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Markov Model of Terrain for Evaluation of Ground
Proximity Warning System Thresholds
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A statistical model of terrain was developed to estimate the probability of a controlled � ight into terrain accident
following a ground proximity warning system (GPWS) alert. The terrain model was derived from an actual terrain
database and used to create a Markov chain simulation. With this simulation the probability of terrain impact
was computed as a function of terrain type and aircraft trajectory pro� le. Contours of collision probability were
then generated and plotted against current alerting thresholds, illustrating how threshold placement maps into
safety. Example results for the GPWS excessive descent rate alerting mode are provided. Following a warning and
the subsequent pilot reaction delay and pull-up maneuver, the probability of collision with relatively � at terrain is
less than 1 £ 10 ¡ 8 for high descent rates. In steep, rapidly changing terrain, the probability of collision following
an alert increases to more than 0.01. A simple modi� cation of alerting thresholds would not resolve this problem
because of a resulting higher rate of nuisance alarms, as shown quantitatively by a performance tradeoff curve.
Potential performance improvements through decreased response time or increased maneuvering load factor are
also quanti� ed.

I. Introduction

T HE Ground Proximity Warning System (GPWS) provides an
alert to civil transport � ight crews when the aircraft is in dan-

ger of impacting terrain. GPWS was mandated on jet transports
in the United States following several controlled � ight into terrain
(CFIT) accidents, notably the crash of a Trans World Airlines Boe-
ing 727 into hills west of Dulles International Airport on 1 Decem-
ber, 1974.1,2 Since its introduction, GPWS has played a major part
in reducing CFIT accidents, de� ned as cases in which an aircraft
in controllable and sustainable � ight collides with terrain. How-
ever, CFIT accidents still occur, even on aircraft with functioning
GPWS equipment, and CFIT remains a major category of aviation
fatalities.

Approximately 35% of the CFIT accidents between 1975 and
1992 involved aircraft with a functioning GPWS.3 On aircraft that
had a working GPWS system, CFIT accidents occurred in one of
three categories:

1) No warning of impending impact was given in 24% of CFIT
accidents with a functioning GPWS system. These cases generally
involved an aircraft descending while in landing con� guration (i.e.,
landing gear is down, and � aps are extended). Because false alarms
are undesirable during � nal approach to an airport, GPWS is de-
signed to become less sensitive to terrain hazards when the aircraft
is in the landing con� guration.

2) Late warnings, in which thepilot had too little time to respond to
an alert, contributed to 38% of the CFIT accidents with a functioning
GPWS system. To prevent an excessive number of false alarms, the
alerting thresholds are set such that alerts may be late if terrain rises
extremely rapidly.

3) Poor pilot response was found to contribute to 38% of the
CFIT accidents with a functioning GPWS system. In these cases
GPWS provided adequate time to react to a hazard, but the crew
delayed their response or made an inadequate avoidance maneuver.
In some cases the delayed response has been attributed to previously
experienced false alarms with GPWS.4

GPWSs currently in place on transport aircraft rely upon both
barometric and radar altitude measurements to determine if an alert
needs tobe issued. The barometric altimeter measures altitude above
mean sea level (MSL) and does not by itself provide a measure of
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altitude above terrain. The radar altimeter provides a measurement
of the above ground level (AGL) altitude of the aircraft. AGL altitude
is calculated from the time delay in a radar pulse beamed at the
ground below the aircraft. The rate of change in MSL altitude or
AGL altitude is then extrapolated to estimate the danger posed by
proximity to terrain. Because of its beamwidth, the existence of side
lobes, and changes in orientation caused by aircraft pitch and roll,
the radar altimeter does not always indicate the actual altitude over
the terrain directly below the aircraft.

The primary shortcoming of GPWS is that limited information
is available to the system regarding the terrain ahead or to the side
of the � ight path. The system must, in effect, extrapolate the ter-
rain altitude ahead of the aircraft based on the current altitude rate
measurements. Because of this limitation, false alarms may occur
when � ying over small, sheer terrain rises because the extrapolated
terrain slope appears to be hazardous. Missed detections are also
possible when � ying into rapidly rising terrain if the terrain slope is
underestimated. To be effective, GPWS alerting logic must attempt
to minimize both of these effects.

Improvements in terrain proximity alerting are possible through
the use of an onboard terrain database. Terrain referenced naviga-
tion (TRN) and guidance systems have been under development
for over a decade.5 ¡ 10 In addition to providing improved navigation
and guidance capabilities, correlating the aircraft position with ter-
rain data enhances the ability to accurately predict terrain hazards
and perform terrain avoidance (TA).6 ¡ 8 Also, the use of a terrain
database enables the display of the terrain � eld to the pilot, improv-
ing situation awareness, and providing corroborating information
when an alert is issued.11 Although much of the work in TRN and
TA has been for military applications (such as low-level terrain fol-
lowing), civil transport alerting systems based on terrain databases
are also being � elded.12

Terrain-database-enhanced navigation, guidance, and warning
systems are likely to be signi� cant players in further improving
aviation safety. This paper, however, focuses on the design of the
underlying radar-based GPWS alerting thresholds, which continue
to � ll a role as the � nal safety net before CFIT accidents occur.

