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We propose the use of Kernel Regularized Least Squares (KRLS) for social science modeling and inference
problems. KRLS borrows from machine learning methods designed to solve regression and classification
problems without relying on linearity or additivity assumptions. The method constructs a flexible hypothesis
space that uses kernels as radial basis functions and finds the best-fitting surface in this space by
minimizing a complexity-penalized least squares problem. We argue that the method is well-suited for
social science inquiry because it avoids strong parametric assumptions, yet allows interpretation in ways
analogous to generalized linear models while also permitting more complex interpretation to examine
nonlinearities, interactions, and heterogeneous effects. We also extend the method in several directions
to make it more effective for social inquiry, by (1) deriving estimators for the pointwise marginal effects and
their variances, (2) establishing unbiasedness, consistency, and asymptotic normality of the KRLS estimator
under fairly general conditions, (3) proposing a simple automated rule for choosing the kernel bandwidth,
and (4) providing companion software. We illustrate the use of the method through simulations and
empirical examples.

1 Introduction

Generalized linear models (GLMs) remain the workhorse method for regression and classification
problems in the social sciences. Applied researchers are attracted to GLMs because they are fairly
easy to understand, implement, and interpret. However, GLMs also impose strict functional form
assumptions. These assumptions are often problematic in social science data, which are frequently
ridden with nonlinearities, nonadditivity, heterogeneous marginal effects, complex interactions,
bad leverage points, or other complications. It is well-known that misspecified models can lead
to bias, inefficiency, incomplete conditioning on control variables, incorrect inferences, and fragile
model-dependent results (e.g., King and Zeng 2006). One traditional and well-studied approach
to address some of these problems is to introduce high-order terms and interactions to GLMs
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(e.g., Friedrich 1982; Jackson 1991; Brambor, Clark, and Golder 2006). However, higher-order
terms only allow for interactions of a prescribed type, and even for experienced researchers, it is
typically very difficult to find the correct functional form among the many possible interaction
specifications, which explode in number once the model involves more than a few variables.
Moreover, as we show below, even when these efforts may appear to work based on model diag-
nostics, under common conditions, they can instead make the problem worse, generating false
inferences about the effects of included variables.

Presumably, many researchers are aware of these problems and routinely resort to GLMs not
because they staunchly believe in the implied functional form assumptions, but because they lack
convenient alternatives that relax these modeling assumptions while maintaining a high degree of
interpretability. Although some more flexible methods, such as neural networks (NNs) (e.g., Beck,
King, and Zeng 2000) and Generalized Additive Models (GAMs, e.g., Wood 2003), have been
proposed, they have not been widely adopted by social scientists, perhaps because these models
often do not generate the desired quantities of interest or allow inference on them (e.g., confidence
intervals or tests of null hypotheses) without nontrivial modifications and often impracticable
computational demands.

In this article, we describe Kernel Regularized Least Squares (KRLS). This approach draws
from Regularized Least Squares (RLS), a well-established method in the machine learning litera-
ture (see, e.g., Rifkin, Yeo, and Poggio 2003)." We add the “K” to (1) emphasize that it employs
kernels (whereas the term RLS can also apply to nonkernelized models), and (2) designate the
specific set of choices we have made in this version of RLS, including procedures we developed to
remove all parameter selection from the investigator’s hands and, most importantly, methodo-
logical innovations we have added relating to interpretability and inference.

The KRLS approach offers a versatile and convenient modeling tool that strikes a compromise
between the highly constrained GLMs that many investigators rely on and more flexible but often
less interpretable machine learning approaches. KRLS is an easy-to-use approach that helps
researchers to protect their inferences against misspecification bias and does not require them to
give up many of the interpretative and statistical properties they value. This method belongs to a
class of models for which marginal effects are well-behaved and easily obtainable due to the exist-
ence of a continuously differentiable solution surface, estimated in closed form. It also readily
admits to statistical inference using closed form expressions, and has desirable statistical properties
under relatively weak assumptions. The resulting model is directly interpretable in ways similar to
linear regression while also making much richer interpretations possible. The estimator yields
pointwise estimates of partial derivatives that characterize the marginal effects of each independent
variable at each data point in the covariate space. The researcher can examine the distribution of
these pointwise estimates to learn about the heterogeneity in marginal effects or average them to
obtain an average partial derivative similar to a 3 coefficient from linear regression.

Because it marries flexibility with interpretability, the KRLS approach is suitable for a wide
range of regression and classification problems where the correct functional form is unknown. This
includes exploratory analysis to learn about the data-generating process, model-based causal
inference, or prediction problems that require an accurate approximation of a conditional expect-
ation function to impute missing counterfactuals. Similarly, it can be employed for propensity score
estimation or other regression and classification problems where it is critical to use all the available
information from covariates to estimate a quantity of interest. Instead of engaging in a tedious
specification search, researchers simply pass the X matrix of predictors to the KRLS estimator (e.g.,
krls (y=y,X=X) in our R package), which then learns the target function from the data. For
those who work with matching approaches, the KRLS estimator has the benefit of similarly weak
functional form assumptions while allowing continuous valued treatments, maintaining good
properties in high-dimensional spaces where matching and other local methods suffer from the
curse of dimensionality, and producing principled variance estimates in closed form. Finally,

'Similar methods appear under various names, including Regularization Networks (e.g., Evgeniou, Pontil, and Poggio
2000) and Kernel Ridge Regression (e.g., Saunders, Gammerman, and Vovk 1998).
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although necessarily somewhat less efficient than Ordinary Least Squares (OLS), the KRLS esti-
mator also has advantages even when the true data-generating process is linear, as it protects
against model dependency that results from bad leverage points or extrapolation and is designed
to bound over-fitting.

The main contributions of this article are three-fold. First, we explain and justify the underlying
methodology in an accessible way and introduce interpretations that illustrate why KRLS is a good
fit for social science data. Second, we develop various methodological innovations. We (1) derive
closed-form estimators for pointwise and average marginal effects, (2) derive closed-form variance
estimators for these quantities to enable hypothesis tests and the construction of confidence
intervals, (3) establish the unbiasedness, consistency, and asymptotic normality of the estimator
for fitted values under conditions more general than those required for GLMs, and (4) derive a
simple rule for choosing the bandwidth of the kernel at no computational cost, thereby taking all
parameter-setting decisions out of the investigator’s hands to improve falsifiability. Third, we
provide companion software that allows researchers to implement the approach in R, Stata,
and Matlab.

2 Explaining KRLS

RLS approaches with kernels, of which KRLS is a special case, can be motivated in a variety of
ways. We begin with two explanations, the “similarity-based” view and the “superposition of
Gaussians” view, which provide useful insight on how the method works and why it is a good
fit for many social science problems. Further below we also provide a more rigorous, but perhaps
less intuitive, justiﬁcation.2

2.1 Similarity-Based View

Assume that we draw i.i.d. data of the form (y;, x;), where i = 1, ..., N indexes units of observation,
y; € R is the outcome of interest, and x; € R” is our D-dimensional vector of covariate values for
unit 7 (often called exemplars). Next, we need a so-called kernel, which for our purposes is defined
as a symmetric and positive semi-definite function k(-, ) that takes two arguments and produces a
real-valued output.” It is useful to think of the kernel function as providing a measure of similarity
between two input patterns. Although many kernels are available, the kernel used in KRLS and
throughout this article is the Gaussian kernel given by

2
[xj—x;ll~

k(xj, x;) = e (M

where ¢* is the exponential function and ||x; — x;|| is the Euclidean distance between the covariate
vectors x; and x;. This function is the same function as the normal distribution, but with o? in place
of 202, and omitting the normalizing factor 1/+/2m02. The most important feature of this kernel
is that it reaches its maximum of one only when x; = x; and grows closer to zero as x; and Xx;
become more distant. We will thus think of k(x;, x;) as a measure of the similarity of x; to x;.

Under the “similarity-based view,” we assert that the target function y =f(x) can be
approximated by some function in the space of functions represented by*

N
1) =3 erk(x, x), @)
i=1

2Another justification is based on the analysis of reproducing kernels, and the corresponding spaces of functions they
generate along with norms over those spaces. For details on this approach, we direct readers to recent reviews included
in Evgeniou, Pontil, and Poggio (2000) and Schoélkopf and Smola (2002).

3By positive semi-definite, we mean that ), Zi ajik(x;, x)) =0, Ve, a5 e R, x € RP D e Z*. Note that the use of kernels
for regression in our context should not be confused with nonparametric methods commonly called “kernel regression”
that involve using a kernel to construct a weighted local estimate.

“Below we provide a formal justification for this space based on ridge regressions in high-dimensional feature spaces.
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where k(x, x;) measures the similarity between our point of interest (x) and one of N input patterns
X;, and ¢; is a weight for each input pattern. The key intuition behind this approach is that it does
not model y; as a linear function of x;. Rather, it leverages information about the similarity between
observations. To see this, consider some test point x* at which we would like to evaluate the
function value given fixed input patterns x; and weights ¢;. For such a test point, the predicted
value is given by

S(X) = ark(x*, x1) + c2k(X", x2) + ... + enk(X", xy) 3)
= ¢ (similarity of x* to x1) 4+ ca(sim. of X" to x2) + ... + cy(sim. of x* to xy). 4)

That is, the outcome is linear in the similarities of the target point to each observation, and the
closer x* comes to some X;, the greater the “influence” of x; on the predicted f(x*). This approach to
understanding how equation (2) fits complex functions is what we refer to as the “similarity view.”
It highlights a fundamental difference between KRLS and the GLM approach. With GLMs, we
assume that the outcome is a weighted sum of the independent variables. In contrast, KRLS is
based on the premise that information is encoded in the similarity between observations, with more
similar observations expected to have more similar outcomes. We argue that this latter approach is
more natural and powerful in most social science circumstances: in most reasonable cases, we
expect that the nearness of a given observation, x;, to other observations reveals information
about the expected value of y;, which suggests a large space of smooth functions in which obser-
vations close to each other in X are close to each other in y.

