

A second option is to partition out the thresholds to handle
more situation-specific groupings: different sets of threshold
criteria are used for different threat conditions. Take the ex-
ample shown in Fig. 6(a), where one alerting threshold,,
is used for three different types of threat encounters, with the
corresponding mapping functions , and . In this
case, only maps adequately to the required performance
specifications. If were to be utilized for all three encounter

situations, the overall performance of the system would be a
weighted average of each of the individual outcomes. If situ-
ations 2 and 3 were rare relative to situation 1, it is possible that
the system design shown in Fig. 6(a) would satisfy overall per-
formance constraints. Should situation 2 or 3 be encountered in
operation, however, performance would not meet the specifica-
tions.

In an attempt to improve system performance, Fig. 6(b)
shows two modifications to the alerting logic. First, the original
alerting threshold ( ) was split into two forms, for
the types of threat encounters represented by and
for encounters represented by . Second, a different state
space, , was formed based on different metrics than(e.g.,
through the use of different sensor information). In the space
of , a third alerting threshold was defined for the con-
ditions represented by . These new thresholds then allow
the system performance to map into the desired specification
region . However, this performance comes at the cost of an
increased number of threshold metrics designed and tailored
specifically for different types of encounters. Finally, how these
new thresholds would be determined is complex and would
probably involve a series of trial-and-error tests. The difficulty
in determining how to adjust thresholds to achieve performance
specifications is one of the drawbacks of the physical metric
method.

The third corrective option is to limit the use of the alerting
system to specific types of encounters. In problematic situations,
the alerting system may need to be inhibited to prevent false
alarms. For example, a collision warning system may have to
be modified to not alert during proximate situations when two
aircraft are flying on parallel courses. This corrective measure
in fact is used with TCAS during closely-spaced parallel ap-
proaches to reduce false alarm rate. Inhibiting alerting systems,
however, reduces their utility because certain threat conditions
may no longer be protected.
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Fig. 6. Use of situation-specific thresholds.

The fourth and final corrective option is to utilize a different
threat resolution strategy. Given that the performance is partly
based on the ability to avoid a hazard after an alert is issued,
it is natural to assume that some metric such as , which
reflects the performance of a specific hazard avoidance action,
is included in the performance state space. The idea would be to
use a different or a more drastic avoidance maneuver, modifying
the dashed line in the state space diagram in Fig. 1.

It is difficult to provide a general principle as to how or
in what order the four possible corrective actions outlined
above should be implemented. The methods to use depend
largely on the specific alerting problem under investigation.
Whichever corrective actions are taken must generally be
applied through trial-and-error, further illustrating the design
challenges inherent in physical metric alerting methods.

B. Performance Metric Alerting (PMA) System Design

In the previous section, the relationship between performance
metrics and physical metric alerting thresholds was examined.
It was explained that the performance requirement values (in
space ) were actually driving the threshold settings (in space

) in the physical metric approach. Given current computing
capability, the performance metrics may now be obtained di-
rectly in real-time in some cases, thereby negating the need to
implement the additional iterative steps during design to map
physical metrics into performance metrics.

In Fig. 7(a), a new, more direct approach to the alerting
process is presented, termed the performance metric alerting
(PMA) method [17]. Here, the performance metrics (in the
space of ) are directly computed in real time by the alerting
system and alerting decisions are based explicitly on them
rather than on ersatz metrics in the space of. Thus, the core
performance values determine when and where to alert.

In the PMA concept of Fig. 7(a), the working trajectory
model used by the alerting system is the same as the model
upon which performance would be judged ( ). In doing
so, the alerting algorithm is obtaining a direct prediction of
the likelihood of hazards and also the ability to avoid them.
These values can then be utilized as the threshold metrics in
the performance state-space of with the alerting criteria

(performance requirements) denoted by . In general,
could be composed of the states of and , though
other performance metrics could be used. Overall system
performance can still be tested through a simulation if desired.
This could lead to modifications in the trajectory models that
are used, as diagrammed in Fig. 7(a).

