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Abstract

A generalized model is presented to incorporate objective (hard) and subjective (soft) hazard information in automated decision-aiding
systems. The model may be used with more than one hazard, of more than one type, in a given problem. Uncertainties in state measurements,
dynamics, hazard extent, and hazard severity are included, as is the consideration of the fact that different operators may have different
concepts of what is an acceptable or unacceptable risk. By examining the tradeoffs created by these uncertainties, appropriate decision
thresholds can be selected. Using an aviation case study, information gained from observation of aircraft behavior in the presence of weather
was used to develop a model of weather as a soft hazard. This information can then be used in a decision aid to provide feedback on route

acceptability. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Real-time decision aiding and alerting systems are often
used to assist human operators in controlling processes effi-
ciently and in preventing undesirable incidents from occur-
ring (such as a collision in a vehicle control application, or
exceeding temperature limits in process control). There are
many types of real-time decision-aids, ranging from process
status displays, to planning tools, to safety- and time-critical
warning systems. To date, warning systems have generally
been restricted to cases in which there is a clear definition of
hazardous states. For example, traffic collision risk can be
defined in concrete, objective terms (e.g. no closer than
100 m separation between aircraft), which then is translated
into algorithms and decision thresholds. This can be classi-
fied as a case of objective assessment of hazard risk. Due to
sensor and prediction errors, there may still be uncertainty in
whether a decision to change the process’ trajectory is
needed. These uncertainties, however, can also be objec-
tively estimated and used when defining decision thresholds
to balance false alarms and missed detections, and optimize
system performance from the human operator’s perspective.

In cases in which the distinction between hazard and non-
hazard is less distinct (i.e. the hazard risk is subjective),
decision-aids typically display the state information but
leave the decision-making to the human operator. Aviation
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examples of subjective hazards include weather preci-
pitation levels, turbulence intensities, forecast icing, or
visibility.

For an automation tool to be accepted, the decisions and
feedback it provides should be aligned with operator mental
models and expectations. A decision aid that does not
consider subjective hazards may generate inappropriate
decisions that decrease operator confidence and acceptance.
For example, several automation tools are being developed
for detecting and resolving air traffic conflicts and managing
the arrival flow at airports [1-3]. These tools currently do
not include hazardous weather information in their auto-
mated decisions, though some study of incorporating
weather has begun in this area [4]. When weather is not
considered by the automation, the human operator must
mentally integrate the information to determine whether a
given automated suggestion is appropriate. This may
increase workload and decrease the utility of the automation
in poor weather conditions. There is an opportunity, then, to
enhance the automation by including subjective information
in its decision-making process. This paper describes a
general modeling approach that integrates subjective and
objective hazard risk into a form that can be used in an
automated decision aid. This facilitates incorporating infor-
mation about multiple hazard sources, both subjective
(e.g. weather) and objective (e.g. traffic and terrain), into a
decision aid or alerting system. A specific example applica-
tion is also presented in which precipitation intensity
information was used to develop a model of weather that
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Fig. 1. Uncertainties in the decision to alert.

can be integrated with other hazard information to provide
feedback on route acceptability.

2. General model

The class of decision-aiding problems considered in this
paper involves those in which a process of interest is
controlled through a combination of humans and auto-
mation in an environment in which undesirable hazardous
states may exist. The operator’s task is to control the process
to arrive at some desired end state without experiencing an
undesirable incident. Example processes may include
chemical or power processes, single vehicles, large-scale
transportation systems, financial markets, or other applica-
tions. The operator may be a single human or a combination
of automation and humans.

If appropriate criteria are met, the decision-aiding (or
alerting) system provides additional information to the
operator with the intent of bringing the hazard to the
operator’s attention and, in some cases, to explicitly aid
the operator in resolving the problem. In this way, the alert-
ing system acts as an independent safety-enhancing system,
which operates according to some predefined decision
threshold logic.

2.1. Hazard encounters and incidents

To analyze alerting more completely, it is necessary to
define the situations that must be avoided, termed here
incidents and denoted by the event I. Example incidents
include exceeding temperature or pressure limits that ruin
a chemical process, the collision of two vehicles, or flight
through severe turbulence. To facilitate the definition of
incidents, it is first necessary to consider the process and
environment in a state-space model. The appropriate choice
of states depends on the application: in a vehicle control
case, states could include position, velocity, and accelera-
tion; in process control, states could include temperature,
pressure, valve positions, and flow rates.

