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Abstract

Safety is often enhanced using automated alerting systems and other decision aids to support human decision-
making. Examples in aerospace include aircraft system monitors, weather displays, traffic collision alerting, and
ground proximity warning systems. Although such automation has been credited with enabling new procedures and
preventing a number of accidents, there have also been mishaps induced directly or indirectly by alerting systems.
Uncertainties in sensors, dynamics, and human performance reduce the quality of decision support provided by
automation. By understanding the relationships between uncertainty, automation design methods, and the resulting
system performance, it is possible to target the design of a system to best compensate for uncertainties and thereby
provide higher performance. This paper outlines several fundamental design issues relating to decision-making
under uncertainty, both from a conceptual standpoint and through quantitative models. The concepts are discussed
in the context of applications including enroute traffic conflict detection and collision alerting during closely-spaced
parallel approach.

Introduction

During the operation of many processes, threats
may be encountered that require attention. Safety or
robustness against these threats is often enhanced
through the use of automated decision-aiding systems
that independently monitor operations and warn the
controller to intervene should it be necessary (Figure
1). Decision-aiding and alerting systems are
becoming increasingly pervasive, and are used in
applications including aerospace vehicles,
automobiles, chemical or power control stations, air
traffic control, and medical monitoring systems. In
addition to providing a final safety net for many
processes, some alerting systems also enable
operating in regimes that would not possible without

them. Closely-spaced parallel approaches at airports
in poor visibility, for example, are only allowed when
certain automated alerting systems are present to
provide the necessary level of safety [1]. The
additional traffic throughput, then, is contingent on
the existence and performance of an alerting system.

The quality of information available to the
alerting system has a direct impact on the quality of
decisions that can be made by the system. It is
therefore important to understand the relationship
between uncertainties in a given problem and the
types of alerting solutions that may be viable. To be
effective, the alerting system must issue a warning
early enough that corrective action can be taken, but
not so early that nuisance alarms occur. This
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Figure 1: Decision-Aiding System Schematic



generates a tension in the design of these systems that
is always present, regardless of the application.
Failure to properly balance this tension leads to
operator distrust of the system, inefficiencies, or
accidents.

Decision-aiding systems have been developed
for a number of application problems, and many
different techniques have been proposed and
investigated. Due to this diversity, it may not be
clear what allows one method to achieve higher
performance than another. A recent survey of
alerting methods for air traffic conflict detection and
resolution, for example, found that over 50 different
modeling approaches have been proposed, tested, or
implemented [2]. The design of these alerting
systems may be greatly facilitated through the
development of a cohesive modeling and design
approach based on formal principles. The
appropriate method to use in solving a problem may
then be identified from first principles. This paper
outlines fundamental considerations for decision-
aiding system design, and uses several case studies to
illustrate the concepts.

The general context for discussion in this paper
are systems such as that shown in Figure 1. These
systems all have the same core components
including: a controlled process in an environment that
includes hazards; sensors and displays that convert
the physical state of the process and environment into
information elements that can be used by the human
and automation; decision-making components which
involve a partnership between human and automation
at some level, requiring additional displays and
interfaces; and control actuation elements that
convert decisions into actions in the physical process.
The high-level design issue then is how to apply
sensors, displays, automation, procedures, and
controls to enable operating the process at a desired
level of performance. In this paper, the focus is on
how the information in the various elements of
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Figure 1 is molded and used to provide the most
effective decision support from automation.

This paper begins by discussing the general
modeling approaches that can be applied to decision-
support automation design. These methods have
been identified and categorized following a survey of
a number of different approaches to decision-making
in aerospace and other fields. Then, the system
design process at large is examined to illustrate how
these modeling methods can be applied in different
ways to achieve desired system performance.

Modeling Methods

Through an examination of the structure of a
number of proposed and implemented alerting
systems, several key modeling methods have been
identified [2,3]. A description of these methods
serves to form a framework from which a given
system can be placed in juxtaposition to others, and
provides a basis for developing relationships between
the type of hazard problem to solve and the modeling
method that is most appropriate to use. First, three
different overarching philosophies to alerting are
described. Although these three philosophies are
described in terms of example implementations for a
specific aviation problem, they are sufficiently
generic to be relevant to a wide range of applications.