II. GPWS Operation
GPWS systems on U.S. jet transport aircraft must comply with

a series of performance speci� cations, designed to protect against
a variety of CFIT accident types.2,13 The examples here, however,
concern only those situations in which the aircraft is descending
toward a terrain � eld while not in landing con� guration (i.e., landing
gear is up, and � aps are retracted).
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Fig. 1 GPWS alerting thresholds (excessive descent rate mode).14

The minimum performance speci� cations for GPWS provide
alerting thresholds for the system based on the observable baromet-
ric and radar altitudes.13 The minimum speci� cations only require
a single alert. In practice, however, GPWS systems use a two-stage
method of a caution (aural alerts of “sink rate” or “terrain”) followed
by a warning (aural alert of “pull up”) if the terrain threat continues
to grow.

Figure 1 shows an example alerting threshold diagram from the
Boeing B-767 GPWS “excessive barometric descent rate” mode.14

An aircraft that is descending at a constant 4000 ft/min, for exam-
ple, generates a “sink rate” caution at an altitude of approximately
2000 ft above the terrain, and a “pull up” warning at an altitude
of approximately 1200 ft above the terrain. Whether this warning
provides enough time to avoid a CFIT accident depends on the pi-
lot’s response latency, the aggressiveness with which the aircraft is
pitched up, and on the rate at which the terrain gains higher altitudes.

An important consideration of GPWS design is the ability to
predict how the placement of these alerting thresholds translates
into safety improvements. To be accepted, an alerting system design
must provide a desired level of safety improvement while not issuing
an excessive number of nuisance alerts. One means of obtaining
safety and false alarm performance measures is through exposing
the system to speci� c situations that will be expected in operation.
Several areas are known to be problematic for GPWS, for example.
Approaches to runways at San Francisco, Pittsburgh, and Cincinnati,
among others, have been observed to produce sudden changes in
radio altitude measurements that can trigger false alarms.15 Any
newly developed systems or modi� cations to existing systems would
need to be tested in these known problem areas to ensure that GPWS
operates acceptably.

It is also desirable to expose the system to a wider variety of con-
ditions than are possible by examining speci� c situations alone. To
obtain a broad data set, it may be more straightforward to develop
an analytical model of terrain and gather statistical predictions of
performance than to run the system against a large number of actual
terrain � elds. The impact of uncertainties in vehicle state (position,
velocity, etc.), sensor errors, and human performance can also typ-
ically be injected into the analytical model. Use of the statistical
results, however, must be weighed against the assumptions behind
the model, including the assumed probability of exposure to differ-
ent types of terrain. Thus, statistical data provide a complementary
view of system performance to site-speci� c observations.

III. Terrain Pro� le Model
To probabilistically examine the effectiveness of GPWS in differ-

ent types of terrain � rst requires a statistical model of the variations
in terrain altitude. Some means of calculating the probability that
the terrain takes on certain shapes is required. The probability that
a collision will occur then depends on the probability that a terrain
pro� le will exist that intersects the future trajectory of the aircraft.

There are several options for how to model a terrain � eld, as
demonstrated in previous efforts evaluating TRN systems. One ap-
proach, for example, was to iteratively subdivide a region into
squares while setting the altitude in each square according to a
Gaussian distribution.10 This provided a reasonable terrain � eld
against which a TRN � lter could be operated, but was not neces-
sarily intended to statistically match terrain. Other methods rely on
developing a stochastic process model of terrain, using parameters

such as correlation distance and slope variance to simulate different
terrain roughness.5,9,16 ¡ 18

In the present study of GPWS performance, a � rst-order Gauss–

Markov model was developed to describe the statistics of terrain. A
Markov chain was then used to calculate a probabilistic distribution
of terrain altitude as a function of distance ahead of the aircraft. In
this analysis terrain is treated as a stochastic � rst-order Markov pro-
cess for several reasons. First, Markov models can often be used to
describe natural processes; they therefore are likely to also describe
the statistics of terrain.19 Second,Markov processes are simple to de-
� ne and manipulate using probability theory, which is a necessary
step when predicting system performance. Obtaining the Markov
model involves representing terrain altitude as a stochastic process,
from which statistics can be measured and used to create simulated
terrain � elds. This requires � rst obtaining an empirical autocorrela-
tion function of terrain pro� les and then approximating this function
using a curve � t with an ideal Markov process. Empirical collection
of autocorrelation functions has been performed in prior work (e.g.,
see Ref. 17), but in the present work the approach is extended to a
wider range of terrain types and is linked directly to a Gauss–Markov
process. This facilitates the probabilistic computations discussed in
the next section.

The autocorrelation function describes the statistical correlation
between two samples of a signal taken a lag time s apart.19,20 The
autocorrelation function u yy( s ) for a continuous-time, stationary,
ergodic function y(t) is de� ned by

u yy ( s ) =
1

¡ 1
y(t )y(t + s ) d s (1)

If y(t) is a � rst-order Gauss–Markov process, Eq. (1) reduces to an
even exponential function:

u yy ( s ) = r 2e ¡ j s j / s 0 (2)

That is, the correlation between two samplesof the process decreases
exponentially as the lag time between samples increases. The pa-
rameters r 2 and s 0 re� ect the variance and length scale, respectively,
of the � uctuations in the process. Equation (2) is sometimes written
instead in terms of b = 1/ s 0 .