2.1.1 Superposition of Gaussians view

Another useful perspective is the “superposition of Gaussians” view. Recalling that k(-, x;) traces
out a Gaussian curve centered over x;, we slightly rewrite our function approximation as

f() = ak(, x1) + ek(, x2) + ... + enk(, xn). 5)

The resulting function can be thought of as the superposition of Gaussian curves, centered over
the exemplars (x;) and scaled by their weights (¢;). Figure 1 illustrates six random samples of
functions in this space. We draw eight data points x; ~ Uniform(0, 1) and weights ¢; ~ N(0, 1)
and compute the target function by centering a Gaussian over each x;, scaling each by its ¢;, and
then summing them (the dots represent the data points, the dotted lines refer to the scaled Gaussian
kernels, and the solid lines represent the target function created from the superposition). This figure
shows that the function space is much more flexible than the function spaces available to GLMs; it
enables us to approximate highly nonlinear and nonadditive functions that may characterize the
data-generating process in social science data. The same logic generalizes seamlessly to multiple
dimensions.

In this view, for a given data set, KRLS would fit the target function by placing Gaussians over
each of the observed exemplars x; and scaling them such that the summated surface approximates
the target function. The process of fitting the function requires solving for the N values of the
weights ¢;. We therefore refer to the ¢; weights as choice coefficients, similar to the role that g
coefficients play in linear regression. Notice that a great many choices of ¢; can produce highly
similar fits—a problem resolved in the next section through regularization. (In the supplementary
appendix, we present a toy example to build intuition for the mechanics of fitting the function; see
Fig. Al.)

Before describing how KRLS chooses the choice coefficients, we introduce a more convenient
matrix notation. Let K be the N x N symmetric Kernel matrix whose jth, ith entry is k(x;, x;); it
measures the pairwise similarities between each of the N input patterns x;. Let ¢ = [c1,. .., cy]? be
the N x 1 vector of choice coefficients and y = [y1, ..., yn]” be the N x 1 vector of outcome values.
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Fig. 1 Random samples of functions of the form f(x) = Zfil c¢ik(x, x;). The target function is created
by centering a Gaussian over each x;, scaling each by its ¢;, and then summing them. We use eight obser-
vations with ¢; ~ N(0, 1), x ~ Unif(0, 1), and a fixed value for the bandwidth of the kernel ¢>. The dots
represent the sampled data points, the dotted lines refer to the scaled Gaussian kernels that are placed over
each sample point, and the solid lines represent the target functions created from the superpositions. Notice
that the center of the Gaussian curves depends on the point x;, its upward or downward direction depends
on the sign of the weight ¢;, and its amplitude depends on the magnitude of the weight ¢; (as well as the
fixed o?).
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Equation (2) can be rewritten as

k(xi,x1)  k(xi,x2) ... k(xi,xn)
p=Ke= k(xz.,xl) B & ©)
k(xn, 1) k(xn, ) | BN

In this form, we plainly see KRLS as fitting a simple linear model (LM): we fit y for some x; as a
linear combination of basis functions or regressors, each of which is a measure of x;’s similarity to
another observation in the data set. Notice that the matrix K will be symmetric and positive semi-
definite and, thus, invertible.’ Therefore, there is a “perfect” solution to the linear system y = Kc, or
equivalently, there is a target surface that is created from the superposition of scaled Gaussians that
provides a perfect fit to each data point.

2.2 Regularization and the KRLS Solution

Although extremely flexible, fitting functions by the method described above produces a perfect
fit of the data and invariably leads to over-fitting. This issue speaks to the ill-posedness of the
problem of simply fitting the observed data: there are many solutions that are similarly good
fits. We need to make two additional assumptions that specify which type of solutions we prefer.
Our first assumption is that we prefer functions that minimize squared loss, which ensures that
the resulting function has a clear interpretation as a conditional expectation function (of y condi-
tional on x).

The second assumption is that we prefer smoother, less complicated functions. Rather than simply
choosing ¢ as ¢ = K~'y, we instead solve a different problem that explicitly takes into account our
preference for smoothness and concerns for over-fitting. This is based on a common but perhaps
underutilized assumption: In social science contexts, we often believe that the conditional expectation
function characterizing the data-generating process is relatively smooth, and that less “wiggly” func-
tions are more likely to be due to real underlying relationships rather than noise. Less “wiggly”
functions also provide more stable predictions at values between the observed data points. Put
another way, for most social science inquiry, we think that “low-frequency” relationships (in
which y cycles up and down fewer times across the range of x) are theoretically more plausible
and useful than “high-frequency” relationships. (Figure A2 in the supplementary appendix
provides an example for a low- and high-frequency explanation of the relationship between x and y.)°®

To give preference to smoother, less complicated functions, we change the optimization problem
from one that considers only model fit to one that also considers complexity. Tikhonov regular-
ization (Tychonoff 1963) proposes that we search over some space of possible functions and choose
the best function according to the rule

argmin " (V(/(x1), ) + AR(/), (7)

feH i

where V(y;, f(x;)) is a loss function that computes how “wrong” the function is at each observation,
R is a “regularizer” measuring the “complexity” of function f, and A € R™ is a scalar parameter that
governs the trade-off between model fit and complexity. Tikhonov regularization forces us to
choose a function that minimizes a weighted combination of empirical error and complexity.
Larger values of A result in a larger penalty for the complexity of the function and a higher

This holds as long as no input pattern is repeated exactly. We relax this in the following section.

®This smoothness prior may prove wrong if there are truly sharp thresholds or discontinuities in the phenomenon of
interest. Rarely, however, is a threshold so sharp that it cannot be fit well by a smooth curve. Moreover, most political
science data has a degree of measurement error. Given measurement error (on x), then, even if the relationship between
the “true” x and y was a step function, the observed relationship with noise will be the convolution of a step function
with the distribution of the noise, producing a smoother curve (e.g., a sigmoidal curve in the case of normally
distributed noise).
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priority for model fit; lower values of A will have the opposite effect. Our hypothesis space, H, is the
flexible space of functions in the span of kernels built on N input patterns or, more formally, the
Reproducing Kernel Hilbert Spaces (RKHSs) of functions associated with a particular choice of
kernel.

For our particular purposes, we choose the regularizer to be the square of the L, norm,
i g = ||f||§(, in the RKHS associated with our kernel. It can be shown that, for the Gaussian
kernel, this choice of norm imposes an increasingly high penalty on higher-frequency components
of f. We also always use squared-loss for V. The resulting Tikhonov regularization problem
is given by

argmin Y (f(x;) — yi)* + Al f1[x- ®)
feH i
Tikhonov regularization may seem a natural objective function given our preference for low-
complexity functions. As we show in the supplementary appendix, it also results more formally
from encoding our prior beliefs that desirable functions tend to be less complicated and then
solving for the most likely model given this preference and the observed data.

To solve this problem, we first substitute f(x) = K¢ to approximate f(x) in our hypothesis
space H.” In addition, we use as the regularizer the norm ||f||% =", > cicik(xiy X;) = cTKe.
The justification for this form is given below; however, a suitable intuition is that it is akin to
the sum of the squared ¢;s, which itself is a possible measure of complexity, but it is weighted
to reflect overlap that occurs for points nearer to each other. The resulting problem is

¢* = argmin (y — Ke)'(y — Ke) + AT Ke. 9)

ceR?

Accordingly, y* = Kc¢* provides the best-fitting approximation to the conditional expectation of the
outcome in the available space of functions given regularization. Notice that this minimization is
equivalent to a ridge regression in a new set of features, one that measures the similarity of an
exemplar to each of the other exemplars. As we show in the supplementary appendix, we explicitly
solve for the solution by differentiating the objective function with respect to the choice coefficients
¢ and solving the resulting first-order conditions, finding the solution ¢* = (K 4+ Al)~'y.

We therefore have a closed-form solution for the estimator of the choice coefficients that
provides the solution to the Tikhonov regularization problem within our flexible space of functions.
This estimator is numerically rather benign. Given a fixed value for A, we compute the kernel matrix
and add A to its diagonal. The resulting matrix is symmetric and positive definite, so inverting it is
straightforward. Also, note that the addition of A along the diagonal ensures that the matrix is well-
conditioned (for large enough A), which is another way of conceptualizing the stability gains
achieved by regularization.