Alerting Philosophies

Aircraft parallel approach collision alerting
serves as a good case study to illustrate the three
fundamental methods for alerting system design. The
basic context is one in which it is desired to warn
aircraft pilots when there is a collision risk with a
nearby aircraft on a parallel approach to an airport. A
review of proposed or operational collision avoidance
systems shows that fundamentally there are three
philosophies that drive the design of decision-making
logic: termed here conformance, nominal trajectory,
and escape trajectory. These three philosophies are
diagrammed in Figure 2 and discussed below.
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Figure 2: Fundamental Alerting Philosophies



The basic philosophy behind a conformance
system (Figure 2a) is one in which alerts are
considered to be justified when the aircraft does not
follow expected behavior. More formally, a
boundary of acceptable operating states is defined
beforehand, and an alert is issued when the state of
the aircraft exits this boundary. The boundary is
placed around the normal approach corridor for the
aircraft, for example, and should enclose a large
enough region that false alarms during a normal
approach (due to typical dynamic oscillations) are
unlikely. The boundary should also be small enough
that it does not lie too close to hazards — this ensures
that enough time will be available to correct a
problem if the state does exit the boundary. An
example of a conformance system is the Precision
Runway Monitor (PRM), which is active at a few
airports in the United States [1]. PRM enables
simultaneous independent approaches to runways as
close as 3,400 ft apart in instrument conditions.

By constructing the region enclosed by the
boundary to be free of hazards, it is possible to ensure
safe operation as long as the state remains inside the
boundary. This can greatly simplify the monitoring
process, since it is then only necessary to ensure that
hazards remain outside the boundaries and that the
process states remain within the boundaries.
Selecting the appropriate size of the boundary can be
problematic, however, if the normal state is expected
to vary greatly (in which case it may be difficult to
prevent nuisance alarms) or when hazards lie close to
the boundary (in which case there may not be enough
time to prevent an accident after the boundary is
exceeded). Still, this approach is relatively simple in
that it relies only on the current state, so future
trajectory predictions are not required. In fact, no
explicit prediction of a hazard encounter is needed at
all — simply knowing that the process is not
following expected norms is enough to justify an
alert. On the other hand, a normal range of state
values must be determined, and so there generally
must be some structure to the problem. Conformance
methods would therefore be more appropriate for
parallel approach problems in which normal aircraft
positions can be readily identified, than for general
free flight conflict detection systems in which aircraft
could be located anywhere and be going in any
direction. Adding aircraft flight plan information in
free flight, however, may enable conformance
methods to be used. In that case, flight plans can first
be checked for conflicts, and then aircraft
conformance to each plan can be monitored.

In the second philosophy (nominal trajectory,
Figure 2b), the state of the process is projected into
the future using some form of trajectory model. The

projection is used to determine whether a hazard is
explicitly expected to be encountered if the current
control strategy continues. Should it become likely
that a hazard will be encountered, an alert is then
issued. This method is used in many collision
alerting systems, including the Traffic Alert and
Collision Avoidance System (TCAS), and in the
proposed Airborne Information for Lateral Spacing
(AILS) System for parallel approach [4,5].

The rationale behind the nominal trajectory
method is that alerts are issued only when they are
necessary to avoid a hazard. If the future trajectory
does not encounter a hazard, an alert is not issued.
The accuracy of trajectory prediction generally
degrades into the future, so some cutoff or maximum
lookahead time is typically required to avoid
nuisance alarms. Additionally, alerting when the
nominal trajectory is projected to encounter a hazard
does not by itself guarantee that the alert will be
successful in avoiding that hazard — it may already
be too late to prevent a hazard encounter. As is
discussed in more detail later in this paper, the
appropriate alerting distance is typically determined
through  trial-and-error  tests using fast-time
simulations of aircraft encounters. The thresholds are
then set to provide, on average, the best performance
over the set of encounter conditions.

The third design approach for alerting systems
(Figure 2c) is to issue an alert when the expected
escape path is threatened by a hazard. This method
extrapolates a trajectory from the current state into
the future, but based on the assumption that an alert is
issued and corrective action is taken. Conditions for
a safe escape need to be defined, and the escape path
is examined to determine whether those escape
conditions are reachable. If the escape conditions are
not reachable at some level of confidence, then an
alert is issued. This philosophy, then, emphasizes the
desire to ensure that a safe escape corridor exists.

Two examples of the escape trajectory method
applied to the parallel approach alerting problem are
given by Refs. 6 and 7. In these prototypes, the
future position of the aircraft while flying an escape
or breakout maneuver is examined to determine
whether a collision with another aircraft is likely.
Upon reaching a certain level of risk, an alert is
issued. The rationale is that the pilot should always
have recourse to the escape maneuver, and an alert
should be issued as soon as that maneuver’s safety is
threatened.