Consider now a discrete-time Markov process that has taken val-
ues y0, y1, y2 , . . . , yn ¡ 1, yn up to the present time n. A convenient
property of � rst-order Markov processes is that the probability of
the next value in the sequence yn + 1 depends only upon the most
recent value yn . Then, a representative signal can be constructed
without carrying along a complete history of all previous values in
the signal. In fact, a discrete-time Markov process can be generated
by the following system equation20:

yn + 1 = e ¡ b yn + n n (3)

This process is termed a Gauss–Markov process when n n is a
zero-mean normally distributed random variable with variance
r 2(1 ¡ e ¡ 2 b ).

A large ensemble of actual terrain data was used to derive the
statistics of this process. The terrain pro� le data were obtained
from 1-deg digital elevation models (DEM) distributed by the U.S.
Geological Survey, produced by the National Imagery and Map-
ping Agency from cartographic and photographic sources. The data
used here covered the U.S. Great Plains and Rocky Mountain re-
gion in 1 £ 1 deg blocks between 102–112 deg West longitude and
32–49 deg North latitude. Ground elevation data are stored in the
database every 3 arc seconds (approximately 100 m or 300 ft), with
a vertical resolution of 1 m (3.3 ft). The accuracy of the database
depends on the type of terrain being modeled, but is speci� ed to
have an absolute horizontal error (from a given feature to a datum
location) less than 130 m (425 ft) at the 90% con� dence level and
an absolute vertical error (from a given feature to mean sea level)
less than 30 m (98.5 ft) at the 90% con� dence level.21 Examples of
two terrain pro� les from the DEM database are shown in Fig. 2.

Because the statistics of terrain in a � at region are not the same as
those for a mountainous region, the terrain pro� les were separated
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Table 1 Terrain categories

Altitude 99% con� dence Number of
standard interval (altitude span samples in

Terrain category deviation, m over 60 n miles) database

Smooth < 84 < 500 m 2651
Moderately smooth 84–167 500–1000 m 1996
Moderate 167–250 1000–1500 m 1432
Moderately steep 250–333 1500–2000 m 1018
Steep >333 >2000 m 1353

Fig. 2 Example true terrain samples (shifted vertically to have zero
mean).

into � ve categories based upon the variance of terrain altitudes in
the sample, shown in Table 1. Given the altitude standard deviations
shown in Table 1, 99% (§3 r ) con� dence intervals for terrain alti-
tude range in each sample can be approximated and are also shown.
For example, terrain in the moderate category would be expected to
vary between 1000–1500 m in altitude over a distance of 60 n miles.

A total of 8450 terrain samples were taken from the database. Each
sample was a North–South pro� le 1 deg long in latitude (60 n miles).
Separate samples were taken every 72 arc seconds in longitude (ap-
proximately 1 n miles). Because each sample was 1 deg in length
with data point spacing every 3 arc seconds, 1200 data points were
available per terrain pro� le.

These samples were classi� ed into one of the � ve terrain cat-
egories, and the empirical autocorrelation function u yy( s ) of the
signal was calculated using

u yy ( s ) =
1

T ¡ s

T ¡ s

t = 0

y(t )y(t + s ) (4)

where T is the total length of the record (1200 data points) and s
is the lag between data points in the sample. The values of u yy( s )
were then averaged across the set of samples in the same altitude
category to arrive at a representative autocorrelation function.

The autocorrelation function of an in� nite-length single-order
Markov process is exponential, as was shown in Eq. (2). When a
� nite-length sample is taken from a Markov process using Eq. (4),
however, the resulting empirically determined autocorrelation func-
tion is not exponential.19,22 The expected value of u yy ( s ) for a � nite-
length record is given by

E[u yy( s )] = r 2e ¡ s / s 0 +
2r 2 s 2

0

T 2

T

s 0
¡ (1 ¡ e ¡ T / s 0 )

¡
4 r 2 s 2

0

T (T ¡ s )
T ¡ s

s 0
¡ 1 ¡ e ¡ (T ¡ s )/ s 0

¡
2 r 2 s 2

0

T (T ¡ s )
1 ¡ e ¡ s / s 0 + e ¡ T / s 0 ¡ e ¡ (T ¡ s )/ s 0 (5)

where s 0 is the correlation time constant of the � nite-length signal.22

As shown in Fig. 3, as the record length increases relative to the cor-
relation time constant the empirical autocorrelation function more
closely approaches the ideal exponential function.