2.3 Derivation from an Infinite-Dimensional LM

The above interpretations informally motivate the choices made in KRLS through our expectation
that “similarity matters” more than linearity and that, within a broad space of smooth functions,
less complex functions are preferable. Here we provide a formal justification for the KRLS
approach that offers perhaps less intuition, but has the benefit of being generalizable to other
choices of kernels and motivates both the choice of f(x;) = Zil cjk(x;, x;) for the function space
and ¢TKc for the regularizer. For any positive semi-definite kernel function k(-,-), there exists a
mapping ¢(x) that transforms x; to a higher-dimensional vector ¢(x;) such that k(x;, x)) =
(p(x;), ¢(x;)). In the case of the Gaussian kernel, the mapping ¢(x;) is infinite-dimensional.
Suppose we wish to fit a regularized LM (i.e., a ridge regression) in the expanded features; that
is, f(x;) = ¢(x;)"6, where ¢(x) has dimension D’ (which is oo in the Gaussian case), and 6 is a D’
vector of coefficients. Then, we solve

"As we explain below, we do not need an intercept since we work with demeaned data for fitting the function.
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argmin Y " (y; — ¢(x)"0)” + A16]I7, (10)

oeR”’ i

where 6 € R” gives the coefficients for each dimension of the new feature space, and ||6]]*> = 676 is
simply the L, norm in that space. The first-order condition is —2 va i — d(x) T O)p(x;) + 210 = 0.
Solving partially for 6 gives § = A~ Zfil (vi — ¢(x))TO)p(x7), or simply

N
0= Z cip(xi), (11)
i=1
where ¢; = A1 (y; — ¢(x;)70). Equation (11) asserts that the solution for 6 is in the span of the
features, ¢(x;). Moreover, it makes clear that the solution to our potentially infinite-dimensional
problem can be found in just N parameters, and using only the features at the observations.®
Substituting 6 back into f(x) = ¢(x)76, we get

N

N
S0 =3 () px) = Y eik(x, x,), (12)

J=1

which is precisely the form of the function space we previously asserted. Note that the use of
kernels to compute inner products between each ¢(x;) and ¢(x;) in equation (12) prevents us
from needing to ever explicitly perform the expansion implied by ¢(x;); this is often referred
to as the kernel “trick” or kernel substitution. Finally, the norm in equation (10), [|6]%, is
(6,0) = (vaz | Cid(xi), Zfi 1 ciq&(x,-)) = ¢TKe. Thus, both the choice of our function space and our
norm can be derived from a ridge regression in a high- or infinite-dimensional feature space ¢(x)
associated with the kernel.

3 KRLS in Practice: Parameters and Quantities of Interest

In this section, we address some remaining features of the KRLS approach and discuss the
quantities of interest that can be computed from the KRLS model.

3.1 Why Gaussian Kernels?

Although users can build a kernel of their choosing to be used with KRLS, the logic is most
applicable to kernels that radially measure the distance between points. We seek functions
k(x;, x;) that approach 1 as x; and x; become identical and approach 0 as they move far away
from each other, with some smooth transition in between. Among kernels with this property,
Gaussian kernels provide a suitable choice. One intuition for this is that we can imagine some
data-generating process that produces xs with normally distributed errors. Some xs may be essen-
tially “the same” point but separated in observation by random fluctuations. Then, the value of
k(x;, x;) is proportional to the likelihood of the two observations x; and x; being the “same” in this
sense. Moreover, we can take derivatives of the Gaussian kernel and, thus, of the response surface
itself, which is central to interpretation.’

3.2 Data Pre-Processing

We standardize all variables prior to analysis by subtracting off the sample means and dividing by
the sample standard deviations. Subtracting the mean of y is equivalent to including an
(unpenalized) intercept and simplifies the mathematics and exposition. Subtracting the means of

8This powerful result is more directly shown by the Representer theorem (Kimeldorf and Wahba 1970).

°In addition, by choosing the Gaussian kernel, KRLS is made similar to Gaussian process regression, in which each
point (y;) is assumed to be a normally distributed random variable, and part of a joint normal distribution together with
all other y;, with the covariance between any two observations y;, y; (taken over the space of possible functions) being
equal to k(x;, x;).
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the xs has no effect, since the kernel is translation-invariant. The rescaling operation is commonly
invoked in penalized regressions for norms L, with ¢ > 0—including ridge, bridge, Least Absolute
Shrinkage and Selection Operator (LASSO), and -elastic-net methods—because, in these
approaches, the penalty depends on the magnitudes of the coefficients and thus on the scale of
the data. Rescaling by the standard deviation ensures that unit-of-measure decisions have no effect
on the estimates. As a second benefit, rescaling enables us to use a simple and fast approach for
choosing o? (see below). Note that this rescaling does not interfere with interpretation or general-
izability; all estimates are returned to the original scale and location."”

3.3 Choosing the Regularization Parameter )\

As formulated, there is no single “correct” choice of A, a property shared with other penalized
regression approaches such as ridge, bridge, LASSO, etc. Nevertheless, cross-validation provides a
now standard approach (see, e.g., Hastie, Tibshirani, and Friedman 2009) for choosing reasonable
values that perform well in practice. We follow the previous work on RLS-related approaches
and choose A by minimizing the sum of the squared leave-one-out errors (LOOEs) by default
(e.g., Scholkopf and Smola 2002; Rifkin, Yeo, and Poggio 2003; Rifkin and Lippert 2007). For
leave-one-out validation, the model is trained on N — 1 observations and tested on the left-out
observation. For a given test value of A, this can be done N times, producing a prediction for
each observation that does not depend on that observation itself. The N errors from these predic-
tions can then be summed and squared to measure the goodness of out-of-sample fit for that choice
of A. Fortunately, with KRLS, the vector of N LOOEs can be efficiently estimated in O(N') time
for any valid choice of A using the formula LOOE = where G = K+ AI (see Rifkin and

4 0 Tagc Ty
Lippert 2007).

3.4 Choosing the Kernel Bandwidth o

To avoid confusion, we first emphasize that the role of o? in KRLS differs from its role in methods
such as traditional kernel regression and kernel density estimation. In those approaches, the kernel
bandwidth is typically the only smoothing parameter; no additional fitting procedure is conducted
to minimize an objective function, and no separate complexity penalty is available. In KRLS, by
contrast, the kernel is used to form K, beyond which fitting is conducted through the choice of
coefficients ¢, under a penalty for complexity controlled by A. Here, o? enters principally as a
measurement decision incorporated into the kernel definition, determining how distant points
need to be in the (standardized) covariate space before they are considered dissimilar. The resulting
fit is thus expected to be less dependent on the exact choice of o> than is true of those kernel
methods in which the bandwidth is the only parameter. Moreover, since there is a trade-off between
o2 and A (increasing either can increase smoothness), a range of o values is typically acceptable and
leads to similar fits after optimizing over A.

Accordingly, in KRLS, our goal is to chose o to ensure that the columns of K carry useful
information extracted from X, resulting in some units being considered similar, some being
dissimilar, and some in between. We propose that o> = dim(X) = D is a suitable default choice
that adds no computational cost. The theoretical motivation for this proposition is that, in the
standardized data, the average (Euclidian) distance between two observations that enters into the
kernel calculation, E||x; — x;||?], is equal to 2D (see supplementary appendix). Choosing o2 to be

"New test points for which estimates are required can be applied, using the means and standard deviations from the

original training. Our companion software handles this automatically.
A variant on this approach, generalized cross-validation (GCV), is equal to a weighted version of LOOE (Golub, Heath,
and Wahba 1979), computed as W GCYV can provide computational savings in some contexts (since the trace of G~!
can be computed without computing G~ itself) but less so here, as we must compute G~' anyway to solve for ¢. In
practice, LOOE and GCV provide nearly identical measures of out-of-sample fit, and commonly, very similar results.
Our companion software also allows users to set their own value of A, which can be used to implement other
approaches if needed.
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proportional to D therefore ensures a reasonable scaling of the average distance. Empirically, we
have found that setting o> = 1D in particular has reliably resulted in good empirical performance
(see simulations below) and typically provides a suitable distribution of values in K such that entries
range frogl close to 1 (highly similar) to close to 0 (highly dissimilar), with a distribution falling in
between.

4 Inference and Interpretation with KRLS

In this section, we provide the properties of the KRLS estimator. In particular, we establish its
unbiasedness, consistency, and asymptotic normality and derive a closed-form estimator for its
variance.'> We also develop new interpretational tools, including estimators for the pointwise
partial derivatives and their variances, and discuss how the KRLS estimator protects against
extrapolation when modeling extreme counterfactuals.

4.1 Unbiasedness, Variance, Consistency, and Asymptotic Normality
4.1.1 Unbiasedness

We first show that KRLS unbiasedly estimates the best approximation of the true conditional
expectation function that falls in the available space of functions given our preference for less
complex functions.

Assumption 1 (Functional Form).
The target function we seek to estimate falls in the space of functions representable as y* = Kc*, and
we observe a noisy version of this, y.s = y + €.

These two conditions together constitute the “correct specification” requirement for KRLS.
Notice that these requirements are analogous to the familiar correct specification assumption for
the linear regression model, which states that the data-generating process is given by y = X + €.
However, as we saw above, the functional form assumption in KRLS is much more flexible
compared to linear regression or GLMs more generally, and this guards against misspecification
bias.

Assumption 2 (Zero Conditional Mean).
Ele|X] =0, which implies that E[e|K;] =0 (where K; designates the ith column of K) since K is a
deterministic function of X.

This assumption is mathematically equivalent to the usual zero conditional mean assumption
used to establish unbiasedness for linear regression or GLMs more generally. However, note that
substantively, this assumption is typically weaker in KRLS than in GLMs, which is the source of
KRLS’ improved robustness to misspecification bias. In a standard OLS setup, with
y = XB + €linear, unbiasedness requires that E[€jinear|X] = 0. Importantly, this €jjne,r includes both
omitted variables and unmodeled effects of X on y that are not linear functions of X (e.g., an
omitted squared term or interaction). Thus, in addition to any omitted-variable bias due to

2Note that our choice for o is consistent with advice from other work. For example, Schélkopf and Smola (2002) suggest

that an “educated guess” for ¢ can be made by ensuring that “’;7;’) “roughly lies in the same range, even if the scaling
and dimension of the data are different,” and they also choose o> = dim(X) for the Gaussian kernel in several examples
(though without the justification given here). Our companion software also allows users to set their own value for o2,
and this feature can be used to implement more complicated approaches if needed. In principle, one could also use a
joint grid search over values of 6% and A, for example using k-fold cross-validation, where k is typically between five and
ten. However, this approach adds a significant computational burden (since a new K needs to be formed for each choice
of 0?), and the benefits can be small since o> and A trade off with each other, and so it is typically computationally
more efficient to fix o at a reasonable value and optimize over A.

