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CHAPTER 3. EQUILIBRIUM STATISTICAL MECHANICS

Chapter 1 and Chapter 2 have provided us with qualitative and quantitative reasons to accept equi-
librium statistical mechanics as a relevant description of the late time statistics of isolated systems. In
this Chapter, we study the properties of the corresponding ensembles and show their equivalence in the
large system size limit. This allows us to recover standard results of thermodynamics.

3.1 The microcanonical ensemble

For an isolated system at energy E, all states with the same energy E are assumed equiprobably in the
steady state. Formally, if we denote by {C} the configurations of the system, then

p(C) =

 1
Ω(E) , if E(C) = E.

0, otherwise.
(3.1)

We define the microcanonical entropy as

Sm(E) = kB lnΩ(E) (3.2)

and the microcanonical temperature as

1

Tm(E)
=
∂Sm(E)

∂E
(3.3)

The heat capacity quantifies how much energy δE is needed to increase the temperature by δT . It is
defined as 1

cV
∼

δT→0

δT
δE . Inverting T (E) into E(T ), one obtains:

cV =
∂E

∂T
. (3.4)

The subscript V refers to the fact that, since we are in the microcanonical ensemble, the value V is kept
constant as E → E + δE and T → T + δT .

3.1.1 Continuous systems

Density of states. If we consider a system described by continuous variables, defining a "number" Ω(E)

does not make sense. Instead, we aim at characterizing the "measure" of the energy surface defined by
E(C) = E. If we consider any measure that is absolutely continuous with respect to the Lebesgue measure
in the full space, the measure of this surface is zero! Instead, a solution is to consider energy configurations
E ≤ E(C) ≤ E + δE. Then, the volume/measure of this set of points scales as Ω(E, δE) ≃ ω(E)δE,
where ω(E) is called the density of states of the system.

The entropy is then given by S = kB lnΩ = kB lnω(E) + kB ln δE. In the large system size limit,
kB lnω(E) diverges, and the constant term kb ln δE can be neglected.

Phase space measure. The average of a continuous observable O(x) with respect to a probability measure
µ can be written as

⟨O⟩ =
∫
O(x)µ(dx) =

∫
O(x)dµ(x) =

∫
O(x)p(x)dx , (3.5)
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3.1. THE MICROCANONICAL ENSEMBLE

where we have introduce the probability density p(x). If we make a change of variable x→ y = λx, which
amounts in changing the units in which we measure x1, then

dy = λdx and p(y) = p(x)
dx

dy
=
p(x)

λ
, (3.6)

so that p(y)dy = p(x)dx and the value of the average in Eq. (3.5) does not change. When we change the
units of the observable, the measure and the probability distribution change in opposite ways so as to
leave the probability measure unchanged.

Now, consider a classical system, whose probability measure is

dρE({q⃗i, p⃗i})︸ ︷︷ ︸
probability measure

≡ 1

Ω(E, δE)
1H({q⃗i,p⃗i})∈[E,E+dE]︸ ︷︷ ︸

probability density

∏
i

d3q⃗id
3p⃗i︸ ︷︷ ︸

Phase space measure

(3.7)

Here also, dρ is independent on the choice of units: if we change units, both the phase space volume Ω(E)

and the measure d3q⃗id3p⃗i change in the same way, effectively compensating. Conversely, the entropy
S = kB lnΩ(E) depends on the unit, which is unfortunate. To address this, we introduce a reference
phase space volume h3N , where h is the Planck constant, such that:

dρE({q⃗i, p⃗i}) =
h3N

Ω(E, δE)
1H({q⃗i,p⃗i})∈[E,E+dE]

∏
i

d3q⃗id
3p⃗i

h3N
(3.8)

This make our measurement of the volume occupied by states of energy E independent of the units, so
that S = kB ln Ω(E)

h3N also does not depend on the the units. Moreover, as we will see in Chapter 5, the
choice of h3N is consistent with the high temperature limit of quantum statistical mechanics.

3.1.2 The ideal gas

Consider N particles in a box of volume V = L3. In the dilute limit, their interactions suffice for the
gas to equilibrate but they are typically small compared to the kinetic energy of the particles. We thus
approximate the energy as H =

∑N
i=1

p⃗2

2m .
Let us first compute the normalized density of states Ω̃(E, δE) = Ω(E, δE)/h3N :

Ω̃(E, δE) =

∫
E≤H({q⃗i,p⃗i})≤E+δE

N∏
i=1

d3q⃗id
3p⃗i

h3
(3.9)

=

(
V

h3

)N ∫
E≤

∑
i
p⃗i

2

2m
≤E+δE

N∏
i=1

d3p⃗i (3.10)

=

(
V

h3

)N

[v(E + δE)− v(E)] (3.11)

where v(E) is the volume of the hypersphere such that
∑

i
p⃗i

2

2m ≤ E. It follows that Ω̃(E, δE) ≃ δE
h3N

dv(E)
dE .

Let’s compute v(E):

v(E) = L3N

∫
∑

i p⃗i
2≤2mE

N∏
i=1

d3p⃗i = L3N

∫
∑

i x
2
i≤2mE

3N∏
i=1

d3xi = L3N (2mE)3N/2

∫
∑

i u
2≤1

3N∏
i=1

dui

1For instance, if x is a length in meters and y the same length in millimeters, then λ = 103.
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CHAPTER 3. EQUILIBRIUM STATISTICAL MECHANICS

where in the last step we have changed variables xi =
√
2mEui. In this way, we have make the integral

dimension-free: all the dimensions now enter in the prefactor. By going to spherical coordinates, we get:

v(E) = L3N (2mE)3N/2Ωso(3N)

∫ 1

0
due3N−1 = L3N (2mE)3N/2

3N
Ωso(3N) (3.12)

where Ωso(3N) is the total solid angle in 3N−dimensions.

Solid angle in d-dimensions. To determine Ωso(3N), we can try to find an integral that we can do both in
cartesian and spherical coordinates. A standard possibility is to use Gaussian integrals. We thus introduce

Id ≡
( ∫ +∞

−∞
dxe−x2

︸ ︷︷ ︸
√
π

)d
= πd/2 =

∫ d∏
i=1

dxie
−

∑
i x

2
i = Ωso(d)

∫ ∞

0
drrd−1u−r2 (3.13)

where in the last integral, we have gone to spherical coordinates and introduced r2 =
∑

i x
2
i . Using the

change of variable ω = r2, we find

Id =
1

2
Ωso(d)

∫ ∞

0
dωe−ωωd/2−1 =

1

2
Ωso(d)Γ

(
d

2

)
(3.14)

where Γ(u) =
∫∞
0 dωωu−1e−ω is the Gamma function such that Γ(n) = (n− 1)! for n a positive integer.

Comparing Eq. (3.13) and Eq. (3.14) one obtains for the solid angle in d−dimensions,

Ωso(d) =
2πd/2

(d2 − 1)!
, (3.15)

and thus

v(E) = L3N (2mE)3N/2 2π3N/2

3N(3N2 − 1)!
, (3.16)

where we extend the factorial notation to half integers, to lighten our notations. Recalling that Ω̃(E) =

v′(E) δE
h3N , one obtains for the density of states:

Ω̃(E) = δE

(
L

h

)3N

m(2mE)3N/2−1 2π3N/2(
3N
2 − 1

)
!

(3.17)

We can now use Eq. (3.17) to compute the microcanonical entropy:

Sm = kB ln Ω̃(E) ≃ 3NkB ln

(
L

h

)
+

3N

2
kB ln (2mEπ)− kB ln

[(
3N

2
− 1

)
!

]
+O(N) , (3.18)

where the last term, O(N) includes a bunch of subdominant term that involve, for instance, δE. Let us
try to simplify further the expression of Sm, by using

Stirling formula: n! ∼
√
2πn

(
n
e

)n ⇒ lnn! ≃ n ln
(
n
e

)
+ o(n) where a = o(n) if a

n →
n→∞

0. Using Stirling
formula to expand the factorial in Eq. (3.18) we obtain

Sm ≃ NkB ln

[
V

(
4mEeπ

3Nh2

)3/2
]

(3.19)

A number of comments are in order:
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3.1. THE MICROCANONICAL ENSEMBLE

Figure 3.1: If we can label our particles, they are distinguishable and all these configurations are different.
They should thus all be included in the computation of Ω(E). If the particles are undistinguishable, all these
configurations are identical and we have overestimated Ω(E) by a factor of N !.

• The fact that Sm → ∞ as N → ∞ legitimates disregarding the term δE.