To develop an approximate � t to the empirically determined au-
tocorrelation functions, Eq. (5) was � rst solved for s 0 such that the
zero-crossing point of the curve � t matched that of the empirical
autocorrelation function. Then, r was chosen such that the value

Table 2 Fitted autocorrelation function
parameters [Eq. (5)]

Terrain category r , m s 0 b

Smooth 79 458 2.2 £ 10 ¡ 3

Moderately smooth 269 1551 6.4 £ 10 ¡ 4

Moderate 342 773 1.3 £ 10 ¡ 3

Moderately steep 415 492 2.0 £ 10 ¡ 3

Steep 1007 1633 6.1 £ 10 ¡ 4

Fig. 3 Expected value of autocorrelation function for � nite-length
sample.22

Fig. 4 Empirical and � tted autocorrelation functions.

of u yy(0) for the � tted Markov process equaled that obtained em-
pirically. This correction for a � nite sample size was not applied in
some prior work. Instead of � tting data using Eq. (5), Ref. 17 for
example used the sum of two exponential functions to � t the data.
This results in different correlation distances because the underlying
models are different.

An example empirical autocorrelation function and a � tted
Markov function [using Eq. (5)] is shown for the moderate terrain
category in Fig. 4. The relatively close curve � t demonstrates that
the Markov model is appropriate for capturing the statistical prop-
erties of terrain. Similar qualities of curve � ts were obtained with
the other terrain categories.

Table 2 shows the function parameters for the � tted autocorre-
lation function for each terrain category. The values for r increase
as the terrain categories change from smooth to steep. However, s 0

does not show much correlation with the terrain category. Because
the categories were de� ned based on variance, it is expected that
r should be different in each category. It appears, however, that
the correlation distance for terrain is not strongly coupled with vari-
ance; smooth regions may have similar correlation distances to steep
regions. This is in contrast to another terrain model in which corre-
lation distance gradually increased with terrain roughness (Ref. 5),
but is consistent with Ref. 17 where empirically determined cor-
relation distances were found to have little relationship to terrain
variance.

As a demonstration that the Markov modeling process just de-
scribed is reasonable for terrain, comparisons of true terrain pro� les
against terrain generated using a Gauss–Markov process are shown
in Fig. 5. The top plot shows a randomly selected smooth category
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Fig. 5 Example terrain pro� les (—, true terrain pro� le; – – –, random
Gauss–Markov sample. Samples shifted to zero mean).

terrain pro� le from the DEM database and a randomly generated
Gauss–Markov pro� le using Eq. (3). The bottom plot shows ran-
domly selected and randomly generated pro� les from the steep ter-
rain category. The Gauss–Markov model appears to represent the
large-scale changes in terrain altitude well, and thus appears to be
a reasonable method by which terrain may be handled probabilisti-
cally and compactly.

IV. Markov Chain
Having found the parameters needed to describe and generate ter-

rain pro� les using a Markov process, it is now possible to construct
a Markov chain.23 The purpose of the chain is to compute the prob-
ability that the altitude of terrain will exceed the aircraft’s altitude
along a given � ight path. This then gives the probability that a CFIT
accident occurs.

Given a discrete-time Markov process, a set of discrete states
can be constructed that describe the possible values that the process
may take. In this case these states correspond to different terrain
altitude bins. At each time step there is a certain probability that the
state of the process will change from its current value yn to some
new value yn + 1 . In Fig. 6 a � ve-state Markov chain is shown, with
the transition probability p j i (n) de� ned as the probability that the
process will change from state yn = i to state yn + 1 = j .

Next, a state vector yn is de� ned, which holds the probabilities
that the process takes on the value of each state in the chain at time
step n:

yn =

probability that altitude is in state 0 at time step n
...

probability that altitude is in state m at time step n

(6)

The transition probabilities can also be placed into a state transfor-
mation matrix:

Tn =

p11(n) p12(n) ¢ ¢ ¢ p1m(n)

p21(n) p22(n) ¢ ¢ ¢ p2m(n)
...

...
. . .

...

pm1(n) pm2(n) ¢ ¢ ¢ pmm (n)

(7)

Fig. 6 Markov chain model.

Fig. 7 Markov chain propagation method.

Where p j i (n) is the probability that the state changes from i to j at
time step n.

Given an initial state probability vector y0, the probabilities of the
process being in each state after one time step are given by

y1 = T0 y0 (8)

By extension the probabilities of the process taking on each state
at time step n are then given by

yn = Tn ¡ 1Tn ¡ 2 ¢ ¢ ¢ T0 y0 (9)

Thus, by concatenating the transformation matrices together, the
probability that the process takes on a certain value at a future time
step can be calculated.

The procedure for using the Markov chain involves tracking the
probability that the terrain reaches different altitudes as the aircraft
� ies along. Starting with an initial AGL altitude, the probability that
the terrain is at a given altitude as the aircraft � ies along is calculated.
This involves using the state transition matrix just described. Any
terrain altitudes above the aircraft’s � ight path represent cases in
which an impact occurs. Each state which is above the aircraft’s
altitude is tagged and immediately transitions to an absorbing terrain
collision state. For example, in Fig. 7 a hypothetical aircraft � ight
path is shown relative to the Markov chain. Consider the case in
which terrain altitude is in state A at the � rst time step. The state
transitions shown with the dashed arrows represent potential future
terrain altitudes below the aircraft. However, any transition from A
to a state above the aircraft’s � ight path will result in a collision;
the probabilities of these transitions are combined into a transition
into the terrain collision state (shown by the solid arrow). Similarly,
terrain currently above the aircraft (B) or in a terrain collision state
(C) will transition directly to the next terrain collision state. Thus,
the probability that terrain is in the terrain collision state at each step
in the process represents the running probability that a collision with
terrain has occurred.
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Fig. 8 Markov chain schematic.