Although statisticians and econometricians are often interested in these classical statistical properties, machine learning
theorists have largely focused attention on whether and how fast the empirical error rate of the estimator converges to
the true error rate. We are not aware of existing arguments for unbiasedness, or the normality of KRLS point estimates,
though proofs of consistency, distinct from our own, have been given, including in frameworks with stochastic X (e.g.,
De Vito, Caponnetto, and Rosasco 2005).
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unobserved confounders, misspecification bias also occurs whenever the unmodeled effects of X in
€linear are correlated with the Xs that are included in the model. In KRLS, we instead have
y = Kc + egrrs- In this case, egxrrs is devoid of virtually any smooth function of X because
these functions are captured in the flexible model through Kec. In other words, KRLS moves
many otherwise unmodeled effects of X from the error term into the model. This greatly reduces
the chances of misspecification bias, leaving the errors restricted to principally the unobserved
confounders, which will always be an issue in nonexperimental data.

Under these assumptions, we can establish the unbiasedness of the KRLS estimator, meaning
that the expectation of the estimator for the choice coefficients that minimize the penalized least
squares ¢* obtained from running KRLS on y.ps equals its true population estimand, ¢*. Given this
unbiasedness result, we can also establish unbiasedness for the fitted values.

Theorem 1 (Unbiasedness of choice coefficients).
Under assumptions 1-2, E[¢*|X] = ¢*. The proof is given in the supplementary appendix.

Theorem 2 (Unbiasedness of fitted values).
Under assumptions 1-2, E[p] = y*. The proof'is given in the supplementary appendix.

We emphasize that this definition of unbiasedness says only that the estimator is unbiased for the
best approximation of the conditional expectation function given penalization.'* In other words,
unbiasedness here establishes that we get the correct answer in expectation for y* (not y), regardless
of noise added to the observations. Although this may seem like a somewhat dissatisfying notion of
unbiasedness, it is precisely the sense in which many other approaches are unbiased, including OLS.
If, for example, the “true” data-generating process includes a sharp discontinuity that we do not
have a dummy variable for, then KRLS will always instead choose a function that smooths this out
somewhat, regardless of N, just as an LM will not correctly fit a nonlinear function. The benefit of
KRLS over GLMs is that the space of allowable functions is much larger, making the “correct
specification” assumption much weaker.

4.1.2 Variance

Here, we derive a closed-form estimator for the variance of the KRLS estimator of the choice
coefficients that minimizes the penalized least squares, ¢*, conditional on a given A. This is import-
ant because it allows researchers to conduct hypothesis tests and construct confidence intervals.
We utilize a standard homoscedasticity assumption, although the results could be extended to
allow for heteroscedastic, serially correlated, or grouped error structures. We note that, as in
OLS, the values for the point estimates of interest (e.g., 7, 0%’ discussed below) do not depend
on this homoscedasticity assumption. Rather, an assumption over the error structure is needed for
computing variances.

Assumption 3 (Spherical Errors).
The errors are homoscedastic and have zero serial correlation, such that E[e€”|X] = o?1.

Lemma 1 (Variance of choice coefficients).
Under assumptions 1-3, the variance of the choice coefficients is given by Var[¢*| X, A] = o>(K + D72
The proof'is given in the supplementary appendix.

Lemma 2 (Variance of fitted values).
Under assumptions 1-3, the variance of the fitted values 3 is given by Var[p| X, A] = Var[Kc*| X, A] =
KT[o2I(K 4+ A1) K.

“Readers will recognize that classical ridge regression, usually in the span of X rather than ¢(X), is biased, in that the
coefficients achieved are biased relative to the unpenalized coefficients. Imposing this bias is, in some sense, the purpose
of ridge regression. However, if one is seeking to estimate the postpenalization function because regularization is
desirable to identify the most reliable function for making new predictions, the procedure is unbiased for estimating
that postpenalization function.
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In many applications, we also need to estimate the variance of fitted values for new counterfac-
tual predictions at specific test points. We can compute these out-of-sample predictions using
Prest = Kiest€*, where Kieg i the Niest X Nirain dimensional kernel matrix that contains the similarity
measures of each test observation to each training observation.'

Lemma 3 (Variance for test points).
Under assumptions 1-3, the variance for predicted outcomes at test points is given by Var[Pes| X, A] =
Kiest Var[é*| X, AJKL = Kieg[021(K + AD KT,

Our companion software implements these variance estimators. We estimate o2 by 62 =
lNZfV &= L - KT (y — K¢*). Note that all variance estimates above are conditional on the
user’s choice of A. This is important, since the variance does indeed depend on A: higher choices
of 1 always imply the choice of a more stable (but less well-fitting) solution, producing lower
variance. Recall that A is not a random variable with a distribution but, rather, a choice regarding
the trade-off of fit and complexity made by the investigator. LOOE provides a reasonable criterion
for choosing this parameter, and so variance estimates are given for A = ALooE. ¢

4.1.3 Consistency

In machine learning, attention is usually given to bounds on the error rate of a given method, and
to how this error rate changes with the sample size. When the probability limit of the sample error
rate will reach the irreducible approximation error (i.e., the best error rate possible for a given
problem and a given learning machine), the approach is said to be consistent (e.g., De Vito,
Caponnetto, and Rosasco 2005). Here, we are instead interested in consistency in the classical

sense; that is, determining whether plim p; y = yF for all i. Since we have already established
N—o0

that E[y;] =y, all that remains to prove consistency is that the variance of y; goes to zero as N
grows large.

Assumption 4 (Regularity Condition I).
Let (1) » > 0and (2) as N — oo, for eigenvalues of K given by a;, ;.45 grows slower than N once
N > M for some M < oo.

Theorem 3 (Consistency).
Under assumptions 1-4, E[7;|X] = y} and plim Var[J|X,A] = 0, so the estimator is therefore consist-
N—oo
ent with plim y; y = y} for all i. The proof is provided in the supplementary appendix.
N—oo

Our proof provides several insights, which we briefly highlight here. The degrees of freedom of
the model can be related to the effective number of nonzero eigenvalues. The number of effective
eigenvalues, in turn, is given by > . a[‘i/\, where a; are the eigenvalues of K. This generates two
important insights. First, some regularization is needed (A > 0) or this quantity grows exactly as
N does. Without regularization (A = 0), new observations translate into added complexity rather
than added certainty; accordingly, the variances do not shrink. Thus, consistency is achieved pre-
cisely because of the regularization. Second, regularization greatly reduces the number of effective
degrees of freedom, driving the cigenvalues that are small relative to A essentially to zero.
Empirically, a model with hundreds or thousands of observations, which could theoretically
support as many degrees of freedom, often turns out to have on the order of 5-10 effective
degrees of freedom. This ability to approximate complex functions but with a preference for less
complicated ones is central to the wide applicability of KRLS. It makes models as complicated as
needed but not more so, and it gains from the efficiency boost when simple models are sufficient.

To reduce notation, here we condition simply on X, but we intend this X to include both the original training data (used
to form K) and the test data (needed to form Kieg).

'®Though we suppress the notation, variance estimates are technically conditional on the choice of 2 as well. Recall that,
in our setup, o” is not a random variable; it is set to the dimension of the input data as a mechanical means of rescaling
Euclidian distances appropriately.
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As we show below, the regularization can rescue so much efficiency that the resulting KRLS model
is not much less efficient than an OLS regression even for linear data.

4.1.4 Finite sample and asymptotic distribution of p

Here, we establish the asymptotic normality of the KRLS estimator. First, we establish that the
estimator is normally distributed in finite samples when the elements of € are i.i.d. normal.

Assumption 5 (Normality). »
The errors are distributed normally, €;~ N(0, a?).

Theorem 4 (Normality in finite samples).
Under assumptions 1-5, y ~ N(y*, (0. K(K + AD™Y). The proof is given in the supplementary
appendix.

Second, we establish that the estimator is also normal asymptotically even when € is non-normal
but independently drawn from a distribution with a finite mean and variance.

Assumption 6 (Regularity Conditions II).

Let (1) the errors be independently drawn from a distribution with a finite mean and variance and (2)
the standard Lindeberg conditions hold such that the sum of variances of each term in the summation
Zj [K(K + K[)_l](i,j)Ej goes to infinity as N — oo and that the summands are uniformly bounded; that
is, there exists some constant a such that |[K(K + M)_l](i,j)eﬂ <a for allj.

Theorem 5 (Asymptotic Normality).
A d _ .. .
Under assumptions 1-4 and 6, ) —> N(O*, (0. K(K + 2I)"")?) as N — oo. The proof is given in the
supplementary appendix. The resulting asymptotic distribution used for inference on any given ¥; is
Vi—y;

d
0,1). 13
od(K(K+2D ") — VoD 3

Theorem 4 is corroborated by simulations, which show that 95% confidence intervals based on
standard errors computed by this method (1) closely match confidence intervals constructed from a
nonparametric bootstrap, and (2) have accurate empirical coverage rates under repeated sampling
where new noise vectors are drawn for each iteration.

Taken together, these new results establish the desirable theoretical properties of the KRLS
estimator for the conditional expectation: it is unbiased for the best-fitting approximation to the
true Conditional Expectation Function (CEF) in a large space of (penalized) functions (Theorems 1
and 2); it is consistent (Theorem 3); and it is asymptotically normally distributed given standard
regularity conditions (Theorems 4 and 5). Moreover, variances can be estimated in closed form
(Lemmas 1-3).

4.2 [nterpretation and Quantities of Interest

One important benefit of KRLS over many other flexible modeling approaches is that the fitted
KRLS model lends itself to a range of interpretational tools, which we develop in this section.