• Sm increases with E as expected. This grants the positivity of the temperature of the ideal gas
1
T = ∂S

∂E > 0.

• Sm is not extensive. One can easily check that Sm(λE, λV, λN) ̸= λSm(E, V,N). While we have a
factor E/N in Sm, that is intensive, the isolated factor of V is not.

Indistinguishibility: The super-extensivity of the ideal-gas entropy calculated above indicates that there
is an issue with our computations. Indeed, for an ideal gas of indistinguishable particles, we expect the
entropy to be extensive from thermodynamics consideration. This was first discussed by Gibbs and is
(unfortunately) called the Gibbs paradox in the context of the mixing of two gases.

Let us first note that the computation is perfectly correct if particles are distinguishable, i.e. if we can
label them and track them, as illustrated in Fig. 3.1. This is what our computation did: we gave a position
qi to particle i and counted all {qi} as distinct configurations. For indistinguishable particles, however, we
have overcounted configurations since we have counted as different states configurations of particles with
identical positions and permutations of labels. This is wrong since {qi} and {qσ(i)}—with σ a permutation
of {1, . . . , N}—do not correspond to different configurations when the particles are indistinguishable.

To sum up, if particles are distinguishable, permutations of particle labels create new configurations
and the entropy is indeed superextensive. On the other hand, if the particles are indistinguishable,
swapping particle labels do not create new configurations and we have to correct our estimate of Ω(E) by
dividing it by a factor of N !. Then the entropy becomes

Sm(E) ≃ NkB ln

[
eV

N

(
4πemE

3Nh2

)3/2
]
. (3.20)

The entropy of the ideal gas is now, as expected, extensive.

Intensive thermodynamics variables. In the infinite system limit, in which thermodynamic hold, Sm is
. . . infinite! It is thus often more practical to work with its intensive counterpart. From Eq. (3.20), one
defines the entropy density as s = Sm

N , which is a function of the free volume per particle, v = V
N , and

the energy density, e = E
N , that are both intensive quantities.

Comment: In quantum mechanics, particles are waves and cannot be distinguished if they are of the same
nature. They should thus be treated as indistinguishable.
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CHAPTER 3. EQUILIBRIUM STATISTICAL MECHANICS

Figure 3.2: Sketch of the entropy of a two-level systems, highlighting the positive and negative temperature
regions.

Thermodynamics quantities: By taking the log of Ω(E), i.e. the normalization factor of the microcanonical
probability distribution, we have determined the entropy, which is the thermodynamic potential of the
microcanonical ensemble. From its knowledge, we can now determine other thermodynamic observables.
This pattern will happen again in all the ensembles that we will construct.

We thus use Eq. (3.20) to compute the thermodynamic quantities for the ideal gas. From 1
Tm

= ∂Sm
∂E =

3
2ENkB, we get

E =
3

2
NkBTm (3.21)

cV =
∂E

∂Tm
=

3

2
NkB (3.22)

3.1.3 Discrete systems: the two-level system

In many systems, the variations of energy are not (solely or at all) due to motion in space, but instead
are due to changes in discrete observables. An important example is that of localized electrons on a
lattice i the presence of a magnetic field. Taking into account the g ratio of the electrons, their energy
is E = −µh

∑N
i=1 σi − J

∑
iV j σiσj where µ is the magnetic moment of the electrons, J is the exchange

energy, σj = ±1 is a normalized spin, and iV j refers to a sum over nearest neighbors, which is also often
noted ⟨i, j⟩. We will come back to this important example in Chapter 4, when we study the Ising model.
For now, we discuss the simplest of discrete systems.

Two level systems: We consider N non-interacting atoms on a lattice that can be in two energy levels,
with energy 0 or ε. Then H =

∑N
i=1 εi = nε = pNε, where n ∈ {0, . . . , N} and p is the fraction of atoms

with energy ε. Since the atoms have fixed positions, they are distinguishable and

Ω(E = pNε) =

(
N

Np

)
=

N !

(pN)!(N − pN)!
(3.23)

which is the number of ways to choose pN atoms among N . We use Eq. (3.23) together with Stirling
formula to compute the entropy,

Sm = kB lnΩ(E) ≃ −kBN [p ln p+ (1− p) ln(1− p)] (3.24)

with p = E
Nε . Sm(E) is sketched in Fig. 3.2.
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3.1. THE MICROCANONICAL ENSEMBLE

Figure 3.3: Sketch of the relationship between the temperature and the energy of a two-level systems.

We see that Sm → 0 both for p → 0 and p → 1, since in both cases there is only one possible
configuration corresponding respectively to E = 0 or E = N . As a consequence, Sm is not a monotonous
function, and the temperature can be negative. In particular,

1

Tm
=
∂S

∂E
=
∂Sm
∂p

∂p

∂E
=
kB
ε

ln

(
1− p

p

)
< 0 if p >

1

2
(3.25)

The positive-T region corresponds to E < Nε/2 while the negative-T region corresponds to E > Nε/2,
as shown in Fig. 3.3.

Inverting this relation and using eε/kBT = 1−p
p , one obtains for the energy:

E =
Nε

1 + eε/kBT
(3.26)

and for the heat capacity:

cV =
dE
dT

= NkB
ε2

(kBT )2
eε/kBT

(1 + eε/kBT )2
(3.27)

We observe an exponential decay of the heat capacity in the limit T → 0, which is typical of systems with
an energy gap (as opposed to the continuous values of H for a classical ideal gas).

3.1.4 Large systems and thermodynamics

3.1.4.1 Macrostates

As for the kinetic theory of gases, the microscopic configurations of the system, referred to as microstates
Cm, often contain too much information on the system. One may then be more interested into coarse-
grained descriptions of the system. A standard way to proceed is to group microstates together into
macrostates CM , based on some common property of interest.

For example, in a spin systems, a microstate Cm is defined by the values (S1, . . . , SN ) of spins. A
macrostate CM (m) can be defined by the system magnetization

m =
1

N

N∑
i=1

Si (setting µ = 1) . (3.28)
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CHAPTER 3. EQUILIBRIUM STATISTICAL MECHANICS

Figure 3.4: Schematic representation of a system S in the microcanonical ensemble, divided between two
subsystems S1 and S2 that can exchange energy. The volume and particle number of both subsystems are fixed
and, for simplicity, we choose them equal: V1 = V2 = V , N1 = N2 = N .

The macrostate is then defined as

CM (m) = {Cm, such that
1

N

∑
i

Si = m} (3.29)

There are 2N microstates Cm and only N+1 macrostates CM , since Nm ∈ {−N,−N+2,−N+4, . . . , N−
2, N}. It represents a strong dimensional reduction, which justifies the terminology "micro" vs "macro".
By construction, the probability of a macrostate is

P (CM ) =
∑

Cm∈CM

P (Cm) . (3.30)

Since there are typically many Cm’s within one macrostate CM , we can often simplify P (CM ) to extract
meaningful information on the macrostates. This will be an example of the concept that we discussed in
the introduction: More is simpler.

An important example where the use of macrostate plays an important role is the phenomenon of
equilibration, when two system systems are put into contact.

3.1.4.2 Sub-systems and equilibration

Consider an isolated system S divided into two subsystems S1 and S2 that can exchange energy, as in
Fig. 3.4, so that the any microstate of the full system can be written as C = C1 ⊗ C2. We assume the
subsystems to be sufficiently large such that the interaction energy can be neglected and the total energy
can be expressed simply as the sum of the energy of the two subsystems, E ≃ E1+E2. We denote Ω1(E1)

the number of configurations C1 of S1 with energy E1 and Ω2(E2) the number of configurations C2 of S2
with energy E2. Because the full system is isolated, the probability to observe a configuration C of the
total system is given by the microcanonical measure

PE(C) = P (C1, C2) =
1

Ω(E(C))
δ(E(C)− E) (3.31)

where Ω(E) =
∑

E1
Ω1(E1)× Ω2(E2 = E − E1).
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3.1. THE MICROCANONICAL ENSEMBLE

Figure 3.5: Sketch of the variation of the entropy density s1(E1) + s2(E − E1). The integral in Eq. (3.37) is
dominated by the vicinity of E∗

1 , which maximizes the entropy density of the macrostate of energy E1.