Each distance step (points 1, 2, and 3 in Fig. 7) corresponds to
one data point interval from the terrain database, equivalent to 3 arc
seconds (or 300 ft). A total of 50 state bins were provided above the
initial terrain altitude, each with a height of 10 to 20 m (32 to 65 ft)
depending on the type of terrain under study. Because terrain altitude
can drop and then rise, an additional 50 state bins were also used
below the initial terrain altitude. Also, a terrain collision state was
created and used to store those cases in which terrain altitude had
risen above the aircraft’s altitude. This collision state was absorbing:
once entered, the process would remain in that state. A schematic
of the Markov chain is shown in Fig. 8.

The probability that the process transitions from a starting altitude
bin at step n, yn , to an altitude bin at step n + 1, yn + 1, can be
found from the process de� ned by Eq. (3). The transition probability
aggregated over a state bin with height h is given by

pyn + 1 ,yn (n) =
yn + 1 + h /2

yn + 1 ¡ h /2

1

2p r 2(1 ¡ e ¡ 2b )

£ exp ¡ y ¡ e ¡ b yn
2

2 r 2(1 ¡ e ¡ 2 b ) dy (10)

where r and b are the autocorrelation function parameters from
Table 2.

Equation (10) was used to construct a complete state transition
matrix for a given terrain category. Next, the aircraft’s � ight path
was superimposed over the Markov chain. Those states above the
aircraft’s altitude resulted in a modi� cation to the transition matrix
such that there would be a direct transition to the absorbing state.
The probabilities corresponding to transitions to states above the
aircraft’s altitude (e.g., the solid transition lines in Fig. 7) were
summed and became the probability corresponding to a transition to
the absorbing state. As the aircraft changes altitude, a new T matrix
needs to be de� ned, taking into account the new impact states.

V. Example Performance Evaluation During Descent
The performance of GPWS was evaluated for a range of descent

rates and terrain types. To simplify the discussion, only the smooth,
moderate, and steep terrain categories are considered here.

As a baseline, it is assumed that when a “pull up” warning is
issued a standard maneuver of a 5-s delay followed by a 2 deg/s pull
up to a 15-deg � ight-path angle is used. This maneuver corresponds
to typical response times and the suggested � ight-path angle rate
when a GPWS alert is issued.24,25 A 5-s response time delay is
also assumed in other alerting systems such as the Traf� c Alert and
Collision Avoidance System.26 A � ight path for this maneuver was
then computed using a point-mass model of an aircraft � ying at a
constant speed of 170 kn. This speed is consistent with a jet transport
� ying an approach segment, though other speeds could be tested.
The probability of colliding with terrain following an alert P(C) was
then computed using the Markov chain already described.

Contours of constant P(C) are shown in Fig. 9 as a function of
altitude and descent rate at the moment that a hypothetical GPWS
warning was generated. Also shown for reference in Fig. 9 are the
actual B-767 GPWS alerting thresholds.

From Fig. 9 it can be seen that the GPWS warning thresholds
provide for a very low (less than 1 £ 10 ¡ 8) probability of collision for

Fig. 9 Comparison of GPWS thresholds and probability of collision
P(C).

smooth terrain when an alert is issued at large descent rates. Lower
descent rates actually incur a higher probability of collision because
alerts are delayed until the aircraft is quite close to the ground. In
the moderate and steep terrain categories GPWS cannot provide as
high a degree of protection, with probabilities exceeding 0.01. If
the alerting thresholds were expanded to compensate, however, an
increased rate of nuisance alarms would likely occur. The decreased
performance of GPWS in steep terrain is a symptom of the fact
that the terrain ahead of the aircraft is unobservable to the alerting
system.

A. Safety/Nuisance Alert Tradeoff
Next, the degree to which nuisance alarms and safety can be traded

off against one another in the placement of the alerting thresholds
is described. The methodology used here is based on that presented
in Ref. 27.

The preceding section provided a method to compute the proba-
bility of a collision once an alert is issued P(C), assuming a given
avoidance maneuver was followed. This is a measure of the level
of safety provided by GPWS. Alternatively, the probability of suc-
cessful alert P(SA) can be de� ned as

P(SA) = 1 ¡ P(C) (11)

Therefore, P(SA) is a measure of the degree of success of GPWS in
preventing a collision.
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A second metric, the probability that a GPWS alert is unnecessary
P(UA), is also required to quantitatively describe the performance
tradeoffs involved in the alerting threshold placement. P(UA) is
generally a dif� cult metric to de� ne because the concept of an un-
necessary alert is somewhat subjective and situation dependent. To
provide a consistent and representative measure here, however, an
alert is considered to be unnecessary if the aircraft would not col-
lide with terrain within 3 n miles along its current descent path.
The use of 3 n miles as a limit is representative of the length scale
over which a typical terrain proximity incident occurs and so serves
as a surrogate for the need to issue a GPWS alert. This distance
also corresponds to the maximum advance warning time typically
used in GPWS systems (approximately 60 s at a speed of 170 kn).28