As discussed above, with the nominal trajectory
philosophy it is possible that an alert, though
determined to be necessary, may be too late to
prevent encountering the hazard. With the escape



trajectory philosophy it may be the case that the alert,
though it will be successful in avoiding the hazard, is
not necessary. This is because there may be no
hazard along the nominal trajectory, even though the
escape path is threatened. Accordingly, there is a
similar design problem to determine the appropriate
lookahead distance or confidence level when alerting.
Extrapolating too far into the future may lead to
issuing alerts that are not needed, reducing the overall
efficiency of the operation.

Combinations of these three philosophies are
certainly possible, and in fact are probably desirable
in many cases. A sequential combination has been
proposed for AILS, for example. In that system, a
conformance alert is issued when one plane deviates
from its approach course, and a different nominal
trajectory-based alert is issued if a collision is
explicitly predicted between aircraft. TCAS also
applies a sequential approach in that alerts are first
issued based on a nominal trajectory model, and then
the appropriate escape maneuver is determined based
on examining various avoidance actions.

Simultaneous combinations of philosophies are
also possible. For example, simultaneously
examining both the nominal and escape trajectories
allows one to first ensure that an alert is necessary
(by examining the nominal trajectory) and second
that the alert will be successful in avoiding the hazard
(by examining the escape trajectory). Ideally, then,
alerts would only be issued when they are known to
be both necessary and successful. In practice,
however, most alerting systems do not use
simultaneous combinations of philosophies. The
result is that the algorithms only consider one aspect
of the problem explicitly (e.g., directly determining
that a collision is likely using a nominal trajectory
model). The other considerations (such as ensuring
that a safe escape is possible following the nominal
trajectory-based alert) are typically ensured only
indirectly by running a series of simulations and
observing the outcomes that result. These alerts then
would be expected to be successful in avoiding the

hazard based on previous simulation results, but not
by explicitly checking the escape path. This issue
and its effect on achievable system performance is
discussed in more detail in a later section.

Quantitative Connection Between Trajectory

Uncertainty and System Performance

One fundamental issue at this point relates to
which philosophy or combinations of philosophies
should be used in a given problem. Notionally, it
would be expected that the quality of decisions made
by a trajectory prediction system would decrease as
uncertainty in the future trajectory increased. In the
limit, a decision based solely on a completely
inaccurate trajectory prediction would have no
diagnostic benefit. A conformance-based approach
might fare better, however, by alerting simply when
the state deviated from desired bounds. Conversely,
given perfect predictability, a trajectory prediction
system would likely outperform a conformance based
system because it uses that additional accurate
information to better diagnose the need to alert the
human.

As an illustration of this concept, the quality of
decision-making for a conformance system was
compared against a nominal trajectory system as a
function of the predictability of the trajectory. To do
this, a Monte Carlo simulation of random trajectories
was performed. Each trajectory traced the path of the
state, whose lateral velocity was specified by a
Markov process. A Markov process has the
characteristic that the next state in time depends only
on the current state and not on previous states [8].
The predictability of the trajectory can be specified in
terms of the autocorrelation of the Markov process.
The more highly correlated the process, the more
accurately that the future trajectory can be predicted.
Two levels of correlation were used here, with
characteristic correlation distances of 100,000 m and
10 m (Figure 3). The 100,000 m correlation distance
resulted in essentially straight-line paths, while the 10
m correlation distance case resulted in more noisy
paths as shown in Figure 3.
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Figure 3: Example Trajectories

These trajectories were simulated in the presence
of a hazardous region, shown in Figure 3. Alerting
thresholds were then set using either a conformance
method or using a trajectory prediction method
(Figure 4). The conformance threshold was set at a
parameter distance z laterally from the starting
position as shown in Figure 4a. This lateral location
was then systematically varied to trace out the
performance of the system as a function of threshold
position.  In the trajectory prediction case, a
projection from the current state was made using the
instantaneous velocity vector.  This projection
continued for a parameter distance z as shown in
Figure 4b; this parameter was also systematically
varied to explore its effect on system performance.
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Figure 4: Alerting Methods

Crossing an alert threshold altered the future
trajectory of the process by adding a bias to the
lateral velocity, simulating the corrective action taken
in response to the alert. Depending on where the
alert was issued, the state might still encounter the

hazard even after this evasive maneuver had begun.
At the moment an alert was issued, a second “ghost”
trajectory was also simulated that followed the
original Markov process statistics without the escape
maneuver bias. This allowed for a check to see if the
state would have encountered the hazard had no
alerting system been present.