Because the occurrence of an incident may be a prob-
abilistic event (e.g. flight through a region of heavy
precipitation may involve severe turbulence, but it may
not), the region in state-space in which an incident is possi-
ble is partitioned and is termed Hazard Space. Thus, entry
into Hazard Space (termed a hazard encounter, or event E)
is necessary but not sufficient for an incident to occur. The
problem then reduces to one of determining whether Hazard
Space will be encountered during the operation of the
process, and if so, the likelihood for an incident will then
result. Trajectories that do not penetrate Hazard Space can
then be optimized to meet other constraints such as time,
fuel burn, or other metrics of efficiency.

2.2. Uncertainties

With perfect information, entry into Hazard Space can be
predicted exactly. Generally, however, this is not possible,
due to the combination of four types of uncertainties. These
uncertainties (current state, trajectory, extent, and severity)
are shown schematically in Fig. 1 and discussed in more
detail below.

First, the current state of the process may not actually be
located at its estimated position in state-space. Current-state
uncertainty (e.g. vehicle position or velocity) is typically a
function of sensor errors. In some cases, the states of interest
cannot be measured directly and must be inferred from other
measurements; this may further increase uncertainty.

The second source of uncertainty relates to the projected
future trajectory of the process. It is this projected trajectory,
relative to Hazard Space, that is used to determine whether
action is required at the current time to avoid an incident.
In order to project the current state into the future, it is
necessary to have a dynamic model of the process, the
environment, and Hazard Space. Uncertainties in this
model may exist regarding the dynamics of the controlled
plant, sensors and actuators, the operator’s actions, the
environment, and the hazard itself. For example, aircraft
motion can be accurately modeled using physics, but
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uncertainties in pilot behavior, winds, and navigational
instrument errors may combine to produce an increasingly
uncertain estimate of state position in time.

Uncertainty in the size, shape, or extent of Hazard Space
leads to the third type of error in incident prediction. This
type of uncertainty is specific to the hazard under considera-
tion: collision hazards are generally well-defined (e.g.
separation less than 152 m (500 ft) is considered to be a
collision or ‘near miss’ in many aviation applications),
while the boundaries of other types of hazards may be less
certain (e.g. severe weather).

As discussed in Section 2.1, entry into Hazard Space may
or may not result in an incident. The fourth type of uncer-
tainty relates to the probability of an incident given where a
hazard encounter has occurred. This can be thought of as a
combination of an objective uncertainty in the severity of
the hazard, and a subjective uncertainty in the definition of
an incident. In the former, objective case, the structure of the
hazard may be such that an incident occurs probabilistically
following a hazard encounter: the hazard may be modeled
using varying levels of ‘hardness’ or ‘softness’. One example
is flight over a missile site, which might have been destroyed
previously; whether or not a missile is launched, can then be
considered as a probabilistic event. While the estimation of
this probability requires judgment, the threat posed by a
missile launch could be considered objectively. In the latter,
subjective uncertainty case, there may be differing opinion
on what the proper definition of an incident is. Flight
through poor weather, for example, may be acceptable to
some operators and not to others. This acceptability is likely
a function of many other factors such as operator experience
and training, risk aversion or acceptance, the existence of
alternate options, and the expected amount of time that will
be spent in Hazard Space.

2.3. Decision tradeoffs

With hazards involving some uncertainty, any discrete
decision to alert the operator or to otherwise determine
whether a given trajectory is acceptable may be an error
in one of the two ways. First, it may be the case that an
alert was not necessary. Alternately, it may be the case that
the decision to alert is never made or is made too late to
prevent an incident (a missed or late alert). The tradeoff
between these outcomes is a critical factor in designing an
acceptable decision-aiding system and has been examined
previously for objective hazards [5].

When dealing with cases in which the definition of an
incident is subjective, an additional form of decision trade-
off occurs. Consider a case in which it is known with
certainty that the process will enter a soft hazard. A decision
to alert the operator may be an error if the operator does not
consider the hazard sufficiently threatening, resulting in the
perception of a false alarm. An analogue to a missed detec-
tion may instead occur if an alert is not made, but the opera-
tor would have desired an alert. This is not to say that an

alerting system must always match an operator’s mental
model of when alerts should be issued — in some cases,
the operator may have an incomplete concept of whether
action is truly required. However, studies have shown the
importance of designing systems to provide feedback so that
operators can understand the reasoning or logic behind an
automated decision [6].