In actual operation [Fig. 7(b)], the PMA system performs
a probability estimation using the sensed statein combina-
tion with the working probabilistic trajectory model. This prob-
ability estimation can be performed online using an analytical
solution or Monte Carlo simulation [18]–[20], depending on the
complexity of the problem and on computational constraints.

The probabilistic trajectory model that is used may itself be a
function of . For example, a baseline trajectory model may be
used in most cases to propagate the current state into the future
and thereby estimate the probability of entering hazard space.
If additional information were available to the alerting system
(e.g., specific intentions of the operator to turn the vehicle), then
the trajectory model can be modified online and a new proba-
bility estimate can be attained.

The probabilistic outputs of the trajectory model are the
performance measures of interest, such as or ,
which can be represented by the state. This state is then
compared against the performance criteria that form the alerting
thresholds and an alert is issued only when the appropriate
performance measures are satisfied.

In order to compute the state of the process in space, it
is necessary to use significantly more complex computations
than are required for physical metrics. Whereas physical met-
rics may be immediately available from sensors, performance
metrics must be derived through a series of computations per-
formed on a probabilistic trajectory model. Since the alerting
system must estimate these metrics online, there are stringent
requirements on computation ability if PMA is to be used. PMA
has not been a practical option until recently; however, current
computational power is now enabling PMA to be used in some
real-time applications, as is described through an example in the
next section.

As indicated by the dashed line in Fig. 7(a), it may also be
possible to map the probabilistic performance values to other
metrics in a physical state space,, with its corresponding
alert space . This may allow for easier interpretation of the
threshold logic. However, this translation may not always be
possible unless a one-to-one mapping of variables exists. The
problem is akin to the same type of dilemma associated with in-
verse kinematics.

C. Discussion of the Two Design Approaches

The physical metric process leaves open many different pos-
sible variables for use as metrics in the physical state space. Sev-
eral surveys of air traffic alerting algorithms developed through
the physical metric process found scores of different metrics
being used by different researchers as a basis of alerting de-
cisions [8], [12]. Yet, the core performance specifications are
nearly always in terms of false alarm and safety probabilities.
In essence, the physical metric approach is bypassing an accu-
rate dynamic model either completely or partially while leaving
the fine tuning to pattern matching. The reason for the required
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Fig. 7. Performance metric design process and operational process.

mapping is because of the disparity between the working trajec-
tory model, and the best-estimate model,. For example, a
collision avoidance time-to-impact metric is typically based on
the assumption for that the closure rate between two vehi-
cles is constant. The threshold value of time to impact at which
an alert is generated, however, is generally determined through
iteration over a series of simulations withwhere closure rate
actually does vary. Without the ability to obtain an accurate pre-
diction of a hazard encounter directly from its own trajectory
model (since ), the physical metric alerting logic is
forced to trial-and-error methods and performance in general
deteriorates.

However, there may really be no need for this mapping since
a prediction of alerting performance may be obtained directly
by using probabilistic trajectory modeling. This can occur when

. The working trajectory model, , is therefore a rep-
resentation of the same simulation scenarios that were used to
evaluate performance in Fig. 4(a). In order to do this,must
be allowed to exhibit any trait that would have been character-
ized in the evaluation simulations, including the likelihood of
human errors and blunders.

The approach shown in Fig. 7(a) requires a direct modeling of
the uncertainties in the state trajectories of the process, which in
turn can help determine the impact and influence of each source
of uncertainty on the alerting performance. It should also be
noted that the physical metric method tends to develop aglobal
threshold setting as opposed to asituation-specificthreshold
(one that is individually tailored to the current encounter situ-
ation). Due to the offline nature in which thresholds are set, the
physical metric system achieves the desired performance speci-

fications when considered over the sum of the evaluation sce-
narios. In contrast, the performance metric approach ensures
that the desired performance is met every time that an alert is
issued. It can be shown that a global threshold exhibits a higher
level of uncertainty and reduced overall level of performance
than a situation-specific solution [17]. The result of a global
threshold is a compromised design that achieves the desired per-
formance constraintson average, but which may not achieve
them in a given specific situation.