Typical values of E1 and E2. We want to use Eq. (3.31) to characterize the fluctuations of E1 and
E2 = E − E1. To do so, we consider the corresponding macrostate given by all the microstates (C1, C2)
such that E(C1) = E1. The probability of this macrostate is given by the sum of the probabilities of the
microstates it contains:

P (E1, E2 = E − E1)︸ ︷︷ ︸
P (E1)

=
∑

C1,C2|E1+E2=E

1

Ω(E1 + E2)
(3.32)

=
1

Ω(E1 + E2)

∑
C1|E(C1)=E1

∑
C2|E2=E−E1

1 (3.33)

=
1

Ω(E1 + E2)

∑
C1|E(C1)=E1

Ω2(E − E1) (3.34)

=
Ω1(E1)× Ω2(E2)

Ω(E)
(3.35)

Let us now show that P (E1) is peaked at a typical value E∗
1 . In large systems, we replace

∑
E1

with
an integral, assuming E varies smoothly, and write

Ω(E) ≃
∫

dE1Ω1(E1)Ω2(E − E1) (3.36)

Using the definition of microcanonical entropy, this becomes

Ω(E) =

∫
dE1e

S1(E1)
kB

+
S2(E−E1)

kB =

∫
dE1e

N
kB

[s1(E1)+s2(E−E1)] (3.37)

where in the last step we introduced the intensive entropy densities si ≡ Si
N ∼

N→∞
O(1). In the large N

limit, the integral is strongly dominated by the maximum E∗
1 of ϕ(E1) = s1(E1)+s2(E−E1), as sketched

in Fig. 3.5. Let us now show how to compute the corresponding value of Ω(E).

Saddle point approximation

We want to approximate the integral I =
∫ b
a dxeNϕ(x) as N → ∞ when ϕ(x) is a real function with a
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CHAPTER 3. EQUILIBRIUM STATISTICAL MECHANICS

Figure 3.6: In the large N limit, only the vicinity of x0 plays a role in the integral of φN (x) = eNϕ(x).

maximum at x = x0 ∈ (a, b) and ϕ(x) ∼
N→∞

O(1). Taking a Taylor expansion around the maximum:

I =
∫ b

a
dxe

N
[
ϕ(x0)+(x−x0)ϕ

′(x0)︸ ︷︷ ︸
=0

+ 1
2
(x−x0)2ϕ

′′(x0)︸ ︷︷ ︸
<0

+...
]

≃ eNϕ(x0)

∫ b

a
dxe−

N
2
(x−x0)2|ϕ′′(x0)| = eNϕ(x0)

√
2π

N |ϕ′′(x0)|

In the last step, we have used that only the vicinity of x0 plays a role in the integral of φN (x) = eNϕ(x)

so that we can replace the limits [a, b] by (−∞,∞), as sketched in Fig.
Comment: We could expand the terms neglected in the first line to obtain the series of moments of a

Gaussian distribution. One then check that, in the limit N → ∞, these terms are subdominant.
By applying the saddle point approximation to Ω(E), one then finds2:

Ω(E) ≈
N→∞

e
N
kB

[s1(E∗
1+s2(E−E∗

1 )] (3.38)

where E∗
1 is such that ϕ′(E1) = 0. Multiplying this condition by N leads to the following saddle-point

condition for E∗
1 :

S′
1(E

∗
1)− S′

2(E − E∗
1) = 0 . (3.39)

Using Eq. (3.38) into Eq. (3.32) we then find that the probability distribution of E1 is given by:

P (E1) =
1

Ω(E)
e

N
kB

[s1(E1)−s2(E−E1)] ≈ e
N
kB

[s1(E1)−s1(E∗
1 )+s2(E−E1)−s2(E−E∗

1 )] (3.40)

One sees that P (E1) →
N→∞

0 if E1 ̸= E∗
1 . In the large-size limit, the distribution of E1 is thus sharply

peaked around the typical value E∗
1 .

We note that condition (3.39) states that the value of the energy E1 that dominates the probability
P (E1) is such that the subsystems S1 and S2 have the same microcanonical temperatures:

dS1
dE1

∣∣∣∣
E∗

1

=
dS2
dE2

∣∣∣∣
E∗

2=E−E∗
1

⇔ Tm,1 = Tm,2 . (3.41)

This is sometimes referred to as the 0th law of thermodynamics: Large isolated systems that are put in
contact relax to a state where their temperatures are equal.

2here a ≈ b refers to a logarithmic equivalence, i.e. that ln a ∼
N→∞

ln b so that polynomial prefactors of a and b in N are
neglected.
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Since E∗
1 maximises the total entropy of the isolated system, S(E) = S1(E

∗
1) + S2(E

∗
2), we find that

the heat capacities c1V and c2V are positive:

∂2S1
∂E2

1

+
∂2S2
∂E2

2

< 0 ⇔ 1

c1V
+

1

c2V
> 0. (3.42)

As we discuss below, the positivity of the heat capacity is a requirement for the thermodynamic stability
of the system.

(Nonequilibrium) entropy of a macrostate. We note that Ω1(E1) × Ω2(E − E1) is the total number
of microstates in the macrostate of energy E1. In the literature, it is not uncommon to see ϕ(E1) =

1
NkB

log[Ω1(E1)×Ω2(E−E1)] called the "entropy" density of the macrostate of energy E1, or the "nonequi-
librium entropy" density of the macrostate of energy E1. The derivation above then shows that, in the
large-size limit, the system "maximizes the entropy of the macrostate". The "equilibrium entropy" S(E∗

1)

is then the largest of the "nonequilibrium entropoes" S(E1). This notation can be a bit confusing, since
S = kB lnΩ(E) is defined from the density of state of the full system, while the "nonequilibrium entropy"
is defined from the density of state of a macrostate.

Fluctuations of E1: Taking the Taylor expansion of the exponent in Eq. (3.40), close to E1 ≃ E∗
1 , then

leads to a Gaussian approximation for P (E1):

P (E1) ≈ exp

− (E1 − E∗
1)

2

2kBT 2 c1V c2V
c1V +c2V

 (3.43)

We recall that, since CV = ∂E
∂T , the heat capacity is extensive: CV ∼ N . The variance of the energy thus

scales as ⟨(E1−E∗
1)⟩ ∼ CV ∼ N and typical fluctuations around the mean value E∗

1 scale as ∼
√
N . Since

E∗
1 ∝ N , the relative fluctuations of E∗

1 are negligible in the large-size limit.

Third law of thermodynamics: From the definition of heat capacity, one has that

S(T )− S(0) =

∫ T

0
dT ′ cV

T ′ . (3.44)

At low temperatures, quantum fluctuations become important and classical statistical mechanics is not
valid anymore. At T = 0, the system is in the ground state so that S = kB ln g, where g is the degeneracy
of the ground state. The third law of thermodynamics is that limT→0 S(T ) = S0 is a constant finite
number. If g = 1, S(0) = 0. Typically, quantum fluctuations make g subextensive so that S(0) ≪ N and

S(T ) ≃
∫ N

0
dT

cV
T ′ . (3.45)

Second law of thermodynamics: Take two systems with initial energues E1 and E2. Let them evolve in
contact with each other until they reach a global microcanonical equilibrium. The discussion above show
that they relax to E∗

1 and E∗
2 such that

Sfinal = S1(E
∗
1) + S2(E

∗
2) ≥ Sinitial = S1(E1) + S2(E2) . (3.46)

This tells us that the entropy of the isolated system S = S1 ∪ S2 has increased, in agreement with the
second law of thermodynamics which holds in the limit N → ∞.
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Figure 3.7: Sketch of an isolated system in equilibrium at volume V , with a piston exerting a force F on the
system.

3.1.4.3 Pressure and the 1st law of thermodynamics

Consider an isolated system maintained at a volume V using a piston, as in Figure 3.7. To keep the
volume fixed, the piston exert a force F = faA on the system, where A is the area of the right wall and
fa is the force per unit area.

Consider compressing the system so that the right wall moves by a distance dx. The corresponding
work exerted on the system is dW = faAdx = fadV , with the system energy evolving as E → E+ fadV .
The entropy then evolves as Sm(N,V,E) → Sm(N,V + dV,E + dE) with

dSm = Sm(N,V + dV,E + dE)− Sm(N,V,E) (3.47)

=
∂Sm
∂V

dV + dE
∂Sm
∂E︸ ︷︷ ︸
1/Tm

=
∂Sm
∂V

dV + fadV
1

T
(3.48)

Let us now consider that the piston exerces a force that exactly balance the force exerted by the gas on
the piston. The latter does not move and the system does not evolve, so that dSm = 0 and ∂Sm

∂V = −fa
T .