The outcome of each trajectory simulation was
categorized as follows. Trajectories that produced an
alert that was ultimately successful in avoiding the
hazard were called successful alerts. The fraction of
all alert cases that were successful was then denoted
P(SA). Second, those alerts that were unnecessary
were also counted. Unnecessary alerts were those in
which the hazard would not have been encountered
had the alert not been issued. In other words, after
alert was issued the second ghost trajectory did not
encounter the hazard. For that trajectory, then, the
alert was not required according to this strict
definition. The fraction of alerts that were
unnecessary were denoted P(UA).

A given alerting threshold setting results in a
single observed pair of P(SA) and P(UA) when
averaged over a large number of simulations. The
threshold setting for each method was then
systematically varied, from extremely conservative
(alerts were always generated) to extremely risky
(alerts were never issued). This then traced out a so-
called System Operating Characteristic (SOC) curve



[9]. A total of 5000 simulations were performed at
each combination of threshold setting, alerting
method, and trajectory correlation level.

The results are shown in Figure 5. In the high-
correlation case, it can be seen that the trajectory
prediction method performs very well. There is a
threshold setting that provides nearly ideal
performance, with almost no unnecessary alerts and
with almost all alerts being successful (top left corner
of the plot). The conformance system is not able to
reach the same level of performance, regardless of
threshold setting, and incurs a higher rate of
unnecessary alerts.

In the low-correlation case, the trajectory
prediction method performs poorly. Regardless of
threshold setting, a high level of successful alert can
only be attained while also incurring a high rate of
unnecessary alert. The curve for the trajectory
prediction case comes close to the diagonal line from

(0,0) to (1,1) in the SOC plot, which indicates that the
system is of little diagnostic benefit. The
conformance system, however, is able to perform
better than the nominal trajectory system in this case.
Although both systems’ performances are lower than
in the high-correlation case, it is seen that a better
decision can be made based on the current state (via
the conformance boundary) than is possible when
relying on inaccurate trajectory information.

Similar analyses can be performed to examine
the relative quality of decision-making using each
philosophy (or combinations of philosophies) under
different conditions. This example serves to
demonstrate, however, that a quantitative relationship
can be obtained between the characteristics of a
problem (e.g., uncertainties) and the performance that
is achievable from a given philosophy. This
quantitative relationship will be important in

targeting design efforts toward the most effective
modeling

methods.
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Trajectory Modeling

Even having determined that a trajectory-based
philosophy may be most appropriate for a given
problem, there is a rich design space to consider. A
core consideration involves the type of trajectory
model that is used to predict where aircraft will be in
the future. Despite the wide variety of modeling
approaches in conflict detection and resolution, for
example, trajectory models can be reduced to three
categories:  maximum-likelihood, worst case, and
probabilistic  [2]. In the maximum-likelihood
approach, the current states are projected into the
future along a single trajectory without direct
consideration of uncertainties. An example would be
extrapolating a vehicle’s position based on its current
velocity vector, as is done with TCAS (Figure 6a).
The maximum-likelihood projection method is
straightforward and provides a best estimate of where
the state will be, based on the current state
information. In situations where state trajectories are
very predictable (such as when projecting only a few
seconds into the future), a maximum-likelihood
model may be quite accurate. Maximum-likelihood
projections, however, do not directly account for the
possibility that the process or environment may not
behave as expected — a factor that is especially
important in  longer-term  decision  making.
Generally, this uncertainty is managed by introducing
a safety buffer (e.g., minimum miss distance between
vehicles) to reduce the likelihood of missed
detections, and a maximum lookahead distance to
reduce the rate of nuisance alerts.
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Figure 6: Trajectory modeling methods

The opposite extreme of dynamic modeling is to
examine a worst case projection. Here, it is assumed
that the state trajectory could follow any of a range of
behaviors. If any one of these trajectories could
encounter a hazard, then an alert is issued. The result
is a swath of potential trajectories to be monitored
(Figure 6b). Worst case approaches are conservative
in that they can trigger alerts whenever there is any
possibility of encountering a hazard within the
definition of the worst case trajectory model. If such
trajectories are unlikely, protecting against them may

result in a high false alert rate. Accordingly, the
worst-case approach may be appropriate when it is
desirable to be conservative, or when dynamics are
constrained within known bounds. AILS is an
example system that uses a worst case trajectory
model.