While the decision tradeoff with an objective definition of
an incident can be examined using models of dynamics and
uncertainties, subjective incidents may require additional
consideration of human factors, expert opinion, and opera-
tional experience. In some cases, it may be desirable to have
operator-selectable or situation-dependent thresholds that
can be tuned to the particular problem at hand. As one
example, the threat posed by weather varies significantly
depending on aircraft type, pilot experience, and other
environmental factors such as overall extent of the storm,
proximity to terrain, or the availability of escape routes. A
study by MIT Lincoln Laboratory, for example, found that
pilots were significantly more likely to penetrate severe
weather as they went closer to the runway, possibly due to
pressures of the constrained environment and to knowledge
of the relatively short distance remaining to be flown [7].

The four types of uncertainty outlined above combine
together with the result that whether an incident will occur
can only be estimated with some probability. Section 3
develops a formal method for computing this probability.
The remainder of the paper then discusses issues in hazard
modeling for an aviation weather case study.

3. Computation of probability of incident

Fig. 2 depicts an example of the process state estimate, X,
that includes some uncertainty. An error ellipse is shown in
Fig. 2 that describes the region in state-space in which the
true state x actually lies with some probability. Hazard
Space, denoting a region where an incident can occur, is
also shown.

Based on X, the alerting system must determine whether
an alert is warranted. The need for an alert, however,

Hazard extent: c € X

Trajectory: tTe T

Fig. 2. State-space diagram.
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depends on the trajectory that will be followed in the
future. In Fig. 2, one possible trajectory is denoted .
The actual trajectory that will be followed, however,
may be any within some set T of trajectories. T depends
on X, future control inputs, and knowledge of the
system dynamics. Having defined 7, and given a parti-
cular state estimate, X, there exists some probability that
an incident will occur in the future, denoted P(I|f(). As
discussed earlier, P(I|)2) is a function of uncertainties in
the current state, future trajectory, hazard extent, and
hazard severity.

Whether the decision-aiding system needs to alert the
operator at the time shown in Fig. 2 depends on the
value of P(I|X). In general, the larger the probability that
an incident will occur, the greater the need for an alert.
An alert that is issued when P(I|f() is small may be
considered a false alarm if the human operator is
aware of the hazard or would have avoided the hazard
without the alert. However, if the alert is delayed until
P(I|R) is large, there may not be enough time or space
to perform an avoidance maneuver and an incident may
occur even if an alert is issued. A methodology to observe
and design around this tradeoff has been previously
developed [5].

As discussed earlier, an encounter with Hazard Space
(event E) is necessary, but not sufficient for an incident
(event I) to occur. Accordingly, P(E|)2) is defined as the
probability that a hazard encounter occurs, and P(I|R) is
defined as the probability that an incident occurs in that
same situation:

P(I[%) = PA[E)P(E[R) ey

Hazards for which P(I|E) =1 are hard hazards. An
encounter with a hard hazard means that an incident also
occurs. An example hard hazard is a collision with another
vehicle. Hazards for which P(I|E) < 1 are soft hazards —
an encounter does not necessarily indicate that an incident
will also occur. Soft hazards include severe weather or
safety thresholds beyond which component failures may
occur. Methods for modeling hard and soft hazards are
discussed in Section 3.1.

Now, assume that the probability that the state is truly at
some value x is given by the probability density function
(PDF) f,(x — X), typically based on sensor error distribu-
tions. Also, the size and shape of Hazard Space (defined
by o) is uncertain and may take on any value from a set
of possible hazard extents, 3, described by the PDF f (o).
The trajectory 7 can take on any value from a set of possible
trajectories, 7, described by the PDF f. (7). Finally, an exclu-
sion zone, Z(o, 7), can be defined to represent those loca-
tions where x must be for a hazard encounter to occur.
Integrating f,(x — X) over Z yields the probability that an
encounter will occur for a given, known trajectory and
hazard extent. Then, integrating over all possible trajec-
tories and hazard extents gives the general probability of

encounter:
PER) :j J j Ak = Df (@ (Ddxdodr Q)
T J> JZ(on

Provided that the PDFs are known or can be estimated,
this expression can be solved using analytical methods,
numerical integration, or Monte Carlo simulation [3,8,9].
Finally, P(I|E) is used in Eq. (1) to determine the probability
of an incident, P(I[R).