This last equality can be seen as a force balance: at steady state, the system exerts back a force per unit
area that balances fa, which is the pressure

Pm = T
∂Sm
∂V

. (3.49)

Eq. (3.48) can thus be written as

dSm =
Pm

T
dV +

dE

Tm
(3.50)

or equivalently
dE = TmdSm − PmdV , (3.51)

which is the first law of thermodynamics.

Summary:

• We have shown how, for any finite system, we can compute Ω(E) (or the dimensionless Ω̃(E)) to
characterize the probability of microstates in the microcanonical ensemble.

• We can then compute S(E) in the large N limit to construct thermodynamic observables such as
the heat capacity and the pressure.
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Figure 3.8: Schematic representation of a system S in contact with a thermostat. The system exchanges energy
∆E with the thermostat but their respectives particle numbers and volumes are constant.

• When interested in a given observable M , we can define the corresponding macrostates CM = {Cm},
which are collections of microstates with the same values of M . Their probability distributions are
given by P (CM ) = Ω(CM )

Ω(E) , where Ω(CM ) is the number of microstates within CM . In the large system
limit, P (CM ) can then be expressed in a simpler form thanks to a saddle point approximation in the
computation of Ω(E). When the "non-equilibrium" entropy of the macrostate, S = kB log Ω(CM ) is
extensive, this leads to a form of typicality where the measure P (CM ) becomes concentrated around
a typical value of the observable M .

Let us now show how the concepts of macrostate introduced above can be used to change ensemble.

3.2 Canonical ensemble

3.2.1 Changing ensemble: the Boltzmann weight

Canonical distribution.

In the scenario sketched in Fig. (3.8), the system S and the thermostat are isolated but exchange
energy with each others. This implies that the total energy Etot = ES + Rth is fixed, while ES and
Eth can fluctuate. We assume that the system and the thermostat are both sufficiently large that the
interaction energy between them can be neglected. Furthermore, the thermostat is considered much larger
than the system, and Eth ≫ Es. Since the total system comprising the system S and the thermostat is
isolated, the probability of a microstate C = (CS , Cth) is given by the microcanonical distribution

Ptot(C) =
1

Ω tot(Etot)
δEth,ES−Etot (3.52)

Since we are interested in the property of the system S only, we define a macrostate of the full system
as

ĈS = {C = {CS , Cth} with CS fixed, and Cth such that Eth(Cth) = Etot − ES(CS)} (3.53)

Eq. (3.53) can be seen as a marginalization of the thermostat. For simplicity, we identify P (ĈS) = P (CS).
Then,

P (CS) =
∑
C∈ĈS

Ptot(C) =
1

Ωtot(Etot)

∑
Cth|E(Cth)=Etot−E(CS)

1 =
Ωth[Etot − E(CS)]

Ωtot(Etot)
(3.54)
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where Ωth(Etot) in the numerator counts the number of microstates of the thermostat with energy Eth =

Etot − E(CS). Using the definition of the microcanonical entropy, we rewrite Eq. (3.54) as

Ptot(ĈS) =
e

1
kB

Sth
m (Etot−E(CS))

Ωtot(Etot)
. (3.55)

Since Etot ≫ E(CS), we expand

Sth
m (Etot − E(CS)) ≃ Sth

m (Etot)− E(CS)
∂Sth

m (Etot)

∂E
= Sth

m (Etot)−
E(CS)
T th
m

. (3.56)

All in all, we find

P (CS) =
Ωth(Etot)

Ωtot(Etot)
e
− E(CS)

kBT th
m =

1

Z
e−βE(CS) . (3.57)

Here, β = 1
kBT th

m
is the inverse temperature (in J−1) of the thermostat, and Z = Ωtot(Etot)

Ωth(Etot)
is a normal-

ization constant, which does not depend on the system configuration and ensures normalization through∑
CS P (CS) = 1. As such, it can be directly expressed as a function of β only, as

Z =
∑
CS

e−βE(CS) (3.58)

Comments:

• Eq. (3.57) is called the canonical distribution or the Boltzmann weight.

• Z is called the partition function. It only depends on the thermostat only through its (inverse)
temperature β.

• While systems in the microcanonical ensemble are characterized by N , E and V , the system is here
controlled by N , T , V , where T is the microcanonical temperature of the thermostat.

We define the Helmholtz free energy as

F (N,V, T ) = −kBT lnZ(N,V ;T ) . (3.59)

Continuous systems.

For a continuous classical systems described by N pairs of positions q⃗i and momenta p⃗i, the Boltzmann
weigth is given by:

P ({q⃗i, p⃗i}) =
1

Z
e−βH({q⃗i,p⃗i}) (3.60)

Z =

∫ ∏
i

d3q⃗id
3p⃗ie

−βH({q⃗i,p⃗i}) (3.61)

⟨O⟩ =
1

Z

∫ ∏
i

d3q⃗id
3p⃗iO({q⃗i, p⃗i})e−βH({q⃗i,p⃗i}) (3.62)
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To make the partition function independent of the choice of units, and to makes sure that classical
statistical mechanics agree with quantum mechanics, the phase space measure and the partition function
are both rescaled by h3N , leading to the modified expressions:

P ({q⃗i, p⃗i}) =
1

Z̃
e−βH({q⃗i,p⃗i}) (3.63)

so that

⟨O⟩ = 1

Z̃

∫ ∏
i

d3q⃗id
3p⃗i

h3
O({q⃗i, p⃗i})e−βH({q⃗i,p⃗i}) (3.64)

with

Z̃ =

∫ ∏
i

d3q⃗id
3p⃗i

h3
e−βH({q⃗i,p⃗i}) . (3.65)

From a classical perspective, both formalisms are entirely equivalent. Therefore, for simplicity, we drop
the˜notation in the following.

Indistinguibility: If the N degrees of freedom describe indistinguishable particles, then, as in the micro-
canonical ensemble, we have overcounted the number of configurations in Z. So the final correct expression
for the partition function is:

Z̃ =
1

h3NN !

∫ ∏
i

d3q⃗id
3p⃗ie

−βH({q⃗i,p⃗i}) (3.66)

Note, however, that the same overcounting is present in the integrals entering the average ⟨O⟩ in Eq. (3.67)
so that the measure also has to be corrected:

⟨O⟩ = 1

Z̃

∫ ∏
i

1

N !

d3q⃗id
3p⃗i

h3
O({q⃗i, p⃗i})e−βH({q⃗i,p⃗i}) . (3.67)

While the factors of h and N ! enter the calculation of the thermodynamic functional (in the correct way!),
they do not impact any average that we do in the canonical ensemble as long as N and the number of
degrees of freedom are constant. When considering subsystems in which the number of particles can
fluctuates or transition between states with different numbers of degrees of freedom are allowed, then the
factors of N ! and h3 can appear at the classical level. See, e.g., exercise 4 of Pset 5, "Equilibrium ratio
between atomic and molecular forms".

Equipartition theorem: Consider an Hamiltonian H(x1, · · · , x2N ), where x1, · · · , xN = q1, · · · , qN and
xN+1, · · · , x2N = p1, · · · , pN . Notice that in order for Z to be finite, the Hamiltonian H must diverge for
xi → ∞, ∀i .(This is automatically true for a gas in a box). One computes:

⟨xi
∂H

xℓ
⟩ = 1

ZN !

∫ ∏
n

dq⃗ndp⃗n
h3

∂H

∂xℓ
e−βH · xi =

IBP

kBT

ZN !h3N

∫ ∏
n

dq⃗ndp⃗n
h3

e−βH ∂xi
∂xℓ

= kBTδi,ℓ (3.68)

where we made use of the integration by part in the one-before-last equality. If xi = pi and xℓ = pℓ one
gets:

⟨pipℓ
2m

⟩ = kBT

2
δi,ℓ (3.69)

One recovers that each quadratic degree of freedom contributes kBT
2 to the average energy.
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3.2.2 Two examples: ideal gas & two-level systems

Ideal gas: Consider N noninteracting indistinguishable particles with H =
∑N

i=1
p⃗i

2

2m .
The partition function is:

Z(N,T, V ) =
1

h3NN !

∫ ∏
i

d3q⃗id
3p⃗ie

−β
∑N

i=1

p⃗2i
2m =

1

N !

(
V

Λ3

)N

, (3.70)

where Λ =
√

h2

2πmkBT is the thermal de Broglie wavelength. As we will see in the Chapter on statistical
quantum mechanics, it is the length scale below which quantum effects start to play an important role
and classical statistical mechanics is not sufficient anymore.

The Helmholtz free energy reads:

F = −kBT lnZ ≃ −NkBT ln

(
eV

NΛ3

)
(3.71)

Notice that the computations for Z and F are much easier than the corresponding computations for Ω

and S in the microcanonical ensemble.