When operating a performance metric system as shown in
Fig. 7(b), there is a need to continuously update the dynamic
model, , utilized by the alerting system to keep up with the
current situation. As long as the uncertainties in the trajectories
can be modeled, the update process is a natural progression of
new states and other data that is brought in to modify. At
any instant in time, the current states are projected into the fu-
ture using and the probabilistic performance metrics, such
as and , are computed. The decision to alert is
then made directly from these performance estimates. So, with
PMA, the trajectory model is tailored or adjusted to best match
the current scenario in real time but the ultimate alerting thresh-
olds ( ) are static. In contrast, in physical metric alerting,
the trajectory model may be fixed, but the alerting thresholds
may be modified in response to the specific situation being en-
countered (recall the discussion of Fig. 6). But, because it is
not directly apparent how these physical thresholds should be
modified to still meet performance specifications, the overall
system performance may suffer. For example, TCAS (designed
using physical metrics) uses a single trajectory model based on
the currently-estimated range between aircraft and their closure
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rate, regardless of aircraft altitude. The alerting thresholds them-
selves, however, are adjusted depending on aircraft altitude to
account for higher closure rates and reduced altimeter accuracy.

The PMA approach is situation-specific since the alert de-
cision is based entirely on current information specific to the
encounter. All knowledge of the current situation, including the
effects of uncertainties, is contained in. The idea behind the
performance metric approach is to allow the computation of the
threat condition online as the situation occurs, using robust de-
cision thresholds that are invariant with the situation. It is anal-
ogous to computer chess programs that wait for a move to be
made; then based on the current configuration, they propagate
the probable moves of each chess piece (out to a finite number
of moves ahead) and make a decision based on the results. Even
in the limited confines of the chess board and the incredible pro-
cessing power of today’s supercomputers, it is nearly impossible
to determine what all the moves should be prior to the start of
the game (except possibly for initial standard opening “book”
moves). There are just too many possible configurations even
on the discrete space of a chess board. Instead, the simulations
are performed by the computers on the run as the situation un-
folds and the decisions are situation-specific based on the cur-
rent configuration.

By keeping , the alerting decision is tailored specif-
ically to the best estimate of the current conditions of the en-
counter. Any changes to the system state or knowledge of the fu-
ture trajectory are accounted for directly and implemented as the
situation occurs. This resolves the problem of pre-determining
separate threshold metrics for every possible encounter situation
as was shown in Fig. 6. PMA does require, though, a significant
increase in real-time computation. However, given advances in
computational power, such an approach is now becoming fea-
sible in some cases as is discussed below. In the following two
sections, case studies of the physical metric and performance
metric approaches are presented to compare and contrast the de-
sign methods that are used.

IV. EXAMPLE OF THE PHYSICAL METRIC

DESIGN APPROACH

The Traffic Alert and Collision Avoidance System (TCAS)
has been implemented on U.S. jet transports since the early
1990s as concern grew over the potential of future midair col-
lisions. TCAS has been credited with several “saves” in near-
collision situations and has also been accused of causing false
alarms that nearly led to accidents [21]. The system is quite com-
plex; the discussion here only focuses on a simplified set of met-
rics and logic. The interested reader is referred to [2], [22]–[25]
for more detailed descriptions of TCAS.

In abbreviated terms, the TCAS logic calculates a collision
threat in the horizontal and vertical dimensions separately and
issues alerts if both criteria are met. The algorithm is based on
the relative range () and range rate () and also the relative alti-
tude ( ) and altitude rate () between two aircraft. In the frame-
work presented in this paper, these metrics form the physical
state space . TCAS uses a two-stage process with a cautionary
alert called a Traffic Advisory (TA) and a warning alert called

a Resolution Advisory (RA). RAs provide vertical avoidance
commands; TAs are merely attention-getting alerts and lack any
resolution guidance. The following discussion focuses on RA
alerts only.