4.2.1 Estimating E[y|X] and first differences

The most straightforward interpretive element of KRLS is that we can use it to estimate the
expectation of y conditional on X = x. From here, we can compute many quantities of interest,
such as first differences or marginal effects. We can also produce plots that show how the
predicted outcomes change across a range of values for a given predictor variable while
holding the other predictors fixed. For example, we can construct a data set in which one
predictor x(@ varies across a range of test values and the other predictors remain fixed at
some constant value (e.g., the means) and then use this data set to generate predicted
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outcomes, add a confidence envelope, and plot them against x® to explore ceteris paribus
changes. Similar plots are typically used to interpret GAM models; however, the advantage
of KRLS is that the learned model that is used to generate predicted outcomes does not rely on
the additivity assumptions typically required for GAMs. Our companion software includes an
option to produce such plots.

4.2.2 Partial derivatives

We derive an estimator for the pointwise partial derivatives of y with respect to any particular input
variable, x(¥, which allows researchers to directly explore the pointwise marginal effects of each
input variable and summarize them, for example, in the form of a regression table. Let x( be a
particular variable such that X =[x'...x¢...xP]. Then, for a single observation, j, the partial

derivative of y with respect to variable d is estimated by

—llxj—. \/H

- @ _ 0
3x;d)_?2i: ce 7 (x; ) (14)

The KRLS pointwise partial derivatives may vary across every point in the covariate space. One
way to summarize the partial derivatives is to take their expectation. We thus estimate the sample-
average partial derivative of y with respect to x( at each observation as

;=112

3 (d) (d)
E[w} MZZC% - %) 1s)

We also derive the variance of this quantity, and our companion software computes the
pointwise and the sample-average partial derivative for each input variable together with their
standard errors. The benefit of the sample-average partial derivative estimator is that it reports
something akin to the usual 8 produced by linear regression: an estimate of the average marginal
effect of each independent variable. However, there is a key difference between taking a best linear
approximation to the data (as in OLS) versus fitting the CEF flexibly and then taking the average
partial derivative in each dimension (as in KRLS). OLS gives a linear summary, but it is highly
susceptible to misspecification bias, in which the unmodeled effects of some observed variables can
be mistakenly attributed to other observed variables. KRLS is much less susceptible to this bias
because it first fits the CEF more flexibly and then can report back an average derivative over this
improved fit.

Since KRLS provides partial derivatives for every observation, it allows for interpretation
beyond the sample-average partial derivative. Plotting histograms of the pointwise derivatives
and plotting the derivative of y with respect to xEd) as a function of x( are useful interpretational
tools. Plotting a histogram of % over all 7 can quickly give the investigator a sense of whether the
effect of a particular variable isx"relatively constant or very heterogeneous. It may turn out that the
distribution of a% is bimodal, having a marginal effect that is strongly positive for one group of
observations and strongly negative for another group. While the average partial derivative (or a
coefficient) would return a result near zero, this would obscure the fact that the variable in question
is having a strong effect but in opposite directions depending on the levels of other variables. KRLS
is well-suited to detect such effect heterogeneity. Our companion software includes an option to plot
such histograms, as well as a range of other quantities.

4.2.3 Binary independent variables

KRLS works well with binary independent variables; however, they must be interpreted by a
different approach than continuous Variables Given a binary variable x), the pointwise partial
derivative - (,,) is only observed where x = 0 or where x(b) = 1. The partial derivatives at these two
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points do not characterize the expected effect of going from x?) = 0 to x”) = 1.7 If the investigator
wishes to know the expected difference in y between a case in which x”’ = 0 and one in which
x =1, as is usually the case, we must instead compute first-differences directly. Let all other
covariates (besides the binary covariate in question) be given by X. The first-difference sample
estimator is LY [Hix” = 1, X = x] = LY [Filx!” = 0, X = x;]. This is computed by taking the
mean j in one version of the data set in which all Xs retain their original value and all x® =1
and then subtracting from this the mean j in a data set where all the values of x¥) = 0. In the
supplementary appendix, we derive closed-form estimators for the standard errors for this quantity.
Our companion software detects binary variables and reports the first-difference estimate and its
standard error, allowing users to interpret these effects as they are accustomed to from regression
tables.

4.3 E[y|x] Returns to E[y] for Extreme Examples of x

One important result is that KRLS protects against extrapolation for modeling extreme coun-
terfactuals. Suppose we attempt to model a value of J; for a test point x;. If x; lies far from all
the observed data points, then k(x;, x;) will be close to zero for all i. Thus, by equation (2), f(x;)
will be close to zero, which also equals the mean of y due to preprocessing. Thus, if we attempt
to predict p for a new counterfactual example that is far from the observed data, our estimate
approaches the sample mean of the outcome variable. This property of the estimator is both
useful and sensible. It is useful because it protects against highly model-dependent counterfactual
reasoning based on extrapolation. In LMs, for example, counterfactuals are modeled as though
the linear trajectory of the CEF continues on indefinitely, creating a risk of producing highly
implausible estimates (King and Zeng 2006). This property is also sensible, we argue, because, in
a Bayesian sense, it reflects the knowledge that we have for extreme counterfactuals. Recall that,
under the similarity-based view, the only information we need about observations is how similar
they are to other observations; the matrix of similarities, K, is a sufficient statistic for the data. If
an observation is so unusual that it is not similar to any other observation, our best estimate of
E[y;|X = x;] would simply be E[y], as we have no basis for updating that expectation.

5 Simulation Results

Here, we show simulation examples of KRLS that illustrate certain aspects of its behavior. Further
examples are presented in the supplementary appendix.

5.1 Leverage Points

One weakness of OLS is that a single aberrant data point can have an overwhelming effect on the
coefficients and lead to unstable inferences. This concern is mitigated in KRLS due to the com-
plexity-penalized objective function: adjusting the model to accommodate a single aberrant point
typically adds more in complexity than it makes up for by improving model fit. To test this, we
consider a linear data-generating process, y = 2x + €. In each simulation, we draw x ~ Unif(0, 1)
and € ~ N(0,0.3). We then contaminate the data by setting a single data point to (x = 5,y = —5),
which is off the line described by the target function. As shown in Fig. 2A, this single bad leverage
point strongly biases the OLS estimates of the average marginal effect downward (open circles),
whereas the estimates of the average marginal effect from KRLS are robust even at small sample
sizes (closed circles).

""The predicted function that KRLS fits for a binary input variable is a sigmoidal curve, less steep at the two endpoints
than at the (unobserved) values in between. Thus, the sample-average partial derivative on such variables will under-
estimate the marginal effect of going from zero to one on this variable.
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Fig. 2 KRLS compares well to OLS with linear data-generating processes. (A) Simulation to recover the
average derivative of y = 0.5x; that is, % = 0.5 (solid line). For each sample size, we run one hundred
simulations with observed outcomes y =0.5x+¢, where x ~ Unif(0, 1) and & ~ N(0, 0.3). One
contaminated data point is set to (y; = —5, x; = 5). Dots represent the mean estimated average derivative
for each sample size for OLS (open circles) and KRLS (full circles). The simulation shows that KRLS is
robust to the bad leverage point, whereas OLS is not. (B) Comparison of the standard error of g from OLS
(solid line) to the standard error of the sample average partial derivative from KRLS (dashed line). Data are
generated according to y =2x+¢€, with x ~ N(0, 1) and € ~ N(0, 1) with one hundred simulations for
each sample size. KRLS is nearly as efficient as OLS at all but very small sample sizes, with standard errors,
on average, approximately 14% larger than those of OLS.

5.2 Efficiency Comparison

We expect that the added flexibility of KRLS will reduce the bias due to misspecification error
but at the cost of increased variance due to the usual bias-variance trade-off. However, regu-
larization helps to prevent KRLS from suffering this problem too severely. The regularizer
imposes a high penalty on complex, high-frequency functions, effectively reducing the space
of functions and ensuring that small variations in the data do not lead to large variations in
the fitted function. Thus, it reduces the variance. We illustrate this using a linear data-generating
process, y =2x+¢€, x ~ N(0,1), and € ~ N(0, 1), such that OLS is guaranteed to be the most
efficient unbiased linear estimator according to the Gauss-Markov theorem. Figure 2B compares
the standard error of the sample average partial derivative estimated by KRLS to that of ﬁ
obtained by OLS. As expected, KRLS is not as efficient as OLS. However, the efficiency cost is
quite modest, with the KRLS standard error, on average, being only 14% larger than the
standard errors from OLS. The efficiency cost is relatively low due to regularization, as dis-
cussed above. Both OLS and KRLS standard errors decrease at the rate of roughly 1/+/N, as
suggested by our consistency results.

5.3 Over-Fitting

A possible concern with flexible estimators is that they may be prone to over-fitting, especially in
large samples. With KRLS, regularization helps to prevent over-fitting by explicitly penalizing
complex functions. To demonstrate this point, we consider a high-frequency function given by
y = 0.2sin(127x) + sin(27x) and run simulations with x ~ Unif(0, 1) and € ~ N(0,0.2) with two
sample sizes, N = 40 and N = 400. The results are displayed in Fig. 3A. We find that, for the small
sample size, KRLS approximates the high-frequency target function (solid line) well with a smooth
low-frequency approximation (dashed line). This approximation remains stable at the larger sample
size (dotted line), indicating that KRLS is not prone to over-fit the function even as N grows large.
This admittedly depends on the appropriate choice of A, which is automatically chosen in all
examples by LOOE, as described above.
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Fig. 3 KRLS with high-frequency and discontinuous functions. (A) Simulation to recover a high-frequency
target function given by y = 0.2 xsin(127x) + sin(2wx) (solid line). For each sample size, we run one
hundred simulations where we draw x ~ Unif(0, 1) and simulate observed outcomes as
y = 0.2 % sin(127x) + sin(27x) + &, where € ~ N(0, 0.2). The dashed line shows mean estimates across simu-
lations for N=40, and the dotted line for N=400. The results show that KRLS finds a low-frequency
approximation even at the larger sample sizes. (B) Simulation to recover the discontinuous target function
given by y = 0.5 % 1(x > 0.5) (solid line). For each sample size, we run one hundred simulations where we
draw x ~ Unif(0, 1) and simulate observed outcomes as y =0.5x% 1(x > 0.5) +¢, where ¢ ~ N(0, 0.2).
Dashed lines show mean estimates across simulations for N=40, and dotted lines for N=400. The
results show that KRLS fails to approximate the sharp discontinuity even at the larger sample size, but
still dominates the comparable OLS estimate, which uses x as a continuous regressor.