Two-level systems: Consider N indistinguishable particles with energy εi = 0, ε. One microscopic config-
uration is C = {ε1, . . . , εN}. The partition function and the Helmholtz free energy read:

Z =
∑
C
e−β

∑
i εi =

∑
ε1

e−βε1 ·
∑
ε2

e−βε2 · · ·
∑
εN

e−βεN =
(
1 + e−βε

)N
(3.72)

F = −kBT lnZ = −NkBT ln
(
1 + e−βε

)
. (3.73)

3.2.3 Fluctuations of energy and ensemble equivalence

Contrary to the microcanonical ensemble, the energy of configurations can now vary. Let’s characterize
the corresponding fluctuations.

Finite system: The partition function Eq. (3.58) closely resembles the moment-generating function for
the energy:

∂Z

∂(−β)
=
∑
C
E(C)e−βE(C) = Z⟨E⟩ (3.74)

⇒ ⟨En⟩ = (−1)n

Z(β)

∂nZ(β)

∂βn
(3.75)

The relationship between the moment-generating function Q(λ) and Z can be explicitly written by using
the definition of Q(λ):

Q(λ) = ⟨eλE⟩ = 1

Z

∑
C
e(λ−β)E =

Z(β − λ)

Z(β)
. (3.76)

Similarly, the cumulant-generating function is defined as:

Ψ(λ) = lnQ(λ) = lnZ(β − λ)− lnZ(β) so that ⟨En⟩c = (−1)n
∂n

∂βn
(−βF ) . (3.77)
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where ⟨En⟩c are the cumulants of the energy distribution. The Helmholtz free energy is (almost) the
cumulant-generating function of the energy. As you can see, equilibrium statistical mechanics is (almost)
a beautiful theory, albeit with some inconvenient factors and signs inherited from thermodynamics.

Probability distribution in the large size limit: Let us further characterize P (E). Using Eq. (3.43) for the
case of system+thermostat one gets:

P (E) ∝ exp

− (E − E∗)2

2kBT 2 cthV cV
cthV +cV

 (3.78)

which, in the limit cthV ≫ cV , becomes

P (E) ∝ e
− (E−E∗)2

2kBT2cV (3.79)

with E∗ such that ∂Sm
∂E

∣∣
E∗ = 1

T . The same result can be derived directly from the canonical distribution
P (C) = 1

Z e
−βE :

P (E) =
1

Z

∑
C|E(C)=E

e−βE =
Ω(E)e−βE

Z
=
e−β[E−TS]

Z
(3.80)

Z =
∑
C
e−βE =

∑
E

Ω(E)e−βE =
1

dE

∑
E

dEΩ(E)e−βE ≃ 1

dE

∫
dEe−β[E−TS(E)] (3.81)

E and S(E) are extensive quantities which scale ∼ N in the large N limit. As a consequence, for large
system size, the integral is dominated by the maximum E∗ such that ∂Sm

∂E

∣∣
E∗ = 1

T . As a consequence,
Z ≈ e−β[E∗−TSm(E∗)] and P (E) ≃ e−β[E−E∗−TSm(E)+TSm(E∗)]. Expanding around E∗ and normalizing
the resulting Gaussian distribution, one finally obtains:

P (E) =
e

−(E−E∗)2

2cV kBT2√
2πcV kBT 2

. (3.82)

Ensemble equivalence: Since P (E) is Gaussian, E∗ = ⟨E⟩. One can check that3

lim
σ→0

1√
2πσ2

e
−(x−x0)

2

2σ2 = δ(x− x0) (3.83)

so that P (E) converges in distribution to δ(E−E∗), which is the microcanonical distribution at an energy
E∗ such that

∂Sm
∂E

∣∣∣∣
E∗

=
1

T
. (3.84)

In practice, in the microcanonical ensemble one fixes E and T adapts to satisfy Eq. (3.84). Conversely,
in the canonical ensemble one fixes T and ⟨E⟩ = E∗ adapts according to Eq. (3.84). As a consequence,
for any observable O(E) that increases at most polynomially in E, in the large N limit:

⟨O(E)⟩micro =

∫
dEδ(E − E∗)O(E) = O(E∗) (3.85)

⟨O(E)⟩cano =

∫
dEω(E)O(E)

e−βE

Z
∼︸︷︷︸

N→∞

∫
dEO(E)δ(E − E∗) = O(E∗) . (3.86)

3Simply integrate the left hand side against a function f(x) that you Taylor expand around x0. Carrying out the integrals
order by order and sending σ to 0 will yield f(x0).
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Figure 3.9: Left: Sketch of a scenario where S(E) is a concave function and the equivalence of ensemble holds.
For any value of E, we can find a temperature such that E∗(T ) = E. Right: Sketch showing a non-concave
entropy function S(E) and its implications for the canonical ensemble. For a given value of T , there might be
several value E∗

i such that 1
T = S′(E∗

i ). In such a case, only the value of E∗
i that maximizes globally S(E)− E

T

is observed. In this case, E∗
3 .

This means that, in the large-limit size, the microcanonical ensemble at energy E∗ and the canonical
ensemble at temperature T are equivalent, in the sense that they give the same predictions for the result
of measurements, provided that E∗ and T are linked via Eq. (3.84). This is the main result of the
saddle-point approximation, valid for large N . It also explains why computing thermodynamic potentials
in microcanonical and canonical ensemble will lead to equivalent forms in the thermodynamic limit,
provided intensive and extensive control parameters like T and E are properly connected.

Ensemble inequivalence: an interesting exception. Equation (3.58) defines the set of accessible tempera-
tures, and one can ask whether it is always possible to find a temperature such that ⟨E⟩cano = E∗, for all
E∗. In fact, this holds true only when the entropy function S(E) is concave, as sketched in the left panel
of Fig. 3.9, ensuring that T (E) is a one-to-one mapping. Certain systems, such as those with long-range
interactions, exhibit non-concave entropies, as sketched in the right panel of Fig. 3.9.

In such cases, the non-concave region in the microcanonical ensemble is not accessible in the canon-
ical ensemble, leading to a first order phase transition, as sketched in Fig. 3.10. This demonstrates a
fundamental inequivalence between ensembles. For more details, we refer the reader to [1].

Figure 3.10: In the presence of a non-concave entropy, the energy values inside the non-concave region [E1, E2]

cannot be accessed in the canonical ensemble. Changing T thus leads to to a discontinuous jump of energy at
some temperature Tc which is the common tangent to Sm(E) in E1 and E2.
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Figure 3.11: Schematic representation of a system in contact with a thermostat. The volume of the system is
controlled by a piston that exerts a force Fw on the system.

Relation between F (T ) and S(E): Using the result from the saddle-point approximation in Eq. (3.59),
we get for the Helmholtz free energy:

F (T ) = E∗ − TSm(E∗) (3.87)

with E∗ = argmax [E − TSm(E)]. Eq. (3.87) corresponds to the thermodynamic definition of Helmholtz
free energy F = U − TS, where U = ⟨E⟩ = E∗. Here, we use these terms interchangeably.

Notice that −βF = sup
E

[
k−1
B Sm(E)− βE

]
is the Legendre transform of (−k−1

B Sm(E)) with respect to

E. As before, the sign and factor of β is an unfortunate heritage from thermodynamics. If Sm(E) is a
concave function, we have complete equivalence of ensemble and one can obtain Sm(E) from F (β) by in-
verting the Legendre transform, −k−1

B Sm(E) = sup
β

[βF (β)− βE]. To read more on ensemble equivalence,

it is useful to rephrase equilibrium statistical mechanics, as done in the review article [2].