Though the TCAS thresholds are more complex, they can be
summarized by what is commonly referred to as the Tau ()
Criterion:

(2)

where is a threshold parameter with units of time and DMOD
is a safety buffer distance. Essentially, if the predicted time to
reaching a distance of DMOD between aircraft is less than a
threshold time , an RA alert is issued. Similar metrics are used
in the vertical dimension. The TCAS logic assumes a straight
line, single path working trajectory model and DMOD acts as
a buffer to account for possible deviations or sources of error.
Metrics such as DMOD and effectively determine the fre-
quency with which RAs are given. Reducing these values will
reduce the alert rate and number of disruptions caused by false
alarms [25]. However, the tradeoff is the risk of missed or late
alerts due to insufficient warning time. The desire is a balance
between false alarms and collision protection that TCAS is in-
tended to provide.

To achieve this balance, the various design metrics were set
offline using anad hociterative approach through Monte Carlo
simulations of aircraft encounters. Modifications were also
made from data and user comments during actual in-flight op-
erations. In one set of evaluations of TCAS, for instance, a large
database of pairwise aircraft encounters was generated from
actual recorded tracks in the United States airspace [26], [27].
Using this database, ten types of vertical encounter geometries
were defined (Fig. 8) which were considered to encompass
typical aircraft maneuvers. In evaluating the performance of the
system, a large number of different simulation runs were used
to cover each of these ten encounter classes, leading to millions
of simulation runs [25]–[27]. Changes to the threshold metrics
were then suggested due to the results of these simulations
in terms of false alarms and collision rates (metrics in the
performance space). In the framework presented above, these
different encounter scenarios form the evaluation trajectory
model , since it is on their basis that the alerting system is
deemed acceptable or not.

As was the case in the example in Fig. 6(a), TCAS is unable
to satisfy performance constraints using a single threshold set-
ting for all encounter situations. The logic was modified with a
number of if-then branches to manage different encounters and
additionally the values of metrics such asand DMOD vary
as a function of altitude and flight condition. Thus, there is a
large amount of tuning of the alerting threshold metrics, even
for a seemingly simple design in which aircraft are assumed to
fly on straight, constant velocity paths and only use vertical eva-
sive maneuvers. Still, TCAS is a remarkably effective system,
especially considering the limited amount and quality of infor-
mation upon which it must base its decisions.

These modifications to the alerting system can involve a te-
dious process of breaking up and grouping the scenarios to cover
all possible encounter geometries and flight conditions. In a
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Fig. 8. TCAS evaluation situations (adapted from [27]).

more general air traffic conflict alerting environment when way-
points, future intention information, many aircraft and three-di-
mensional (3-D) encounters are all fused together, it becomes
extremely difficult to utilize such a scheme to amalgamate all
the individual situations and develop separate thresholds for
each one. In the physical metric approach, it may be necessary
to perform the task iteratively for each scenario in order to map
out a different alert space, , for individual encounters. This
would be true unless, of course, one could pick a set of threshold
metrics that would allow settings to be virtually invariant of the
encounter situation. In fact, this is the principle behind the di-
rect performance metric approach shown in Fig. 7.

V. EXAMPLE OF THE PERFORMANCE METRIC

DESIGN APPROACH

A prototype alerting logic for detecting air traffic conflicts
was developed by the authors using the performance metric
design approach discussed above [17]–[19]. The design of this
system is useful as an example to discuss how the performance
metric approach can be implemented. Whereas TCAS uses
physical metrics such as range or time as the basis for alerting
decisions, the system discussed here uses performance metrics
related to false alarm and success probabilities to determine
whether to issue an alert. Although shown in contrast to TCAS,
the prototype system is not meant to replace or otherwise com-
pete against TCAS. Instead, it serves as an illustrative example
only. It should also be mentioned that other performance metric
designs are appearing. See, for example, [20] or [28].