5.4 Non-Smooth Functions

One potential downside of regularization is that KRLS is not well-suited to estimate discontinuous
target functions. In Fig. 3B, we use the same setup from the over-fitting simulation above but
replace the high-frequency function with a discontinuous step function. KRLS does not approxi-
mate the step well at N =40, and the fit improves only modestly at N = 400, still failing to ap-
proximate the sharp discontinuity. However, KRLS still performs much better than the comparable
OLS estimate, which uses x as a continuous regressor. The fact that KRLS tries to approximate the
step with a smooth function is expected and desirable. For most social science problems, we would
assume that the target function is continuous in the sense that very small changes in the independ-
ent variable are not associated with dramatic changes in the outcome variable, which is why KRLS
uses such a smoothness prior by construction. Of course, if the discontinuity is known to the
researcher, it should be directly incorporated into the KRLS or the OLS model by using a
dummy variable x’ = 1[x > 0.5] instead of the continuous x regression. Both methods would
then exactly fit the target function.

5.5 Interactions

We now turn to multivariate functions. First, we consider the standard interaction model where
the target function is y = 0.5+ x1 + x» — 2(x; - x2) + & with x; ~ Bernoulli(0.5) for j=1,2 and
€ ~ N(0,0.5). We fit KRLS and OLS models that include x; and x; as covariates and test the
out-of-sample performance using the R? for predictions of 7 at a thousand test points drawn from
the same distribution as the covariates. Figure 4A shows the out-of-sample R* estimates. KRLS
(closed circles) accurately learns the interaction from the data and approaches the true R* as the
sample size increases. OLS (open circles) misses the interaction and performs poorly even as the
sample size increases.

Of course, in this simple case, we can get the correct answer with OLS if we specify the saturated
regression that includes the interaction term (x; - x;). However, even if the investigator suspects
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Fig. 4 KRLS learns interactions from the data. Simulations to recover target functions that include multi-

plicative interaction terms. (A) The target function is y=0.54x;+x>—2(x; -x2)+¢ with
x; ~ Bernoulli(0.5) for j=1,2 and e ~ N(0, 0.5). (B) The target function is
¥ =(x1-x2) — 2(x3 - X4) + 3(x5 - X6 - x7) — (X1 - x8) + 2(xg - X9 - X10) + x19, Where all x are drawn i.i.d.

Bernoulli(p) with p =0.25 for x; and x,, p =0.75 for x3 and x4, and p = 0.5 for all others. For each
sample size, we run one hundred simulations where we draw the x and simulate outcomes using
¥ = Vuue + €, Where € ~ N(0,0.5) for the training data. We use one thousand test points drawn from the
same distribution to test the out-of-sample R> of the estimators. The closed circles show the average R’
estimates across simulations for the KRLS estimator; the open circles show the estimates for the OLS
regression that uses all x as predictors. The true R is given by the solid line. The results show that
KRLS learns the interactions from the data and approaches the true R> that one would obtain knowing
the functional form as the sample size increases.

that such an interaction needs to be modeled, the strategy of including interaction terms very
quickly runs up against the combinatorial explosion of potential interactions in more realistic
cases with multiple predictors. Consider a similar simulation for a more realistic case with ten binary
predictors and a target function that contains several interactions: y = (xy - x3) — 2(x3 - X4)+
3(x5 - X6 - x7) — (x1 - xg) + 2(xg - X9 - X19) + x19. Here, it is difficult to search through the myriad
different OLS specifications to find the correct model: it would take 2'° terms to account for all
the unique possible multiplicative interactions. This is why, in practice, social science researchers
typically include no or very few interactions in their regressions. It is well-known that this results in
often severe misspecification bias if the effects of some covariates depend on the levels of other
covariates (e.g., Brambor, Clark, and Golder 2006). KRLS allows researchers to avoid this problem
since it learns the interactions from the data.

Figure 4B shows that, in this more complex example, the OLS regression that is linear in the
predictors (open circles) performs very poorly, and this performance does not improve as the
sample size increases. Even at the largest sample size, it still misses close to half of the systematic
variation in the outcome that results from the covariates. In stark contrast, the KRLS estimator
(closed circles) performs well even at small sample sizes when there are fewer observations than the
number of possible two-way interactions (not to mention higher-order interactions). Moreover, the
out-of-sample performance approaches the true R> as the sample size increases, indicating that the
learning of the function continues as the sample size grows larger. This clearly demonstrates how
KRLS obviates the need for tedious specification searches and guards against misspecification bias.
The KRLS estimator accurately learns the target function from the data and captures complex
nonlinearities or interactions that are likely to bias OLS estimates.

5.6 The Dangers of OLS with Multiplicative Interactions

Here, we show how the strategy of adding interaction terms can easily lead to incorrect inferences
even in simple cases. Consider two correlated predictors x; ~ Unif(0,2) and x; = x; + & with
£~ N(0,1). The true target function is y = 5x? and, thus, only depends on x; with a mild


-

KRLS for Social Science Modeling and Inference Problems 19

Table 1 Comparing KRLS to OLS with multiplicative interactions

Estimator OLS KRLS

dy/0x;; Average Average Ist Qu. Median 3rd Qu.
const —1.50 (0.34)

X1 7.51 (0.40) 9.22 (0.52) 5.22 (0.82) 9.38 (0.85) 14.03 (0.79)
X2 —1.28 (0.21) 0.02 (0.13) —0.08 (0.19) 0.00 (0.16) 0.10 (0.20)
(x1 x x2) 1.24 (0.15)

N 250

Note. Point estimates of marginal effects from OLS and KRLS regression with bootstrapped standard errors in parentheses. For KRLS,
the table shows the average and the quartiles of the distribution of the pointwise marginal effects. The true target function is y = 5x} and
simulated using y7 = Sx% +¢& with € ~ (0, 2), x; ~ Unif(0, 2), and x, = x; + & with & ~ N(0, 1). With OLS, we conclude that x, has a

positive effect that grows with higher levels of x; and that x, has a negative (positive) effect at low (high) levels of x;. The true marginal
effects are % = 10x; and ;7‘7 = 0; the effect of x; only depends on levels of xj, and x, has no effect at all. The KRLS estimator accurately

recovers the true average derivatives. The marginal effects of x, are close to zero throughout the support of x,. The marginal effects of x|
vary from about five at the first quartile to about fourteen at the third quartile.

nonlinearity. This nonlinearity is so mild that, in reasonably noisy samples, even a careful
researcher who follows the textbook recommendations and first inspects a scatterplot between
the outcome and x; might mistake it for a linear relationship. The same is true for the relationship
between the outcome and the (conditionally irrelevant) predictor x;. Given this, a researcher who
has no additional knowledge about the true model is likely to fit a rather “flexible” regression model
with a multiplicative interaction term given by y = a 4+ 81x] + fax2 + B3(x] - x2). To examine the
performance of this model, we run a simulation that adds random noise and fits the model using
outcomes generated by ' = 5x7 + & where & ~ N(0, 2).

The second column in Table 1 displays the coefficient estimates from the OLS regression
(averaged across the simulations) together with their bootstrapped standard errors. In the eyes
of the researcher, the OLS model performs rather well. Both lower-order terms and the interaction
term are highly significant, and the model fit is good with R> = 0.89. In reality, however, using OLS
with the added interaction term leads us to entirely false conclusions. We conclude that x; has a
positive effect, and the magnitude of this effect increases with higher levels of x,. Similarly, x,
appears to have a negative effect at low levels of x| and a positive effect at high levels of x;. Both
conclusions are false and an artifact of misspecification bias. In truth, no interaction effect exists;
the effect of x; only depends on levels of xi, and x; has no effect at all.

The third column in Table 1 displays the estimates of the average pointwise derivatives from the
KRLS estimator, which accurately recover the true average derivatives. The magnitude of the
average marginal effect of x; is zero and highly insignificant. The average marginal effect of x; is
highly significant and estimated at 9.2, which is fairly accurate given that x; is uniform between 0
and 2 (so we expect an average marginal effect of 10). Moreover, KRLS gives us more than just the
average derivatives: it allows us to examine the effect of heterogeneity by examining the marginal
distribution of the pointwise derivatives. The next three columns display the first, second, and third
quartile of the distributions of the marginal effects of the two predictors. The marginal effect of x; is
close to zero throughout the support of x,, which is accurate given that this predictor is indeed
irrelevant for the outcome. The marginal effect of x; varies greatly in magnitude, from about 5 at
the first quartile to more than 14 at the third quartile. This accurately captures the nonlinearity in
the true effect of x.

5.7 Common Interactions and Nonadditivity

Here, we show how KRLS is well-suited to fit target functions that are nonadditive and/or involve
more complex interactions as they arise in social science research. For the sake of presentation, we
focus on target functions that involve two independent variables, but the principles generalize to
higher-dimensional problems. We consider three types of functions: those with one “hill” and one
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Table 2 KRLS captures complex interactions and nonadditivity

Target One hill Two hills Three hills
Function One valley Two valleys Three valleys

In-sample R>

KRLS 0.75 0.41 0.52

OLS 0.61 0.01 0.01

GAM 0.63 0.21 0.05
Out-of-sample R?