3.1. Hazard modeling

In cases where an encounter with Hazard Space is the
same as an incident (hard hazards), P(I|E) = 1 and Eq. (2)
directly yields the probability of such an incident occurring.
When an encounter with a hazard does not necessarily mean
that an incident will occur (a soft hazard), the methodology
must be further modified to account for P(I|E) < 1. The
probability of incident for soft hazards may be modeled in
two ways. In the first, P(I|E) is independent of exposure. An
example is a missile site that has a certain probability of
being active on a particular day, regardless of how long the
aircraft flies near it. The second model is one in which the
probability of an incident depends on the time or distance
over which an encounter occurs. An example is hazardous
weather — the longer an aircraft remains inside a thunder-
storm, the greater is the probability that an incident will
occur.

When a soft time-independent hazard is encountered,
PA[E) is less than 1. Assuming that this probability is
constant over Hazard Space, P(I|i) can be determined
using Eq. (1). When dealing with time-dependent hazards,
P(I|E) depends on the amount of time or distance that the
trajectory remains in Hazard Space. The total exposure to
the hazard along each possible trajectory is then used to
calculate P(I|E). This exposure can be estimated by integrat-
ing a hazard severity density function, f;(I), over the length
of the trajectory through the hazard. For a constant-density
threat, f; (/) can be represented by an exponential distribu-
tion. The integral of this PDF over a path of length L in
the hazard results in:

PAE) =1—-e"* 3)

where 6 represents the mean amount of exposure (in units of
distance or time) until an incident occurs. As 6 tends toward
zero, the hazard becomes more like a hard hazard — very
small exposures result in incidents. A large value of 6 indi-
cates an insubstantial hazard to which a large exposure is
required before an incident will likely occur.

Because L is dependent on the trajectory and the
hazard extent, the resulting equation for P(I|)2) for soft,
time-dependent hazards is

rap = | [ ] a-et -
T J3 JZoD (4)

folo)f(n)dx dord7
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3.2. Multiple hazards

Additional complexity arises when more than one hazard
may be encountered along a particular trajectory. Multiple
hazards must be considered if the system is to integrate
several potential threats when making decisions. Consider
a situation in which there are two regions of Hazard Space,
denoted A and B, along a single projected trajectory 7.
Treating each hazard encounter as a separate event, the
resultant probability of incident along the trajectory can
be determined using:

P4 o 81X, 7) = PU4|X, 7) + P(Ig|X, 7) — P(Ixg[X, 7) 5)
where the subscripts A and B indicate which hazard (or
combination of hazards) is producing an incident, and 7 is
explicitly shown as a parameter to highlight the dependence
on a specific trajectory. If the two hazards are conditionally
independent of one another given the trajectory 7, this

reduces to:

X, 7

(6)

P, o X, ) = P(I4[X, ) + P(Ig|X, 7) — P(I4|X, DP(Ip

When more than one trajectory could be followed, Eq. (6)
must be used on each trajectory 7 separately, then integrated
over the set of trajectories:

X, 7) + P(Ig

P, o 5l8) = L [P(I, %7

— P(I,

%, DP([%, Df-(1d7 )

In this way, a number of hazards, both hard and soft, can
be assessed simultaneously.

4. Example application to aviation weather hazards

Up to this point, the focus has been on describing a
method by which the probability of an incident can be
computed, assuming that a model of the process and the
hazards can be developed. This section discusses an aviation
weather problem as a case study used to develop a model of
a soft hazard.

The flight of an aircraft can be modeled generically as a
process in which the pilot provides control inputs so as to
arrive at some destination state. Currently, alerting systems
are in place that warns pilots of hard hazard collision threats
such as traffic or terrain. Pilots also have weather radar
displays that depict precipitation intensity. Due to the soft,
complex nature of weather as a hazard, pilots have tradi-
tionally had to integrate weather information with other
constraints when determining tactical routes. As more
complex alerting systems are developed, it may be attractive
to incorporate soft weather information in the decision-aids,
even if only at a fairly rudimentary level.

4.1. Weather and aircraft interaction data collection

Weather is a complex hazard, and translating weather
information into a form that can be used by an automated
system is a challenge that will continue to be addressed by
researchers in the future. As a preliminary step in this direc-
tion, however, observations of enroute aircraft proximity to
weather were performed to develop a simplified, prototype
model of weather as a soft hazard.