In  the probabilistic  modeling  method,
uncertainties are explicitly used to develop a set of
possible future trajectories, each weighted by its
probability of occurrence. For example, a
distribution of future vehicle positions could be
obtained by modeling uncertainties in winds or
guidance (Figure 6c). A probabilistic approach
provides an opportunity for a balance between
relying too heavily on the state adhering to a single
trajectory versus relying too heavily that the state
exhibits a worst case behavior. The advantage of a
probabilistic approach is that decisions can be made
on the likelihood of encountering a hazard — safety
and false alarm probabilities can be assessed and
considered directly. The probabilistic method is also
the most general, since maximum-likelihood and
worst case models can be considered subsets of
probabilistic  trajectories. Three  example
probabilistic trajectory systems are the Center /
TRACON Automation System (CTAS) developed by
NASA [10], the User Request Evaluation Tool
(URET) developed by MITRE [11], and a prototype
system at MIT [12,13].

Decision Tradeoffs in Trajectory-Based Alerting

In the previous section, the notion was fielded
that there may be benefit to combining a nominal
trajectory philosophy with an escape trajectory
philosophy. This would facilitate ensuring that alerts
are issued when they are necessary and likely to be
successful. A quantitative analysis of the benefits
that can be gained from such an approach is
discussed below.

Figure 7 shows a simplified situation involving
an aircraft and some hazard to safe flight. At the
current moment in time shown in the figure, the
aircraft is located at an estimated position X. The
aircraft is traveling along a nominal trajectory
(labeled N in Figure 7) whose direction relative to the
hazard can be estimated. This nominal trajectory is
based on current knowledge of the intended paths of
the aircraft and hazard, and may include intent
information such as a flight plan entered into a Flight
Management System.
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Figure 7: Nominal and Escape Trajectories

Regardless of whether a maximum-likelihood,
worst case, or probabilistic model is used by the
alerting system, at best the nominal trajectory is
actually probabilistic, due to uncertainties. The
probability of encountering the hazard in the future
along the nominal trajectory is denoted Py(X). As
discussed previously, an alert is defined to be
unnecessary if the hazard would not have been
encountered assuming no alert had been issued.
Therefore, the probability of an unnecessary alert,
P(UA), is given by:

P(UA) = 1 - Py(X) (1)

To minimize unnecessary alerts, the alert should be
delayed until Py(X) is close to 1. If the alert is
delayed too long, however, there may be insufficient
time and space to avoid an incident. It is therefore
advantageous to also consider the escape trajectory
(labeled A in Figure 7) that is followed after an alert
is issued. The escape trajectory is also probabilistic
in general, with a corresponding probability of
encountering the hazard along the escape trajectory
denoted PA(X). If Pa(X) is close to 1, then it is
likely that an alert is too late or is issued at an
inappropriate time and the hazard may be
encountered even with (or because of) the alert. In
keeping with the earlier discussion on successful
alerts, an alert is successful with probability P(SA):

P(SA) =1-Pa(X) O]

The tradeoff between unnecessary alerts and
successful alerts can be shown using a System
Operating Characteristic (SOC) curve, shown in
Figure 8 [9]. SOC curves are similar to Receiver
Operating Characteristic (ROC) curves in Signal
Detection Theory (SDT) and allow the alerting
decision to be recast as a conventional signal
detection problem. This enables the use of
established SDT methods to determine an optimal
alert threshold. An ideal alerting system would
operate at the upper-left corner of the plot, but in
general alerting systems are constrained to operate on
SOC curves that do not pass through the ideal
location. However, as uncertainties in the situation
are reduced or as the avoidance maneuver becomes

more aggressive, the SOC curve will approach the
ideal operating point. It is also worth noting that the
performance evaluation shown previously in Figure 5
is an SOC curve.
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Figure 8: System Operating Characteristic Curve

The benefit, then, of simultaneously employing
both the nominal and escape trajectory philosophies
is that alerts can be controlled such that they are only
issued when the probability of success is high and the
probability that the alert is unnecessary is low. This
would lead to a more effective system than one
where, for example, only the nominal trajectory was
considered.  Essentially, in a nominal trajectory
system only P(UA) is explicitly monitored, since the
likelihood of encountering the hazard is only
examined along N. Conversely, in an escape
trajectory system only P(SA) is explicitly monitored
by examining whether the hazard will be encountered
along A. Acceptable performance in these two cases
is achieved using the system design process discussed
below.