In the design of the prototype system, it was presumed that
state information from surrounding aircraft (position, speed and
heading) was available through inter-aircraft data link commu-
nication. These metrics can be considered to form the physical
state space since they are useful in describing trajectories
and whether hazard space is entered. Hazard space was repre-
sented by a traffic conflict, defined as a situation in which one
aircraft enters a cylindrical protected zone around another air-
craft five nautical miles in radius and extending 1000 feet above
and below the aircraft.

The aircraft trajectory working model included uncertainty in
the current position estimate, future along- and cross-track po-
sition variability and the potential for and magnitude of course

changes. The trajectory model was continually modified in re-
sponse to any additional intent information (e.g., through a data
link of the aircraft’s future flight plan). If such intent informa-
tion was not available, more uncertainty was injected into the
trajectory model to dilute the confidence with which an alerting
decision was made. Thus, the working model used by the system
included as much information as possible regarding the future
trajectory of each aircraft. A more complete discussion of the
trajectory models can be obtained from [18] and [19].

The probability of a conflict, , was defined as the proba-
bility that one aircraft will enter another’s protected zone given
that no alert is issued and that the aircraft follow the working
trajectory model. To calculate , the positions of the two
aircraft must be projected into the future to determine the like-
lihood of a protected zone violation. Due to the complexity of
the dynamics involved, Monte Carlo simulations were used to
estimate this probability.

Each Monte Carlo run consisted of examining the trajectories
and determining whether separation minimums of the protected
zone were violated. The trajectories varied randomly with each
run according to the uncertainty distributions chosen to define
the trajectory model. After a certain number of Monte Carlo
runs, a count of the number of protected zone intrusions was
made. Dividing the number of intrusions by the total number
of Monte Carlo runs was then an estimator of . As imple-
mented, was estimated to within 0.015 (with 99% confi-
dence) after approximately 1 s of computation time on a Silicon
Graphics Indigo workstation. This is based on 10 000 simulation
runs assuming a binomial process. The computation time was
small enough that the system could be implemented in real-time
human-in-the-loop studies.

A multistaged threshold approach was used to provide a series
of alerts to indicate trends in conflict hazard. The multi-stage
approach allowed the type of alert to be tailored to the level
of threat. Low-probability threats resulted in relatively passive
alerts such as changing the color of a traffic symbol on a cockpit
display. High-probability, urgent threats produced aural warn-
ings to actively inform the pilots of the conflict. The appropriate
stage to use in a given situation depended on the state vector in
the performance space, rather than in a physical state space

.
The performance spacehad two dimensions. The first was

, which is related to the probability of conflict that is
expected should the aircraft continue along their planned paths.
The higher the value of , the smaller the value of .
The second dimension in was represented by the flexibility
with which a conflict could be successfully avoided with 95%
confidence. This involved determining what types of standard
maneuvers (turns, climbs, descents, or speed changes) would re-
solve the conflict with probability 0.95, computed through ad-
ditional Monte Carlo simulations. These maneuvers served as
benchmarks for estimating the ability of the aircraft to avoid
a conflict. The number of available avoidance maneuvers then
was defined as the second dimension of. Probability of col-
lision could also have been used in this example as a perfor-
mance metric if desired. Whereas TCAS was concerned with
collision avoidance (and thus used probability of collision as a
performance metric), the prototype system here was intended
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for earlier, less urgent warnings so that less aggressive avoid-
ance actions would be required. Thus, the use of a probabilistic
maneuver flexibility metric in is appropriate in this case.