Gibbs entropy: So far, we have exclusively used the Boltzmann definition of entropy S(E) = Sm(E) =

kB lnΩ(E). However, we can also define an entropy in the canonical ensemble, using Gibbs definition:

Sc(T ) = −kB
∑
C
Pc(C) lnPc(C) = −kB

Z

∑
C
e−βE(C) [−βE(C)− lnZ] (3.88)

=
1

T
⟨E(C)⟩+ kB lnZ

∑
C e

−βE(C)

Z︸ ︷︷ ︸
=1

⇒ Sc(T ) =
⟨E⟩
T

− F

T
. (3.89)

This function, Sc(T ), is, in general, different from Sm(E) = kB log Ω(E). However, in the large N limit,
thanks to the saddle-point relation leading to ⟨E⟩ = E∗ and F = E∗−TSm, one recovers the equivalence
of the two definitions of entropy: Sc(T ) = Sm(E∗(T )). More generally, if microcanonical and canonical
ensembles are equivalent at large N , we should be able to construct the same thermodynamics from each
of them.
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3.2.4 Thermodynamics from the canonical ensemble perspective

Let us now show that the mechanical pressure exerted by the system is P = − ∂F
∂V

∣∣
T
. Consider the setup

sketched in the figure 3.11. The system exchanges energy with the thermostat and experiences a force Fw

due to the piston. The piston wall can be modeled as a repulsive potential that diverges at position L,
with Vw(x) = Ṽw(x− L). The total Hamiltonian of the system is given by:

Htot = H0 +

N∑
i=1

Ṽw(xi − L) (3.90)

The total force exerted by the piston on the particles is Fw = −
∑N

i=1 ∂xV (xi − L) and the variations of
the volume due to the moving piston obey dV = AdL so that:

−∂F
∂V

∣∣∣∣
T

= − 1

A

∂F

∂L

∣∣∣∣
T

= −kBT
A

∂ lnZ

∂L

∣∣∣∣
T

= −kBT
AZ

∂Z

∂L

∣∣∣∣
T

(3.91)

Using Eq. (3.90) in the definition of Z, one gets:

1

Z

∂Z

∂L
=

1

h3NN !Z

∫ ∏
i

dΓi

(
N∑
i=1

β∂xV (xi − L)

)
e−βHtot = β

〈∑
i=1N

∂xV (xi − L)

〉
= β⟨Fx⟩ (3.92)

from which it follows that:
P =

⟨Fx⟩
A

= − ∂F

∂V

∣∣∣∣
T

(3.93)

Consistency with the microcanonical result. In the microcanonical ensemble, we have shown that dS =
1
T dU + p

T dV , where U = E, the imposed energy. We now have that F = U − TS, with U = E∗(V, T ).
Differentiating F with respect to the volume thus yields

∂F

∂V

∣∣∣∣
T

=
∂U

∂V

∣∣∣∣
T

− T
∂S

∂V

∣∣∣∣
T

. (3.94)

Since the first law states that dS = dU
T + p

T dV , we can express U as a function of T and V to get

dS =
1

T

[ ∂U
∂V

∣∣∣∣
T

dV +
∂U

∂T

∣∣∣∣
V

dT
]
+
p

T
dV so that T

∂S

∂V

∣∣∣∣
T

= P +
∂U

∂V

∣∣∣∣
T

, (3.95)

which yields back P = − ∂F
∂V

∣∣
T
, as expected.

Canonical entropy Sc = − ∂F
∂T

∣∣
V

. Now that we have related ∂F
∂V

∣∣
T

to a thermodynamic observable, let us
turn to ∂F

∂T

∣∣
V

. Starting from the definition of F , we find:

∂F

∂T

∣∣∣∣
V

=
∂

∂T
(−kBT lnZ) = −kBT lnZ

T
+

1

T

∂

∂β
lnZ︸ ︷︷ ︸

−⟨E⟩

=
F

T
− ⟨E⟩

T
(3.96)

where we have used the fact that ∂
∂T = − 1

kBT 2
∂
∂β . It follows that:

∂F

∂T

∣∣∣∣
V

= −Sc(T, V ) =
N→∞

−Sm(U, V ). (3.97)
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This is, again, consistent with the first law (check as an exercise, starting from the differential dF =
∂F
∂T

∣∣
V
dT + ∂F

∂V

∣∣
T
dV = −SdT − pdV ).

Heat. Finally, we note that our system can now exchange energy with the environment in a form that is
not work. This allows us to introduce the concept of heat δQ, which we define as "the energy exchanged
with the environment that is not work." When the system is continuously transformed from one state to
another, remaining equilibrated at all time (quasistatic, reversible transformation), then we have that

δQ = TdS . (3.98)

This is consistent with the relation CV = T dS
dT ≃ δQ

δT that we have used several times.

Summary. In the large N limit, the concentration of the measures in the statistical ensembles leads to
ensemble equivalence (when the thermodynamic potentials is either strictly concave or strictly convex).
The saddle point induces a one-to-one mapping between the control parameters, respectively T and E

in the canonical and microcanonical ensembles. As a consequence, we can choose our favorite ensemble
to compute thermodynamic functions, they will yield the correct thermodynamic observables in the large
system size limit.

Check for the ideal gas: We can check that the microcanonical and the canonical ensembles yield the same
expressions for the physical quantities in the thermodynamic limit. For the microcanonical ensemble, we
have computed:

Sm(E, V,N) = NkB ln

[
V e

N

(
4πmeE

3Nh2

)3/2
]

(3.99)

to be compared with:

Sc(T, V,N) = −∂F
∂T

= NkB ln

[
V e

N

(
2πmkBT

h2

)]
(3.100)

Using that S′
m(E) = 3

2NkB
1
E = 1

T , we find that E∗ = 3
2NkBT so that Sm(E∗, V,N) = Sc(T, V,N) and

the two expressions coincide.

3.3 The grand canonical ensemble

Figure 3.12: Left: System exchanging energy (∆E) and particles (∆N) with a thermostat. Right: System
exchanging energy and particles with a reservoir, which is itself in thermal equilibrium with a larger thermostat.
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Let us now consider the case of ‘open’ systems, which can exchange particles and energy with a reservoir
so that their particle number fluctuates. As we show below, when the total system is in the microcanonical
ensemble, these systems will be endowed with a steady-state distribution that we can construct explicitly,
which is called the grand canonical distribution.

To construct this distribution, we can proceed in two equivalent ways, as shown in Fig. 3.12. In the
left panel, one starts with a scenario similar to what we did to construct the canonical distribution: a
subsystem S exchange particles and energy with a thermostat and the total system is in the microcanonical
ensemble. Alternatively, we can consider a system S that exchange particles with a reservoir, which itself
exchanges energy with a larger thermostat, as illustrated on the right panel of Fig. 3.12.

Here, we follow this second route, which is less similar to what we have already done. Since the system
+ reservoir can exchange energy with the reservoir, they are in the canonical ensemble. We can thus
describe the probability of the microstate {Cs, CR} by the Boltzmann weight:

P (Cs, Cres) =
1

Z(T,N)
e−β[E(CS)+E(Cres)] , (3.101)

where β is the inverse temperature of the thermostat.
As before, a microstate for the system CS defines a macrostate for the system + reservoir. By marginal-

izing on the reservoir, one obtains:

P (CS) =
∑

Cres|NS+Nres=N

1

Ztot(T,N)
e−βE(Cres)−βE(CS) = e−βE(CS) 1

Ztot(T,N)

∑
Cres|Nres=N−NS

e−βE(Cres)

︸ ︷︷ ︸
Zres(T,N−Ns)

.

(3.102)
Using the definition of Helmholtz free energy and expanding Fres(T, Vres, N − NS) ≃ Fres(T, Vres, N) −
Ns

Fres
∂N , we obtain:

P (CS) =
e−βE(Cs)+βµN(Cs)

Q
(3.103)

where we defined the chemical potential of the reservoir:

µres =
∂Fres(T, V,N)

∂N
(3.104)

and the grand canonical partition function:

Q =
∑
CS

e−βE(CS)+βµN(CS) =
∑
N

eβµN
∑

CS |N(CS)=N

e−βE(CS) =
∑
N

eβµNZc(T, V,N) =
∑
N,E

eβ[µN−E+TSm] .

(3.105)
We also introduce the fugacity

z ≡ eβµ (3.106)

so that
Q =

∑
N

zNZc(T, V,N) , (3.107)

and the grand potential:
G = −kBT lnQ (3.108)
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3.3.1 Fluctuations and large V limit

The quantity N now fluctuates and is determined, in the large V limit, by the chemical potential in
Eq. (3.104). Notice that µ = ∂NF ∼

N→∞
O(1) since F ∼ O(N) is extensive. The chemical potential is an

intensive quantity, like the temperature. To take the large system limit, we can now only send V → ∞,
as it is the sole remaining extensive parameter, keeping T and µ constant.