System Design Process

Stepping back still one more level, there are also
several issues to consider from the standpoint of the
large-scale design process used when developing a
decision-aiding system. These issues relate to the
underlying metrics upon which decisions are based:
that is, the specific parameters and variables that are
estimated or computed and whose values determine
whether an alert is issued or not.

The design process that is used in the majority of
cases involves the process shown schematically in
Figure 9. First, a set of decision metrics are
developed for the system, based on physically-
measurable parameters. Example metrics might be
expected miss distance between aircraft, or the
estimated time until minimum separation is reached.
The decision-making model and its parameters (e.g.,
the threshold settings) are then exercised in a series



of simulations (either through fast-time Monte Carlo
simulation or human-in-the-loop studies).  The
decision logic is exposed to a wide range of
encounter situations, and the resulting number of
false alarms and loss-of-separation events (or other
statistical performance metrics) are recorded [14,15].
Example situations typically include a variety of
conflict geometries and aircraft dynamic behavior.
This allows for uncertainties to be modeled and
injected into the design of the system in order to
explore system performance and robustness to
uncertainty. If the observed system performance
does not meet design specifications, then the model
or the decision thresholds are modified. For
example, time or range thresholds may be
successively modified until there is an acceptable
balance between loss of separation incidents and false
alarms over the set of test scenarios. The result can
be a complex, iteratively-evolved set of logic and
threshold definitions. The TCAS alerting thresholds
developed using this method, for instance, have
numerous kinks and overhead associated with special
cases using if-then logic [4].
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Figure 9: Physical Parameter Design Process

Ultimately, it is the observed performance in
terms of false alarms and safety that determines
whether a system design is acceptable.  These
performance parameters are typically based on the
decisions that occur and on the outcomes that result,
rather than on physically-measurable quantities like
time or position. Closer examination of the design
method in Figure 9 reveals that, at its core, what is
happening is that the system’s physically-based
decision parameters are being tuned to the situations
that are provided in the evaluation simulations. The
process is somewhat analogous to designing a control
system compensator, but in this case the decision-aid
system is essentially mapping the given encounter
situations into false alarm rate or separation
performance. In this view, metrics such as range,
miss distance, or time are simply surrogates for the
real metrics of interest — the statistical measures of
performance like safety and false alarm rate.

A more direct approach to system design would
be to estimate performance parameters in real time

during system operation (Figure 10). Then, rather
than making a decision based on an indirect metric
such as time to minimum separation, the alerting
decision can be based on a direct comparison of the
computed false alarm or loss of separation
probabilities against the desired performance
specifications.
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Figure 10: Performance-Based Design Process

Whereas physical parameters were once the only
types of information available to an alerting system
due to sensor and computational limitations, it is now
becoming possible to estimate performance
parameters in real time. One recent demonstration of
a performance-based design approach is a conflict
detection probe developed for simulation studies at
NASA Ames Research Center [12,13]. This system
uses a probabilistic trajectory model to estimate the
probabilities of unnecessary alert and successful alert
in real time. Whether an alert is issued then depends
only on these probabilities, and not on physical
parameters such as miss distance or time to closest
point of approach.

Concluding Remarks

Ensuring effective decision-aiding  system
designs is going to become increasingly more
important as these systems are employed in higher-
criticality roles.  Although a number of capable
alerting systems have been developed to overcome
challenging problems, this development has largely
been performed in the absence of an underlying
science behind system design. Some engineering
tools have been created to address specific sub-
problems, such as the application of Signal Detection
Theory to quantitatively describe performance
tradeoffs.  Yet there are still many degrees of
freedom with which alerting systems can be
developed in terms of the models that are used and
the metrics used to make decisions.

Based on observations of many currently-
proposed or operational systems, a more formal
structure or taxonomy of designs is being developed,
as outlined in this paper. First, there are several
options as to the overall decision-making philosophy
to be used, be it conformance or trajectory based.
There are also several types of trajectory models to



be employed, each with certain characteristics.
Finally, decision metrics can be based on physically-
measurable quantities such as time or position, or
based on performance quantities such as false alarm
rate or safety level. Selecting from each of these
elements (decision philosophy, trajectory model, and
decision metrics) leads to a certain level of
achievable performance for a given problem.

The next step in this research is to continue
efforts to quantitatively link a given problem and its
characteristics to each design approach and
demonstrate the resulting system performance that
results. This will enable designers to select the
modeling method that is most appropriate to the type
of problem under consideration so as to achieve
effective and acceptable systems in an efficient
manner. The goal is to develop a process that begins
with a clear definition of the problem to be solved
and which directly leads to the modeling approach
that should be used.
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