The following analysis could be repeated with other de� nitions, if
desired. P(UA) is then given by

P(UA) = 1

¡ P(collision within 3 n miles along current descent path) (12)

The probabilities of a collision were then computed for 1) the
case in which an alert is issued [yielding P(SA)] and 2) the case
in which the aircraft continues along its current descent path for
3 n miles [yielding P(UA)]. This computation was performed us-
ing the Markov chain just described, with the two different aircraft
� ight paths as shown inFig. 10. The simulation was repeated at vary-
ing AGL altitudes and descent rates to explore the level of safety
and probability of unnecessary alert for a range of potential GPWS
alerting thresholds.

B. Results
One example evaluation is presented here for an aircraft at 170 kn

with a descent rate of 3000 ft/min. The results are plotted asP(SA) vs
P(UA), resulting in system operating characteristic (SOC) curves.27

SOC curves show the possible operating conditions for GPWS as a
function of the placement of the alerting threshold. A given threshold
setting (i.e., alerting with a given projected time to impact) results
in operating at a speci� c point in the P(SA), P(UA) plane. Varying
the threshold setting traces out an SOC curve.

Two SOC curves are shown in Fig. 11: one for the operation of
GPWS over smooth terrain and one for operation over steep terrain.
For clarity, the horizontal scale has been changed to focus on the
region where P(UA) < 0.10. The smooth terrain SOC curve goes
up the left axis, passes very close to the ideal operating point of
P(UA) = 0, P(SA) = 1, and then continues along the top of the plot to
the point P(UA) = 1, P(SA) = 1. The steep terrain SOC bends away
from the upper-left corner, indicating that GPWS cannot provide a
high safety level [P(SA)] in steep terrain without incurring nuisance
alerts.

For reference, the operating point of the actual B-767 GPWS
alerting threshold is shown in Fig. 11 by a small circle on each
SOC curve. The SOC curve then shows that if the alerting threshold
were made to be more conservative (that is, to alert at a higher
altitude given the descent rate), then the probability of a successful
alert would increase, but at the expense of rapidly increasing the
probability of unnecessary alert over steep terrain. Also, Fig. 11
illustrates that GPWS is able to operate at a higher P(SA) and a
lower P(UA) in smooth terrain than in steep terrain. This is because

Fig. 10 Trajectories used to compute P(SA) and P(UA).

Table 3 Summary of B-767 GPWS performance
at 3000 ft/min descent rate (excessive

descent rate mode)

Terrain category P(UA) P(C)

Smooth 1 £ 10 ¡ 4 < 1 £ 10 ¡ 8

Steep 0.08 0.03

Fig. 11 SOC curves (3000 ft/min descent rate at 170 kn).

of the reduced uncertainty in the smooth terrain case regarding the
terrain altitudes ahead of the aircraft. Similar SOC curves can be
generated for the other terrain categories and for varying speeds and
descent rates.

As summarized in Table 3, the probability that a B-767 GPWS
alert is unnecessary increases from 1 £ 10 ¡ 4 to 0.08 between the
smooth and steep terrain categories. The probability that a collision
occurs when a GPWS alert is issued [1 ¡ P(SA)] increases from
<1 £ 10 ¡ 8 to 0.03 between the same terrain categories. Thus, there
is a decrease in performance both in terms of increased nuisance
alarms and late alerts when over steep terrain. Without additional
and higher-quality information regarding the terrain ahead of the air-
craft, GPWS cannot perform any better than the SOC curve shows.
However, given these constraints on GPWS, it appears from the
SOC curve that the B-767 alerting thresholds are set at a reasonable
location to balance safety against nuisance alarms.

This type of analysis can also be extended to examine the impact
of changes in the avoidance trajectory on the performance of the
alerting system. A shorter response latency or more aggressive pull-
up maneuver could improve the safety of the alerting system. The
assumption in Fig. 11 was that there was a 5-s pilot response delay. It
is interesting, however, to observe the potential bene� t that a faster
response time could have on GPWS operation. Accordingly, the
preceding analysis was repeated for the case in which the response
delay was 2 s instead of 5 s. Also, the aggressiveness of the pull-up
maneuver can be varied and observed using SOC curves. Increasing
the pitch rate or load factor during the pull-up maneuver reduces the
altitude loss during the pull-up and so improves the probability of
escaping from the terrain.

Figure 12 shows an SOC plot for steep terrain under three differ-
ent pull-up conditions: (solid line) the baseline case (repeated from
Fig. 11) with a response delay of 5 s and pitching at 2 deg/s (a load
factor of 1.3 g), (long dashed line) a reduced delay of only 2 s and
pitching at 2 deg/s (1.3 g), and (short dashed line) a response delay
of 5 s but more aggressive pull-up at 3.25 deg/s (a load factor of
1.5 g). The effect of a higher load factor during the pull-up is sim-
ilar to reducing the response latency: a higher level of P(SA) and
lower value of P(UA) is possible in the more aggressive cases. At
the B-767 GPWS threshold setting [where P(UA) = 0.08], decreas-
ing response time to 2 s would increase P(SA) from 0.97 to 0.994.
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Fig. 12 Effect of pull-up trajectory on SOC curves (steep terrain,
3000 ft/min descent rate at 170 kn).