KRLS 0.70 0.35 0.45

OLS 0.60 —0.01 —0.01

GAM 0.60 0.13 —0.03
True R? 0.73 0.39 0.51

Note. In- and out-of-sample R> (based on two hundred test points) for simulations using the three target functions displayed in Figs. A4,
A5, and A6 in the supplementary appendix with the OLS, GAM, and KRLS estimators. KRLS attains the best in-sample and out-of-
sample fit for all three functions.

“valley,” two hills and two valleys, or three hills and three valleys (see supplementary appendix,
Figs. A4, A5, and A5, respectively). These functions, especially the first two, correspond to rather
common scenarios in the social sciences where the effect of one variable changes or dissipates
depending on the effect of another. We simulate each type of function, using two hundred obser-
vations, x1, x; ~ Unif(0, 1), and noise given by &€ ~ N(0,0.25). We then fit these data using KRLS,
OLS, and GAMs. The results are averaged over one hundred simulations. In the supplementary
appendix, we provide further explanation and visualizations pertaining to each simulation.

Table 2 displays both the in-sample and out-of-sample R” (based on two hundred test points
drawn from the same distribution as the training sample) for all three target functions and esti-
mators. KRLS provides better in- and out-of-sample fits for all three target functions, and the out-
of-sample R? for each model is close to the true R? that one would obtain knowing the functional
form. These simulations increase our confidence that KRLS can capture complex nonlinearity,
nonadditivity, and interactions that we may expect in social science data. Although such features
may be easy to detect in examples like these that only involve two predictors, they are even more
likely in higher-dimensional problems where complex interactions and nonlinearities are very hard
to detect using plots or traditional diagnostics.

5.8 Comparison to Other Approaches

KRLS is not a panacea for all that ails empirical research, but our proposition is that it provides a
useful addition to the empirical toolkit of social scientists, especially those currently using GLMs,
because of (1) the appropriateness of its assumptions to social science data, (2) its ease of use, and
(3) the interpretability and ease with which relevant quantities of interest and their variances are
produced. It therefore fulfills different needs than many other machine learning or flexible modeling
approaches, such as NN, regression trees, k-nearest neighbors, SVMs, and GAMs, to name a few.
In the supplementary appendix, we describe in greater detail how KRLS compares to important
classes of models on interpretability and inference, with special attention to GAMs and to
approaches that involve explicit basis expansions followed by fitting methods that force many of
the coefficients to be exactly zero (LASSO). At bottom, we do not claim that KRLS is generally
superior to other approaches but, rather, that it provides a particularly useful marriage of flexibility
and interpretability. It does so with far lower risk of misspecification bias than highly constrained
models, while minimizing arbitrary choices about basis expansions and the selection of smoothing
parameters.
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Table 3 Comparing KRLS to other methods

Mean RMSE
Model N=150 N=100 N =200
KRLS 0.139 0.107 0.088
GAM2 0.143 0.109 0.088
NN 0.312 0.177 0.118
LM 0.193 0.177 0.169
GAMI1 0.234 0.213 0.202

Note. Simulation comparing RMSE for out-of-sample fits generated by five models, averaged over two hundred iterations. The
data-generating process is based on Wood (2003): xj, x> ~ Unif(0,1), € ~ N(0,0.25), and y = !0-(1-029"~(2=0.257) 4
0.5 % !4 =0.7"=(2=0D" | ¢ The models are KRLS with default choices; a “naive” GAM (GAM]) that smooths x; and x, separately;
a “smart” GAM (GAM2) that smooths x; and x, together; a generous LM, y = By + Bi1x1 + Baxa + ,B;x% + ﬁ4x§ + Bsx; x x2; and an NN
with five hidden units. The models are trained on samples of fifty, one hundred, or two hundred observations and then tested on one
hundred out-of-sample observations. KRLS outperforms all other methods in small samples. In larger samples, KRLS and the GAM2
(with “full-smoothing”) perform similarly. The LM, despite including terms for x?, x3, and x;x», does not perform particularly well.
GAMI also performs poorly in all circumstances.

These differences aside, in proposing a new method, it is useful to compare its pure modeling
performance to other candidates. In this area, KRLS does very well.'® To further illustrate
how KRLS compares against other methods that have appeared in political science, we replicate
a simulation from Wood (2003) that was designed specifically to illustrate the use of
GAMs. The data-generating process is given by xj,x; ~ Unif(0,1), €~ N(0,0.25), and
y = el0-=0257 =(2=0257) 4 ()5 4 o4-(1—=07~(2=07") 4 ¢ We consider five models: (1) KRLS
with default choices (0> = D =2), implemented in our R package simply as krls(y=y,
X=cbind (x1,x2)), (2) a “naive” GAM (GAM]1) that smooths x; and x; separately but then
assumes that they add, (3) a “smart” GAM (GAM2) that smooths x; and x, together using the
default thin-plate splines and the default method for choosing the number of basis functions in the
mgcv package in R, (4) a flexibly specified LM, y = By + Bix1 + faxa + B3xT + Bax3 +Bsx1 x x2,
and (5) an NN with five hidden units and all other parameters at their defaults using the NeuralNet
package in R. We train this model on samples of fifty, one hundred, or two hundred observations
and then test it on one hundred out-of-sample observations. The results for the root mean square
error (RMSE) of each model averaged over two hundred iterations at each sample size are shown in
Table 3. KRLS performs as well as or better than all other methods at all sample sizes. In smaller
samples, iltgclearly dominates. As the sample size increases, the fully smoothed GAM performs very
similarly.

6 Empirical Applications

In this section, we show an application of KRLS to a real data example. In the supplementary
appendix, we also provide a second empirical example that shows how KRLS analysis corrects for
misspecification bias in a linear interaction model used by Brambor, Clark, and Golder (2006) to
test the “short-coattails” hypothesis. This second example highlights the common problem that
multiplicative interaction terms in LMs only allow marginal effects to vary linearly, whereas KRLS
allows marginal effects to vary in virtually any smooth way, and this added flexibility can be critical
to substantive inferences.

"8It has been shown that the RLS models on which KRLS is based are effective even when used for classification rather
than regression, with performance indistinguishable from state-of-the-art Support Vector Machines (Rifkin, Yeo, and
Poggio 2003).

YKRLS and GAMs in which all variables are smoothed together are similar. The main difference under current imple-
mentations (our package for KRLS and mgcv for GAMs) include the following: (1) the fewer interpretable quantities
produced by GAMs; (2) the inability of GAMs to fully smooth together more than a few input variables; and (3) the
kernel implied by GAMs that leads to straight-line extrapolation outside the support of X. These are discussed further
in the supplementary appendix.


linear model (
)
neural network (
)
5
50
100
200
100
200
online 
http://pan.oxfordjournals.org/lookup/suppl/doi:10.1093/pan/mpt019/-/DC1
http://pan.oxfordjournals.org/lookup/suppl/doi:10.1093/pan/mpt019/-/DC1
linear model
il
http://pan.oxfordjournals.org/lookup/suppl/doi:10.1093/pan/mpt019/-/DC1

22 Jens Hainmueller and Chad Hazlett

6.1 Predicting Genocide

In a widely cited article, Harff (2003) examines data from 126 political instability events (i.e.,
internal wars and regime changes away from democracy) to determine which factors can be used
to predict whether a state will commit genocide.?® Harff proposes a “structural model of genocide”
where a dummy for genocide onset (onset) is regressed on two continuous variables, prior upheaval
(summed years of prior instability events in the past fifteen years) and trade openness (imports and
exports as a fraction of gross domestic product [GDP] in logs), and four dummy variables that
capture whether the state is an autocracy, had a prior genocide, and whether the ruling elite has an
ideological character and/or an ethnic character.”' The first column in Table 4 replicates the original
specification, using a linear probability model (LPM) in place of the original logit. We use the LPM
here because this allows more direct comparison to the KRLS results. However, the substantive
results of the LPM are virtually identical to those of the logit in terms of magnitude and statistical
significance. The next four columns on the left present the replication results from the KRLS
estimator. We report first differences for all the binary predictor variables, as described above.

The analysis yields several lessons. First, the in-sample R> from the original logit model and
KRLS are very similar (32% versus 34%), but KRLS dominates in terms of its receiver operator
curve (ROC) for predicting genocide, with statistically significantly more area under the curve
(p < 0.03). It is reassuring that KRLS performs better (at least in-sample) than the original logit
model even though, as Harff reports, her final specification was selected after an extensive search
through a large number of models. Moreover, this added predictive power does not require any
human specification search; the researcher simply passes the predictor matrix to KRLS, which
learns the functional form from the data, and this improves empirical performance and reduces
arbitrariness in selecting a particular specification.

Second, the average marginal effects reported by KRLS (shown in the second column) are all of
reasonable size and tend to be in the same direction as but somewhat smaller than the estimates
from the linear probability model. We also see some important differences. The LPM model (and
the original logit) shows a significant effect of prior upheaval, with an increase of one standard
deviation corresponding to a ten-percentage-point increase in the probability of genocide onset,
which corresponds to a 37% increase over the baseline probability. This sizable “effect” completely
vanishes in the KRLS model, which yields an average marginal effect of zero that is also highly
insignificant. This sharply different finding is confirmed when we look beyond the average marginal
effect. Recall that the average marginal effects, although a useful summary tool especially to
compare to GLMs, are only summaries and can hide interesting heterogeneity in the actual
marginal effects across the covariate space. To examine the effect heterogeneity, the next three
columns on the left in Table 4 show the quartiles of the distribution of pointwise marginal
effects for each input variable. Figure 5 also plots histograms to visualize the distributions. We
see that the effect of prior upheaval is essentially zero at every point.