Fluctuations of N: Using ∂
∂µ = ∂z

∂µ
∂
∂z = βz ∂

∂z we obtain the moment of N as:

⟨Nn⟩ = 1

Q

∂nQ

∂(βµ)n
=

1

Q

(
z
∂

∂z

)n

Q . (3.109)

The first derivative ∂
βµ means that we take a derivative of Q with respect to the variable y = βµ, keeping

β constant. A useful case is n = 1:

⟨N⟩ = ∂ lnQ

∂βµ
= z

∂

∂z
lnQ . (3.110)

The cumulants of N are obtained in a similar way:

⟨Nn⟩ = −β
(
z
∂

∂z

)n

G , (3.111)

where we have used that ⟨eλN ⟩ =
Q(µ+λ

β
)

Q(µ) to get the cumulant generating function ψ(λ) = lnQ(µ+ λ
β )−

lnQ.
The typical fluctuations of N are then given by:

⟨N⟩ = − ∂

∂µ
G

∣∣∣∣
T

(3.112)

⟨N2⟩c = − 1

β

∂2

∂µ2
G

∣∣∣∣
T

= kBT
∂

∂µ
⟨N⟩ . (3.113)

Thus, the typical fluctuations scale as
√
⟨N2⟩c ∝

√
⟨N⟩ ≪ ⟨N⟩. As with the relative fluctuations of E in

the canonical ensemble, the relative fluctuations of N become negligible as V → ∞.

3.3.2 Large V limit and thermodynamics

Starting from the definition of Q, Eq. (3.105), the grand canonical partition function can be approximated
as:

Q =
∑
N,E

eβ[µN−E+TSm] ≈
V→∞

eβµN
∗−βE∗+βTSm(E∗,N∗,V ) (3.114)

where N∗ and E∗ maximize

ΨGC(N,E, V ) = µN − E + TSm(E,N, V ) . (3.115)

This leads to the following conditions:

∂Ψ

∂E
= 0 ⇒ ∂Sm(E,N, V )

∂E

∣∣∣∣
E∗,N∗

=
1

T
(3.116)

∂Ψ

∂N
= 0 ⇒ ∂Sm(E,N, V )

∂N

∣∣∣∣
E∗,N∗

= −µ

T
(3.117)
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This leads to

G(µ, T, V ) = E∗(µ, T, V )− TSm[(E∗(µ, T, V ), N∗(µ, T, V ), V ]− µN∗(µ, T, V ) (3.118)

Equivalently, one can also compute Q as:

Q =
∑
N

eβµNZc(N,V ;T ) =
∑
N

eβµN−βF (N,V,T ) (3.119)

and, using the saddle-point approximation, we find

µ =
∂F

∂N

∣∣∣∣
N∗,V,T

(3.120)

with N∗ = argmax
N

[µN − F (N,V, T )]. This then leads to:

G(µ, T, V ) = F (N∗(µ, T, V ), T, V )− µN∗(µ, T, V ) . (3.121)

The consistency between the two computations above can be checked in the large V limit, starting
from the expression for the Helmholtz free energy:

F (N,T, V ) = E∗ − TSm(E∗, N, V ) (3.122)

= E∗(N,V, T )− TSm(E∗(N,V, T ), N, V ) (3.123)

where ∂Sm
∂E

∣∣
E∗,N

= 1
T . This immediately shows the consistency between Eq. (3.118) and Eq. (3.121). The

consistency between Eq. (3.117) and (3.120) the stems from:

∂F

∂N

∣∣∣∣
T,V

=
∂E∗

∂N

∣∣∣∣
T,V

− T
∂Sm
∂N

∣∣∣∣
E∗,V

− T
∂Sm
∂E

∣∣∣∣
N,V︸ ︷︷ ︸

1/T

∂E∗

∂N

∣∣∣∣
T,V

= −T ∂Sm
∂N

∣∣∣∣
E∗,N

(3.124)

So far, we have ignored the variations of F and S with respect to N . We can now introduce them
back:

dF =
dF
dV

dV +
dF
dT

dT +
dF
dN

dN =
p

T
dV − 1

T
dE − µ

T
dN (3.125)

dS =
dS
dV

dV +
dS
dE

dE +
dS
dN

dN =
p

T
dV − 1

T
dE − µ

T
dN (3.126)

Notice that Eq. (3.126) is the first law of thermodynamics. Then, for the grand canonical potential
G = E − TS − µN = F − µN leads to:

dG = −pdV − SdT −Ndµ (3.127)

from which one obtains alternative expressions for the entropy S = − ∂G
∂T

∣∣
V,µ

and the pressure p =

− ∂G
∂V

∣∣
T,µ

. All these relations are consistent with the microcanonical and canonical definitions in the large
V limit.
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3.3.3 Ideal gas

The grand partition function for the ideal gas is:

Q =
∞∑

N=0

eβµNZc(N,T, V ) =
∑
N

eβµN
1

N !

(
V

Λ3

)N

= eV z/Λ3
(3.128)

It follows that, in the grand canonical ensemble, N is distributed according to a Poisson distribution:

PGC(N) =
1

N !

(
V z

Λ3

)N

e−
V z
Λ3 (3.129)

with Poisson parameter ⟨N⟩ = V z
Λ3 .

For the ideal gas, the fugacity z is thus directly related to the average density ρ0 =
⟨N⟩
V in the system:

z =
⟨N⟩
V

Λ3 = ρ0Λ
3 , (3.130)

and the chemical potential can then also be expressed as a function of the average density :

µ = kBT ln
Λ3⟨N⟩
V

= kBT ln(ρ0Λ
3) (3.131)

Finally, the grand potential and the pressure are:

G = −kBT
V z

Λ3
(3.132)

P = kBT
⟨N⟩
V

(3.133)

where in the second line one recognizes the ideal gas law.

3.4 Thermodynamics

In the large-size limits, we have seen that many systems admits ensemble equivalence. Provided the
right relations between thermodynamic variables are enforced, what is computed in one ensemble can be
used to predict the value of observables in other ensembles. This is very powerful. For instance, it is
relatively easy to compute the thermodynamic properties of a Boson gas in the grand-canonical ensemble,
but experiments are better described in the canonical ensemble. We can thus use ensemble equivalence
to compute observables in the ensemble where theory is easiest and export the results to ensemble that
are relevant experimentally.

3.4.1 Thermodynamics variables

We distinguish extensive thermodynamic variables N,V,E and intensive thermodynamic variables T, p, µ.
When building ensembles, we can choose to fix either the extensive or the intensive variables. This gives
23−1 = 7 different ensembles with at least one extensive variable. All those ensembles have an associated
thermodynamic potential. In this course, we have seen

(E, V,N) → Sm (3.134)

(T, V,N) → F (3.135)

(T, V, µ) → G (3.136)
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In the large size limit, all ensembles lead to consistent thermodynamic relations provided the independent
variables are related by the saddle point relations, for e.g. 1

T = ∂S
∂E

∣∣
U
, provided the thermodynamic

potentials have the right convexity properties. In turn, the saddle point relations lead to Legendre
transforms relations between the thermodynamic potential (e.g. βF = βU − S/kB).

In statistical mechanics, because we know which variable is fixed in which ensemble, there is no con-
fusion about what is a function of what. In the large size limit, when all ensembles becomes equivalent,
confusion steps in because thermodynamics observables are not independent. This requires either ex-
tremely heavy notations, as in Eq. (3.118), or some extra care.

The evil crime of thermodynamics: In the thermodynamic limit, each observable can be expressed in
terms of different variables. For instance, we have

SGC(T, V, µ) = SC(T, V,N
∗(T, V, µ)) = Sm(E∗(T, V,N∗(T, V, µ)), V,N∗(T, V, µ)) . (3.137)

The three functions SGC , SC and Sm are distinct functions, with distinct set of arguments. When their
arguments are related through the saddle point relations that we derived earlier, they yield the same
value. Because the notation (3.138) is horribly heavy, it is tempting to drop the subscript and write all
these functions as S. Further, it is assumed that the arguments are not independent. This lightens a lot
our notations since we can now write:

S(T, V, µ) = S(T, V,N) = S(E, V,N) , (3.138)

even though one has to remember that these are different mathematical functions and that N and E are
function of T , V , and µ in the equation above.

The standard chain rule: This notation becomes a huge source of errors when one whishes to take
derivatives.