Alternatively, increasing the pull-up load factor to 1.5 g would in-
crease P(SA) from 0.97 to 0.990. In this manner the analysis can be
used to quantitatively compare changes in not only alerting thresh-
olds, but also in pilot response time or pull-up load factor.

VI. Concluding Remarks
This paper has four objectives: � rst, to present a statistical terrain

model for analyses of terrain referenced navigation, terrain follow-
ing, or terrain avoidance system performance; second, to outline a
general process by which alerting system thresholds can be evalu-
ated; third, to provide speci� c performance results for a case study of
the B-767 GPWS; and fourth, to show how modi� cations in GPWS
alerting threshold settings would translate into changes in safety or
false alarm probability.

Alerting systems are used so that safety, on average, can be im-
proved. To be accepted, new alerting systems must demonstrate this
safety enhancement but also must not issue an excessive rate of
nuisance alarms. Observation of system performance in speci� c,
known problem areas can be bene� cial in this regard to highlight
any necessary modi� cations in design. It is also likely that a broader
statistical estimate of performance over a range of conditions would
be useful in determining whether or how to modify the design of
an alerting system. This paper presents such a statistical analysis
of GPWS. In addition to providing a point solution for false alarm
probability and safety in a given case study, the method presented
here also draws performance tradeoff curves that aid in determining
whether simple changes in threshold settings would be bene� cial,
or if higher-quality sensor information is needed to enable improved
performance.

A Gauss–Markov process was used to create an analytical model
of terrain to estimate the probability of terrain impact following a
GPWS alert. The Markov model allows for a compact representa-
tion, requiring only two parameters to de� ne a terrain pro� le, and
is well-suited for probabilistic analyses using a Markov chain. The
model parameters were set such that the autocorrelation of the model
process matched the autocorrelation of an ensemble of actual terrain
pro� les from a database. As an analytical tool, the Gauss–Markov
process presented here could also be used in other applications such
as evaluation of terrain-following or TRN algorithms.

The stochastic terrain pro� le was compared to the � ight trajec-
tory of an aircraft performing a 1.3-g load factor pull-up maneuver
following a 5-s delay from a GPWS alert. Using the terrain model in
an example high-descent rate case, GPWS is shown to provide a sig-
ni� cantly higher safety level when an alert is issued over relatively
smooth terrain compared against steep terrain. Probability of terrain
collision following an alert was less than 10 ¡ 8 for smooth terrain
and approximately 0.03 over steep terrain. The probability that an

alert would be a false alarm also increases over steep terrain (0.08)
compared to smooth terrain (10 ¡ 4). From the performance tradeoff
curves that were also generated, it can be seen that safety level in
steep terrain can only be increased while also greatly increasing false
alarm probability. Performance of GPWS with a shorter response
time delay or a more aggressive pull-up maneuver is also presented.
Reducing the response time to 2 s or increasing the pull-up load
factor to 1.5 g reduces the probability of collision following an alert
from 0.03 to approximately 0.01 over steep terrain. These analyses
quantitatively show the limitations of GPWS that occur because in-
formation about terrain ahead of the aircraft is unavailable to the
system. The higher uncertainty in ground altitude in a steep terrain
region translates into a poorer design tradeoff in which either safety
or false alarm rate must be sacri� ced.

Certainly, performance measures must also be collected through
actual � eld trials. Indeed, GPWS has been modi� ed in the past
in response to observed performance on aircraft. Still, during ini-
tial development statistical analyses as outlined here could have
signi� cant bene� t in selecting an appropriate design condition.
Performance tradeoff curves can also have value in determining how
a design might be modi� ed to improve its acceptability even after it is
� elded.

References
1National Transportation Safety Board, “Aircraft Accident Report—Trans

World Airlines, Inc. Boeing 727-231, N54328, Berryville, Virginia, Decem-
ber 1, 1974,” Rept. NTSB-AAR-75-16, Washington, DC, 26, Nov. 1975.

2Federal Aviation Administration, U.S. Federal Aviation Regulations
(FAR), §121.360, Washington, DC, 1999.

3Bateman, D., “How to Terrain-Proof Corporate and Regional Aircraft,”
Flight Safety Digest, Vol. 12, No. 8, 1993, pp. 38–67.

4DeCelles, J. L., “The Delayed GPWS Response Syndrome,” Air Line
Pilot, Vol. 61, No. 1, 1992, pp. 26–29, 54.

5Baird, C. A., Collins, N., and Drew, M., “Terrain-Aided Navigation and
Target Acquisition on the AFTI/F-16,” Advances in Techniques and Tech-
nologies for Air Vehicle Navigation and Guidance, CP-455, AGARD, 1989,
pp. 62-1–62-12.

6Grey, D. M., and Dale, R. S., “Recent Development s in TERPROM,”
Advances in Techniques and Technologies for Air Vehicle Navigation and
Guidance, CP-455, AGARD, 1989, pp. 12-1–12-15.