Courtesy of the MIT Lincoln Laboratory, archived
aircraft track and weather data were obtained for the hours
between 2100 GMT on May 19, 1997 and 0900 GMT on
May 20, 1997 from the Dallas Fort-Worth enroute sector,
which spans approximately 1000 km from New Mexico
across Texas [7]. The aircraft position information for the
enroute airspace above 30,000 ft was updated every 6 s, and
the weather precipitation data was updated every 5 min. A
total of 1095 aircraft were included in the track data, and the
weather data included the location, altitude, and intensity
(categorized into six levels) of a line-storm passage. The
minimum distance between each aircraft and each level of
precipitation was recorded every 6 s in the data file. This
enabled the calculation of both the overall minimum
distances to weather and also the accumulated durations in
each level of weather for each aircraft.

As the pilots had access to on-board weather radar and
also received reports of weather conditions by radio, the
aircraft generally avoided the most severe regions of
weather. The potential to translate this rerouting behavior
into a form that could be incorporated into an automated
decision aid was the motivation for this study.

4.2. Observed weather penetration

Of the 1095 aircraft, 353 (32%) penetrated level 2
weather or higher. Because the focus is on behavior of
aircraft that penetrated weather, only the data for the 353
penetrating aircraft are considered here. Fig. 3 shows a
cumulative distribution of the maximum amount of time
that these 353 aircraft spent in levels 2—5. The solid lines
show the observed duration values; the dashed lines show a
model fit that is discussed in more detail below. Duration
was defined as the accumulated time spent within a given
level or a level of higher intensity. Time in level 2, for
example, also includes time spent in levels 3 or higher,
and thus serves as a metric of the total time spent within a
region of precipitation.

Focusing on the solid lines, 90% of the aircraft, for
example, spent less than approximately 190 s inside level
2, and 90% of the aircraft spent less than approximately 25 s
in level 4. Additionally, the values of the cumulative distri-
bution for duration of zero indicate the proportion of the 353
aircraft that did not enter each level of weather. For
example, approximately 27% of the aircraft did not enter
weather of level 3. No aircraft entered level 6.

The observed penetration times need to be corrected
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Fig. 3. Cumulative duration by precipitation level (solid lines: observed values; dashed lines: exponential hazard model fit).

to take into account the fact that the area covered by
each level of precipitation varied. Level 5 weather, for
example, covered only 9% of the area covered by level
2, and so shorter penetration times would be expected
based solely on geometry. Modeling the weather as
circular regions and assuming no deviation effects, the
expected number of aircraft that would enter each level
of weather would be proportional to the radius of each
weather cell (or equivalently, the square-root of the
area). Furthermore, the expected duration in each level,
using this model, would be proportional to the area itself.
Table 1 summarizes these relationships. The overall area
covered by each level of precipitation is shown relative to
the area covered by level 2. Also shown are the expected
and observed fractions of aircraft that entered each level,
and the overall expected and observed average duration in
each level.

As can be seen in Table 1, increasingly fewer aircraft
entered levels 4—-6 than would be expected based on the

Table 1

simplified geometrical model of weather. Also, the average
duration spent in levels 3 and above was lower than would
be predicted by the model. Because on average the durations
would have been significantly larger had no route modifica-
tions been made, the penetration times in Fig. 3 can be used
as estimates of the upper limit of time that was acceptable to
the pilots to spend in each level of weather.

4.3. Hazard modeling

Because none of the aircraft penetrated level 6 weather,
level 6 can be adequately modeled as a hard hazard. Levels
2-5, however, had some degree of softness since aircraft did
penetrate them. A simplifying assumption is that pilots
penetrated the weather only as far as they considered to be
acceptable. With this assumption, another way of inter-
preting Fig. 3 is that the cumulative distribution shows the
probability that a pilot would not accept a routing of a given
duration. Thus, 90% of the pilots, for example, would not

Expected and observed penetration behavior (fractions relative to level 2 weather)

Precipitation Area Expected Observed Expected Observed
level fraction to enter to enter duration duration
2 (reference) 1.00 1.00 1.00 1.00 1.00

3 0.48 0.69 0.73 0.48 0.43

4 0.23 0.48 0.40 0.23 0.14

5 0.09 0.30 0.10 0.09 0.02

6 0.03 0.17 0.00 0.03 0.00




J.K. Kuchar et al. / Reliability Engineering and System Safety 75 (2002) 207-214 213

£,

3.

Duration, [ (sec)

Fig. 4. Probability density function model for weather severity.

accept a trajectory that remained inside level 4 for 25s.
Similarly, since no aircraft were observed flying more
than 150 s through level 4 precipitation, a trajectory that
involves more than 150 s of flight through level 4 would
not be acceptable to any pilot. This assumption is reasonable
given the fact that the pilots, on average, originally had
significantly longer trajectories through each level of preci-
pitation, but deviated to reduce that exposure according to
the cumulative plot in Fig. 3.