If one wants to take a derivative of S with respect to V , we have to be clear on which of these functions
we are considering. For instance, the chain rule tells us that:

∂V SGC(T, V, µ) = ∂V SC(T, V,N
∗(T, V, µ)) + ∂NSC(T, V,N

∗(T, V, µ))∂VN
∗(T, V, µ) . (3.139)

This is standard mathematics and there are no possible mistakes.
However, if we drop the subscripts, how can we know which S are we considering? The notational

solution is to indicate what are the variables that are being kept fixed: here, keeping T and µ fixed when
taking a derivative with respect to V refers to SGC , while keeping T and N fixed refers to SC . So that
one rewrites Eq. (3.138) as:

∂S

∂V

)
T,µ

=
∂S

∂V

)
T,N

+
∂S

∂N

)
T,V

∂N

∂V

)
T,µ

(3.140)

The standard but heavy maths of Eq. (3.139) have now become lighter but much less transparent... To
specify which function is being used when taking a partial derivative, thermodynamics thus employs the
notation ∂Sm

∂X

)
Y,Z

, or ∂Sm
∂X

∣∣
Y,Z

, which indicates that the considered function is S(X,Y, Z).
Another example of the standard chain rule is to differentiate Sc(T, V,N) = Sm(E(T, V,N), N, V )

with respect to the volume (dropping the star notation):

∂Sc(T, V,N)

∂V
=
∂Sm(E(T, V,N), V,N)

∂V
+
∂Sm(E(T, V,N), V,N)

∂E
· ∂E(T, V,N)

∂V
(3.141)
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This simply becomes

∂S

∂V

)
T,N︸ ︷︷ ︸

N,T,V⇒S canonical

=
∂S

∂V

)
E,N

+
∂S

∂E

)
N,V︸ ︷︷ ︸

N,E,V⇒S microcanonical

· ∂E

∂V

)
T,N︸ ︷︷ ︸

N,T,V⇒E canonical

(3.142)

The modified chain rule: In addition to the standard chain rule above, the fact that thermodynamic
observables are dependent also lead to more elaborate relationships between partial derivatives.

A relation such as F = U −TS expresses an interdependence among the potentials F , U , S. One may
express this as the constraint g(U, S, F ) = 0, whose differential is:

dg = 0 =
∂g

∂U

)
S,F

dU +
∂g

∂S

)
U,F

dS +
∂g

∂F

)
U,S

dF . (3.143)

Notice that, when S, F are fixed, the function g(U, S, F ) = gSF (U) becomes a 1D function of a sole
variable, which can be inverted.

Figure 3.13: Here ∂g
∂u

∣∣∣
u∗

= ∆g
∆u can be inverted as

(
∂g
∂u

∣∣∣
u∗

)−1

= ∆u
∆g = ∂u

∂g

∣∣∣
g∗

.

Multiplying Eq. (3.143) by ∂U
∂g

∣∣∣
F,S

, one gets:

dU +
∂U

∂g

∣∣∣∣
F,S

∂g

∂F

∣∣∣∣
U,S

dF +
∂U

∂g

∣∣∣∣
F,S

∂g

∂S

∣∣∣∣
F,U

dS = 0 (3.144)

If follows that:

∂U

∂S

∣∣∣∣
F,T

= − ∂U

∂g

∣∣∣∣
F,S

∂g

∂F

∣∣∣∣
U,S

(3.145)

∂S

∂F

∣∣∣∣
U,T

= − ∂S

∂g

∣∣∣∣
U,F

∂g

∂F

∣∣∣∣
U,S

(3.146)

∂F

∂U

∣∣∣∣
S,T

= − ∂F

∂g

∣∣∣∣
U,S

∂g

∂U

∣∣∣∣
S,F

. (3.147)

Multiplying the left-hand sides of Eqs.(3.145)-(3.147), we find:

∂U

∂S

∣∣∣∣
F,T

∂S

∂F

∣∣∣∣
U,T

∂F

∂U

∣∣∣∣
S,T

= −1 . (3.148)
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Equivalently:
∂S

∂U

∣∣∣∣
F,T

= − ∂S

∂F

∣∣∣∣
U,T

∂F

∂U

∣∣∣∣
S,T

. (3.149)

Equations (3.148) and (3.149) are often called the modified chain rule. Indeed, Eq. (3.149) looks like a
chain rule with a minus sign. This is due to the fact that, once T is fixed, S, U and F are not independent
anymore so that the standard chain rule cannot be applied.

3.4.2 Thermodynamic relations

The modified and the standard chain rules are essential tools to derive thermodynamic relations.
Additionally, the first law of thermodynamics dU = TdS − pdV + µdN , provides a fundamental

relationship between changes in energy/entropy and variations in the extensive variables. It can be used
to change variables. For instance, to express U(T, V,N), we expand dS as:

dS =
∂S

∂T

∣∣∣∣
N,V

dT +
∂S

∂N

∣∣∣∣
V,T

dN +
∂S

∂V

∣∣∣∣
N,T

dV . (3.150)

Replacing this into the first law yields:

dU = T
∂S

∂T

∣∣∣∣
N,V

dT +

(
T
∂S

∂V

∣∣∣∣
N,T

− p

)
dV +

(
T
∂S

∂N

∣∣∣∣
V,T

+ µ

)
dN . (3.151)

From there, we can get, for instance

∂U

∂N

)
T,V

= T
∂S

∂N

∣∣∣∣
V,T

+ µ (3.152)

Additional thermodynamic relations arise from the saddle-point and Legendre transform such as F =

U − TS or G = U − TS + µN .
Another source of thermodynamic relations is to invoke the extensivity of thermodynamic potentials.

For instance, the extensivity of the energy implies that:

E(λS, λV, λN) = λE(S, V,N) (3.153)

Taking a derivative with respect to λ and setting λ = 1 we get:

S
∂E

∂S

∣∣∣∣
N,V︸ ︷︷ ︸

T

+V
∂E

∂V

∣∣∣∣
S,N︸ ︷︷ ︸

−p

+N
∂E

∂N

∣∣∣∣
S,V︸ ︷︷ ︸

µ

= E(S, V,N) (3.154)

⇒ E = ST − PV + µN (3.155)

Similarly, G(T, λV,N) = λG(T, V,N) and, taking a derivative with respect to λ leads to:

G(T, V,N) = V
∂G

∂V

∣∣∣∣
N,T︸ ︷︷ ︸

−p

= −pV (3.156)

Notice that by taking the differential of Eq. (3.155) and using the first law one obtains the Gibbs Duham
relation:

SdT − V dP +Ndµ = 0 (3.157)
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which relates variations between intensive thermodynamic variables.
Finally, the Maxwell relations relate the second derivative of thermodynamic variables, making use of

Schwarz’s theorem:
∂

∂A

((
∂X

∂B

)
A,C

)
B,C

=
∂

∂B

((
∂X

∂A

)
B,C

)
A,C

. (3.158)

For instance, given ∂E
∂S

∣∣
N,V

= T and ∂E
∂N

∣∣
S,V

= µ, it follows:

∂T

∂N

∣∣∣∣
V,S

=
∂µ

∂S

∣∣∣∣
N,V

. (3.159)

Application: Number fluctuations and compressibility
In the grand canonical ensemble, we have seen that ⟨N2⟩c = kBT

∂⟨N⟩
∂µ

∣∣∣
T,V

. While this is a useful

relation to predict that ⟨N2⟩c ∝ N , measuring the right-hand side is difficult experimentally. Can we
thus re-express the right-hand side into something that would be easier to measure?

Let us start by using the modified chain rule. At fixed T , the variables N , V and µ are dependent, so
that

∂N

∂µ

∣∣∣∣
V,T

= − ∂N

∂V

∣∣∣∣
µ,T

∂V

∂µ

∣∣∣∣
T,N

(3.160)

Then, let’s say that we replace V (µ, T,N) in the last equation by V (P (µ, T,N), T,N) and that we use
extensivity to write N = ρ0V , leading to

∂N

∂µ

∣∣∣∣
V,T

= −ρ0
∂V

∂p

∣∣∣∣
T,N

∂p

∂µ

∣∣∣∣
T,N

(3.161)

Now, this is progress since ∂V
∂p

∣∣∣
T,N

is measurable in experiments (applying pressure and measuring vol-

ume). This coefficient is so useful, that it has a name: the isothermal compressibility

κT = − 1

V

∂V

∂p

∣∣∣∣
T,N

, (3.162)

where the 1
V prefactor is here to make κT an intensive variable.

To compute ∂p
∂µ

∣∣∣
T,N

, we now use a Maxwell relation. To identify the right potential, we note that we

have to think about an ensembe in which P is a function and µ a variable. We can use the grand-canonical
ensemble, where dG = −SdT − pdV −Ndµ to get:

∂p

∂µ

∣∣∣∣
T,V

=
∂N

∂V

∣∣∣∣
T,µ

= ρ0 . (3.163)

It follows that ∂N
∂µ

∣∣∣
V,T

= ρ20V κT = N2

V κT . From this, we derive the fluctuation-dissipation relation:

⟨N2⟩c
⟨N⟩2

=
kBT

V
κT . (3.164)
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