What explains this difference in marginal effect estimates? It turns out that the significant effect
in the LPM model is an artifact of misspecification bias. The variable prior upheaval is strongly
right-skewed and, when logged to make it more appropriate for linear or logistic regression, the
“effect” disappears entirely. This change in results emphasizes the risk of mistaken inference due to
misspecification under GLMs and its potential impact on interpretation. Note that this difference in
results is by no means trivial substantively. In fact, Harff (2003) argues that prior upheaval is “the
necessary precondition for genocide and politicide” and “a concept that captures the essence of the
structural crises and societal pressures that are preconditions for authorities’ efforts to eliminate
entire groups.” Harff (2003) goes on to explain two mechanisms by which this variable matters and
draws policy conclusions from it. However, as the KRLS results show, this “important finding”

**The American Political Science Association lists this article as the 15th most downloaded paper in the American
Political Science Review. According to Google Scholar, this article has been cited 310 times.

21See Harff (2003) for details. Notice that Harff dichotomized a number of continuous variables (such as the polity score),
which discards valuable information. With KRLS, one could instead use the original continuous variables unless there
was a strong reason to code dummies. In fact, tests confirm that using the original continuous variables with KRLS
results in a more predictive model.
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Table 4 Predictors of genocide onset: OLS versus KRLS
Estimator OLS KRLS
0y/0x;;
B Average Ist Qu. Median 3rd Qu.
Prior upheaval 0.009* 0.002 —0.001 0.002 0.004
(0.004) (0.003)
Prior genocide 0.263* 0.190* 0.137 0.232 0.266
(0.119) (0.075)
Ideological char. of elite 0.152 0.129 0.086 0.136 0.186
(0.084) (0.076)
Autocracy 0.160* 0.122 0.092 0.114 0.136
(0.077) (0.068)
Ethnic char. of elite 0.120 0.052 0.012 0.046 0.078
(0.083) (0.077)
Trade openness (log) —0.172%* —0.093* —0.142 —0.073 —0.048
(0.057) (0.035)
Intercept 0.659
(0.217)

Note. Replication of the “structural model of genocide” by Harff (2003). Marginal effects of predictors from OLS regression and KRLS
regression with standard errors in parentheses. For KRLS, the table shows the average of the pointwise derivative as well as the quartiles
of their distribution to examine the effect heterogeneity. The dependent variable is a binary indicator for genocide onsets. N=126.

*p <0.05.
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readily disappears when the model accounts for the skew. This showcases the general problem that
misspecification bias is often difficult to avoid in typical political science data, even for experienced
researchers who publish in top journals and engage in various model diagnostics and specification
searches. It also highlights the advantages of a more flexible approach such as KRLS, which avoids
misspecification bias while yielding marginal effects estimates that are as easy to interpret as
coefficient estimates from a regression model and also make richer interpretation possible.

Third, although using KRLS as a robustness test of more rigid models can thus be valu-
able, working in a much richer model space also permits exploration of effect heterogeneity,
including interactions. In Fig. 5 we see that for several variables, such as autocracy and ideo-
logical character, the marginal effect lies to the same side of zero at almost every point,
indicating that these variables have marginal effects in the same direction regardless of their
level or the levels of other variables. We also see that some variables show little variation in
marginal effects, such as prior upheaval, whereas others show more substantial variation, such as
prior genocide.

For example, the marginal effects (measured as first-differences) of ethnic character and ideolo-
gical character are mostly positive, but both show variation from approximately zero to twenty
percentage points. A suggestive summary of how these marginal effects relate to each observed
covariate can be provided by regressing the estimates of the pointwise marginal effects

J onset donset e 22 : .
3 ideological character or 3 ethnic character on the covariates. Both regressions reveal a StI‘OHg negatlve

relationship of the level of trade openness on these marginal effects. To give substantive interpret-
ation to the results, we find that having an ethnic character to the ruling elite is associated with
a three-percentage-point higher probability of genocide for countries in the highest quartile of
trade openness, but a nine-percentage-point higher probability in the highest quartile of trade
openness. Ideological character is associated with a nine-percentage-point higher risk of genocide
for the countries in the top quartile of trade openness, but an eighteen-percentage-point higher risk
among those in the first quartile of trade openness. These findings, while associational only, are
consistent with theoretical expectations, but would be easily missed in models that do not allow
sufficient flexibility.

In addition, the marginal effects of prior genocide are very widely dispersed. We find that the
marginal effects of prior genocide and ideological character are strongly related: when one is high,
the marginal effect of the other is lessened on average. For example, the marginal effect of ideolo-
gical character is eighteen percentage points higher when prior genocide is equal to zero.
Correspondingly, the marginal effect of prior genocide is twenty-one percentage points higher
when ideological character is equal to zero. This is characteristic of a sub-additive relationship,
in which either prior genocide or ideological character signals a higher risk of genocide, but once
one of them is known, the marginal effect of the other is negligible.”® In contrast, the marginal
effects of ethnic character—and every other variable besides ideological character—changes by little
as a function of prior genocide.

This brief example demonstrates that KRLS is appropriate and effective in dealing
with real-world data even in relatively small data sets. KRLS offers much more flexibility
than GLMs and guards against misspecification bias that can result in incorrect substantive

2This approach is helpful to identify nonlinearities and interaction effects. For each variable, take the pointwise partial
derivatives (or first-differences) modeled by KRLS and regress them on all original independent variables to see which
of them help explain the marginal effects. For example, if % is found to be well-explained by x itself, then this
suggests a nonlinearity in x (because the derivative changes with the level of the same variable). Likewise, if % is
well-explained by another variable, x*), this suggests an interaction effect (the marginal effect of one variable, x(®,
depends on the level of another, x®).

2In addition to theoretically plausible reasons why these effects are sub-additive, this relationship may be partly due to ex
post facto coding of the variables: once a prior genocide has occurred, it becomes easier to classify a government as
having an ideological character, since it has demonstrated a willingness to kill civilians, possibly even stating an ideo-
logical aim as justification. Thus, in the absence of prior genocide, coding a country as having ideological character is
informative of genocide risk, whereas it adds less after prior genocide has been observed.
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inferences. It is also straightforward to interpret the KRLS results in ways that are familiar to
researchers from GLMs.

7 Conclusion

To date, it has been difficult to find user-friendly approaches that avoid the dangers of
misspecification while also conveniently generating quantities of interest that are as interpretable
and appealing as the coefficients from GLMs. We argue that KRLS represents a particularly useful
marriage of flexibility and interpretability, especially for current GLM users looking for more
powerful modeling approaches. It allows investigators to easily model nonlinear and nonadditive
effects and reduce misspecification bias and still produce quantities of interest that enable “simple”
interpretations (similar to those allowed by GLMs) and, if desired, more nuanced interpretations
that examine nonconstant marginal effects.

Although interpretable quantities can be derived from almost any flexible modeling approach
with sufficient knowledge, computational power, and time, constructing such estimates for many
methods is inconvenient at best and computationally infeasible in some cases. Moreover, conduct-
ing inference over derived quantities of interest multiplies the problem. KRLS belongs to a class of
models, those producing continuously differentiable solution surfaces with closed-form expressions,
that makes such interpretation feasible and fast. All the interpretational and inferential quantities
are produced by a single run of the model, and the model does not require user input regarding
functional form or parameter settings, improving falsifiability.

We have illustrated how KRLS accomplishes this improved trade-off between flexibility and
interpretability by starting from a different set of assumptions altogether: rather than assume that
the target function is well-fitted by a linear combination of the original regressors, it is instead
modeled in an N-dimensional space using information about similarity to each observation, but
with a preference for less complicated functions, improving stability and efficiency. Since KRLS is a
global method (i.c., the estimate at each point uses information from all other points), it is less
susceptible to the curse of dimensionality than purely local methods such as k-nearest neighbors
and matching.

We have established a number of desirable properties of this technique. First, it allows compu-
tationally tractable, closed-form solutions for many quantities, including E[y|X], the variance of
this estimator, the pointwise partial derivatives with respect to each variable, the sample average
partial derivatives, and their variances. We have also shown that it is unbiased, consistent,
and asymptotically normal. Simulations have demonstrated the performance of this method,
even with small samples and high-dimensional spaces. They have also shown that even when
the true data-generating process is linear, the KRLS estimate of the average partial derivative
is not much less efficient than the analogous OLS coefficient and far more robust to bad
leverage points.

We believe that KRLS is broadly useful whenever investigators are unsure of the functional form
in regression and classification problems. This may include model-fitting problems such as predic-
tion tasks, propensity score estimation, or any case where a conditional expectation function must
be acquired and rigid functional forms risk missing important variation. The method’s interpret-
ability also makes it suitable for both exploratory analyses of marginal effects and causal inference
problems in which accurate conditioning on a set of covariates is required to achieve a reliable
causal estimate. Relatedly, using KRLS as a specification check for more rigid methods can also be
very useful.

However, there remains considerable room for further research. Our hope is that the
approach provided here and in our companion software will allow more researchers to begin
using KRLS or methods like it; only when tested by a larger community of scholars will we be
able to determine the method’s true usefulness. Specific research tasks remain as well. Due to the
memory demands of working with an N x N matrix, the practical limit on N for most users is
currently in the tens of thousands. Work on resolving this constraint would be useful. In addition,
the most effective methods for choosing A and o? are still relatively open questions, and it would be
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useful to develop heteroscedasticity-, autocorrelation-, and cluster-robust estimators for standard
errors.
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