Using this approach, hazard severity PDFs, f;(l), for
levels 2—5 were chosen such that the resulting probability
of incident for a given length of exposure was similar to
the observed cumulative distribution in Fig. 3. The result is
that the computed probability of incident along a particular
trajectory approximates the percentage of pilots who would
not accept that trajectory. Thus, a decision threshold can be
set based on a desired acceptance percentile. For example,
assume that a decision threshold is set at a value of P(I|E)
of 0.95. Then, alerts will be generated for 95th percentile
weather; that is, weather for which 95% of pilots would
agree is hazardous. A more risk-averse approach would be
to lower this threshold, but then there may be a significant
number of pilots who feel the system is overly conservative.

A slightly modified exponential hazard density function
was used to model each precipitation level (Fig. 4). For each
precipitation level, there is some discrete ‘cost’ or probabil-
ity of incident that applies any time that type of weather is
entered (modeled as an impulse of probability ¢ at zero
duration). In addition, there is an exposure time-dependent
component that is integrated over the path of the weather,

Table 2
Modeled hazard severity PDF parameters

Precipitation level c 6 (s)
2 0.00 78
3 0.27 40
4 0.60 20
5 0.90 10
6 1.00 -

described by a mean time to an incident, 6. The result is the
set of dashed lines in Fig. 3 which relate route acceptability
(analogous to P(I|E)) to the projected duration of the route
in weather. Specific values of ¢ and 0 are shown in Table 2.

Due to the complex nature of weather as a soft hazard, the
specific model of weather presented here is rudimentary and
is intended only as an illustration of the type of analysis that
could be pursued. Still, relatively accurate fits to the empiri-
cal data were possible using the time-dependent soft hazard
model derived above. Future research efforts will focus on
further developing this methodology and on analyzing
aircraft—weather interactions in more detail, with the goal
of enabling the development of decision-aids that integrate
hard and soft hazard information in a manner that is accep-
table to the operators.

5. Conclusion

This paper presents a generalized model that enables
incorporating hard and soft hazards into a single auto-
mated decision regarding the acceptability of a particu-
lar state trajectory. The model may be used with more
than one hazard, of more than one type, in a given
problem. Uncertainties in state measurements; dynamics,
hazard extent, and severity are included, as is consideration
of the fact that different operators may have different
concepts of what is an acceptable or unacceptable risk.
This potential difference in the definition of what is accep-
table is a key issue that needs to be resolved when devel-
oping decision aiding systems to monitor soft, subjective
threats. In many cases, it is necessary to obtain data during
the operation of the system in order to better understand
operator preferences and decision-making behavior. This
operational data can then be inserted into the design
process of future decision-aids.

Using an aviation weather case study, information gained
from observations of pilot behavior in the presence of
weather was used to develop a preliminary model of
weather as a soft hazard. This information could then be
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used in automation to aid operators in monitoring or
replanning routes. Additionally, information such as traffic
conflict probability (a hard hazard) can be combined
directly with the soft hazard information to provide an over-
all assessment of the acceptability of a route.

Although an aviation case study was used here, the
concepts developed in this paper can be extended to non-
aerospace applications in which subjective operational data
is inserted into the design process to improve automated
decision-making. Examples include process control in
which a soft operating envelope may be exceeded with the
result that component failure rates may be increased.
Whether an operator would agree to such an envelope
exceedance could be determined and used with other
dynamic information to develop a decision-aid.

The ability to manage soft or subjective hazards in
automation could open up new design options to be
considered. In automation today, hazards are generally
defined to be ‘hard’ primarily due to either a clearly-
defined physical limitation (e.g. collision), or due to the
desire to enforce procedural limits on the operation of
the process. Some of these hard limits may be imposed
to reduce a complex soft hazard into a more easily
managed form. If, however, soft limits can be defined
and used in decision-aiding system algorithms, it may
be possible to develop automation that is more flexible
and more operationally acceptable when faced with such
hazards.

Finally, the ability to manage soft hazard information
may lead to new opportunities in developing decision-aids
that are tailored to specific user preferences. Operators
could specify their level of risk aversion or acceptance,
which would then be used to determine when a soft hazard
warrants alerts or other action by the automation. Alterna-
tively, the soft hazard information could be used to provide
feedback on the acceptability of a given route or operating
strategy, both in terms of the overall risk level and by

displaying the degree of softness or hardness of hazards
that may be encountered.
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