Fig. 9 shows a schematic of the performance state space, in-
cluding the alerting requirements, , for the four alert stages.
When aircraft are far from one another, will be close
to 1 and many maneuvers could be used to successfully avoid
a conflict. Thus, the state would be located in the upper right
corner of Fig. 9. As a threatening intruder aircraft nears another,

generally decreases as it becomes more certain that an
alert will be needed. Additionally, flexibility is lost as the air-
craft get closer or if there are other aircraft in the vicinity, re-
sulting in movement downwards in Fig. 9. As the state crosses
the boundaries shown in Fig. 9, the alert level would change to
reflect the increased threat level. The prototype alerting logic
based on the performance metric approach has been success-
fully used in a number of human-in-the-loop flight simulation
experiments at the NASA Ames Research Center; see, for ex-
ample, [29] and [30].

The specific makeup of the different regions of in this
example is not of importance here; rather, the intent is to
demonstrate the real-time use of higher-level performance
metrics (e.g., ) as the alerting thresholds instead of
lower-level physical surrogate metrics (e.g., time to impact, or
miss distance).

VI. CONCLUSION

The development of formalisms behind the design of com-
plex hazard alerting systems would greatly facilitate the devel-
opment of effective systems in an efficient manner. This paper
outlines several key performance considerations and modeling
approaches, including the application of state space methods
and the need to consider the relationship between the working
model used by an alerting system and the evaluation model of
the environment in which it will operate.

Ultimately, any alerting system is designed based on predic-
tions of future events. It is the accuracy of these predictions com-
pared against what actually would occur that determines how ef-
fective the system is. Prediction accuracy, in turn, is directly af-
fected by what trajectory models and decision metrics are used.
Physical metrics such as temperature, pressure, distance, or time
to impact have traditionally been used as the basis for defining
and setting alerting thresholds across a variety of applications.
These metrics are often directly measured by sensors and are
easily processed online and thus are natural choices for use as
decision metrics. However, a different set of metrics is usually
applied to evaluate system performance. Performance specifi-
cations are generally based on event outcomes, including false
alarm rates and probabilistic measures of safety, as these mea-
sures are at the essence of the alerting design tradeoff. The tra-
ditional alerting system design process is shown to fundamen-
tally involve tuning the physical decision metrics so that the
system meets the desired performance specifications. Because
this tuning is done iteratively offline, the system in operation
is less flexible in adapting to a specific situation. Although this
design process can and has led to effective alerting systems, a
more direct approach is proposed in this paper.

Fig. 9. Performance state spaceZ for prototype alerting system.

In the proposed approach, the core event-based performance
specifications themselves are used as the decision metrics or
alerting thresholds. This bypasses the need to map physical met-
rics into the performance specifications and can lead to a more
efficient and more effective system design. The critical prereq-
uisite in order to use the proposed approach is that the perfor-
mance specifications must be defined at the start and must be
calculated during system operation. Given advances in compu-
tational power, it is now becoming practical to estimate prob-
abilistic measures such as false alarm probability online and
thus it may be feasible to base alerting decisions on these fun-
damental metrics. Performance metrics other than probabilistic
measures are also certainly possible (e.g., economic costs). The
key concept for using performance metric design is to clearly
identify those metrics that best define whether a given alerting
decision is acceptable and then compute and use those metrics
as the decision metrics in operation.

To summarize, both the physical and performance metric
methods typically require some form of probabilistic mod-
eling to predict event outcomes. The difference, however, is
that physical metric systems apply this modeling offline in
order to set the alert thresholds, while performance metric
systems apply this modeling online during operation to trigger
alerts. The benefit to performing the modeling online is that
situation-specific information can generally be included more
directly than is possible during an offline evaluation, simply
due to the large number of possible situations that could be
encountereda priori. An analogy is determining chess moves
before a game versus determining them online in response to
the current situation.

Our intent is to illuminate those issues that are at the core
of alert decision-making and how the design of systems may
be more directly tied to those issues than has been the case in
many current applications. Certainly there are applications for
which the performance metric approach would not be effective
or desirable. Yet, it is important to begin articulating the poten-
tial design options that exist, with the goal of generating a useful
taxonomy of alerting system designs. We hope that efforts con-
tinue in the future across many disciplines to explore these and
other methods when developing alerting systems.
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