7Bennett, P. J., “The Use of Digital Map Data to Provide Enhanced Nav-
igation and Displays for Poor Weather Penetration and Recovery,” Journal
of Navigation, Vol. 46, No. 2, 1993, pp. 208–222.

8Hewitt, C., and Broatch, S.A., “A Tactical Navigation and Routing System
for Low-Level Flight,” Low-Level and Map-of-the-Earth Night Operations,
CP-563, AGARD, 1995, pp. 11-1–11-10.

9Zelenka, R. E., Yee, Z., and Zirkler, A., “Flight Test of Radar Altime-
ter Enhancement for Terrain-Referenced Guidance,” Journal of Guidance,
Control, and Dynamics, Vol. 18, No. 4, 1995, pp. 702–708.
10Enns, R., and Morrell, D., “Terrain-Aided Navigation Using the Viterbi

Algorithm,” Journal of Guidance, Control, and Dynamics, Vol. 18, No. 6,
1995, pp. 1444–1449.
11Kuchar, J. K., and Hansman, R. J., “Part-Task Simulator Evaluations

of Advanced Terrain Displays,” Society of Automotive Engineers, SAE-
9932570, Sept. 1993.
12AlliedSignal Aerospace, “Enhanced Ground Proximity Warning System

Product Description,” AlliedSignal, Redmond, WA, 13 May 1996.
13Radio Technical Committee on Aeronautics (RTCA), “Minimum Perfor-

mance Standards—Airborne Ground Proximity Warning Equipment,” Doc-
ument RTCA/DO-161A, Washington, DC, 27 May 1976.
14Boeing Commercial Airplane Co., “Boeing 767 Operations Manual,”

Boeing Document No. D632T001-200 , Seattle, WA, 25 July 1983.
15Pritchett, A. R., “Reviewing the Role of Cockpit Alerting Systems,”

Human Factors in Aerospace Safety, Vol. 1, No. 1, 2001, pp. 5–38.
16Tonkin, S. P., and Wood, M. A., “Stochastic Model of Terrain Effects upon

the Performance of Land-Based Radars,” Target and Clutter Scattering and
Their Effects on Military Radar Performance, CP-501, AGARD, 1991, pp.
32-1–32-9.
17Carlson, G. E., and Bair, G. L., “Simple Generation of One-Parameter

Pseudoterrain Surfaces,” IEEE Transactions on Aerospace and Electronic
Systems, Vol. 5, No. 5, 1979, pp. 735–738.
18Baird, C., “Design Techniques for Improved Map-Aided Navigation,”

Proceedings of the IEEE National Aerospace and Electronic Conference,
Inst. of Electrical and Electronics Engineers, New York, 1985, pp. 231–238.
19Gelb, A. (ed.), Applied Optimal Estimation, The Analytic Sciences Corp.,

Massachusetts Inst. of Technology Press, Cambridge, MA, 1974, pp. 86–90.
20Brown, R. G., and Hwang, P. Y. C., Introduction to Random Signals and

Applied Kalman Filtering, Wiley, New York, 1992, Chap. 2.

http://ernesto.catchword.com/nw=1/rpsv/0373-4633^281993^2946:2L.208[aid=1175124]
http://ernesto.catchword.com/nw=1/rpsv/0731-5090^281995^2918:6L.1444[aid=1175126]
http://ernesto.catchword.com/nw=1/rpsv/0373-4633^281993^2946:2L.208[aid=1175124]
http://ernesto.catchword.com/nw=1/rpsv/0731-5090^281995^2918:6L.1444[aid=1175126]


KUCHAR 435

21U. S. Geological Survey, “Data User Guide 5: Digital Elevation Models,”
Branch of Technical Standards and Product Development , Reston, VA, 1993.
22Weinstock, H., “The Description of Stationary Random Rate Processes,”

Massachusetts Inst. of Technology Instrumentation Lab. Rept. E-1377,
Cambridge, MA, 1 July 1963.
23Kemeny, J. G., and Snell, J. L., Finite Markov Chains, D. Van Nostrand

Co., Princeton, NJ, 1967, Chap. 3.
24Poole, R. A., “Whoop Whoop Pull Up,” Flying Safety, Vol. 48, No. 6,

1992, pp. 16, 17.
25Lewis, C., “Whoop, Whoop, Pull Up!,” Flight Deck, American Airlines

Flight Dept. Flight Academy, Dallas, TX, Nov./Dec. 1994, pp. 7–13.
26Radio Technical Committee on Aeronautics (RTCA), “Minimum Per-

formance Speci� cations for TCAS Airborne Equipment,” Document
RTCA/DO-185, Washington, DC, Sept. 1983.
27Kuchar, J. K., “Methodology for Alerting-System Performance Evalua-

tion,” Journal of Guidance, Control, and Dynamics, Vol. 19, No. 2, 1996,
pp. 438–444.
28Bateman, D., “Development of Ground Proximity Warning Systems

(GPWS),” Royal Aeronautical Society Controlled Flight into Terrain One
Day Conf., Royal Aeronautical Society, Nov. 1994, pp. 3.1–3.9.


