
CHAPTER 1. INTRODUCTION

1.1 What is statistical mechanics?

The beginning of the twentieth century has witnessed three scientific revolutions. Quantum mechanics and
relativity have taught us that physics at the infinitely small and infinitely large scales is fundamentally
different from what we experience at our scale. Statistical mechanics, on the other hand, addresses the
question of the infinitely complex : how can we understand the diversity of the world around us, given the
relatively limited diversity of atoms that makes up most of the materials we encounter? The answer to
that question lies in two apparently contradicting ideas.

On the one hand, paraphrasing Anderson [1], “more is different”. This quote captures the fact that a
large number of interacting particles are able to acquire properties inaccessible to the individual units.
Consider for instance a molecule of silica. Its dynamics is given by Newton’s first law so that any
force you exert on it leads to its motion through space. Gently pushing on a heavy glass table tells a
completely different story: the amorphous packing of silica molecules into a tempered glass confers them
the collective ability to resist motion and deformation. Collectively, the silica molecules have created
a solid. The process through which one goes from a free-flowing silica sand to a solid glass involves a
number of complex phase transitions, the understanding of which is a central goal of statistical mechanics.
Starting from the microscopic scale, statistical physics thus aims at understanding how new properties
emerge from the collective behaviors of individual units.

On the second hand, if “more is different”, then understanding the macroscopic world may seem a
hopeless goal: All forms of matter would acquire system-dependent properties, turning the beauty of the
universal laws of physics into a depressing catalogue of material properties that would need to be studied
on a case-by-case basis. Luckily, different is often the same, in the sense that emerging phenomena often
share profound similarities. For instance, hexagonal lattices are observed in a multitude of situations: in
a honeycomb, on the pineapple fruit’s surface, in the Giant causeway in Ireland, in the arrangement of
cell tissues (e.g., in the hexagonal patterning of the Drosophila eye), etc. While our world is complex,
its complexity respects rules and symmetries that allow categorizing collective states of matter based on
their properties: solid, liquid, and gaseous phases for instance describe a large part of the materials you
find around you. At the collective ‘macroscopic’ scale, statistical physics aims at understanding what
determines the types of patterns and forms of organizations that can be observed in nature.

In addition, more can also be simpler. Consider the three-body problem in classical mechanics. As
we know since Poincaré, there is no closed-form solution to the dynamics of three interacting bodies and,
for most initial conditions, the resulting dynamics is chaotic. In short, this is a horribly complicated
problem on which we cannot predict much. Now, consider one cubic meter of air, which contains O(1023)

molecules of N2 and O2. If I tell you that its temperature is 300K, its pressure is 1 bar, and its humidity
is 50%, you will have a very clear idea of what I am talking about. Three numbers are thus enough to
give you all the information you need to characterize the collective state of O(1023) degrees of freedom!
Statistical mechanics aims at understanding this emerging simplicity.

In short, the goal of statistical mechanics is to derive a micro-to-macro approach that allows pre-
dicting the large-scale properties of a system starting from its microscopic description. On the way, it
will determine which microscopic details are crucial or irrelevant, and identify the relevant variables to
describe a system at the macroscopic scale. While this may sound like a fundamental and theoretical
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question, the applications of statistical mechanics are everywhere around you: from the control of the
rheological properties of your toothpaste to the engineering of LCDs, statistical physics plays a major
role in material design. Note also that nothing so far restricts the principles of statistical mechanics to
physical systems and its methodological toolbox can be applied (with, or without wisdom) to economics,
sociology, epidemiology, and computer science.

In this course, we will focus on the properties of large collections of particles in thermal equilibrium.
This course is complemented by others at MIT: 8.334 in the spring term focuses on phase transitions and
the emerging phenomenology they induce, 8.08/8.S308 in IAP focuses on stochastic and nonequilibrium
dynamics, with application to the thriving field of active matter, and finally 8.592 in fall focuses on
applications to biophysics.

1.2 Equilibrium Statistical Mechanics — The ensemble approach

In most fields of physics, the fundamental laws are given as dynamical equations: Newton’s laws of
classical mechanics, Einstein’s equations for GR, Schrödinger’s equation for QM, Navier-Stokes for fluid
mechanics, Maxwell’s equation for electromagnetism, etc. Solving such equations in a simple context is
already a challenging task, but doing so for a system with 1023 degrees of freedom is completely out of
reach 1. Furthermore, it is also quite useless since these equations predict the state of a system at a time
t given the perfect knowledge of initial conditions at a time t′ < t. Any error on the initial condition will
lead to a lack of precision on the state of the system at time t. What classical mechanics taught us in the
20th century is that most complex systems are chaotic: any initial uncertainty increases exponentially in
time at a rate given by the largest so-called Lyapunov exponent [5].

Instead of trying to face this daunting task, equilibrium statistical mechanics proposes to take a
completely different stance: since the air around us looks right now much like it looked like a few seconds
ago, maybe solving these dynamical equations is useless and the only thing we need to do is to characterize
the most probable state of a system and the typical fluctuations around it. Assuming that we can describe
a classical system by a set of positions and momenta q⃗, p⃗, with q⃗ = (q1, . . . , qN ) and p⃗ = (pq, . . . , pN ), we
can try to characterize the probability P (q⃗, p⃗) = ρ(q⃗, p⃗)dΓ to observe the system within a given phase-
space volume dΓ =

∏N
i=1 dqidpi around q⃗, p⃗. Of course, this is only viable if one can guess what the right

probability density ρ(q⃗, p⃗) is, and it is only useful if this distribution is not horribly complicated.

1.2.1 The microcanonical ensemble

Classical equations of motion. The simplest way to proceed is to start from what we know on our system: if
the energy is given by a time-independent Hamiltonian H(q⃗, p⃗), the trajectories q⃗(t), p⃗(t) will be solutions
of Hamilton’s equations of motion:

d

dt
q⃗(t) =

∂H

∂p⃗
,

d

dt
p⃗(t) = −∂H

∂q⃗
, (1.1)

1Note that simulations are getting closer and closer to being able to solve such complicated systems, but only on very
short time scales.
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where ∂H
∂x⃗ denotes the vector whose coordinates are ∂H

∂xi
. All the symmetries and conservation laws that

are encoded in the dynamics (1.1) must be reflected in ρ.

Conservation of energy. A first important property of dynamics (1.1) is that it conserves the value of the
Hamiltonian along a trajectory:

H(q⃗(t), p⃗(t)) = H(q⃗(0), p⃗(0)) ≡ E . (1.2)

The energy is a constant of motion. To show this, we can use the chain rule:

dH(q⃗(t), p⃗(t))

dt
=
∂H

∂t
+
∑
i

(
∂H

∂qi

dqi
dt

+
∂H

∂pi

dpi
dt

)
= 0 +

∑
i

(
∂H

∂qi

∂H

∂pi
− ∂H

∂pi

∂H

∂qi

)
= 0 , (1.3)

where we have used that ∂tH = 0 since the Hamiltonian does not explicitly depend on time.

Note of caution. We note here a difficulty commonly encountered in physics textbooks (and in these
lecture notes). In Eq. (1.2), we have written H(q⃗(t), p⃗(t)) ≡ E to explicitly state that E is the value
of the function H(q⃗, p⃗) evaluated with arguments q⃗(t), p⃗(t) that are solutions of (1.1), instead of simply
writing H(q⃗, p⃗) ≡ E. This degree of ‘precision’ ensures clarity, even if we have already been somewhat
sloppy: since the values of q⃗(t), p⃗(t) depend on the initial conditions, we should really write something like
H(q⃗(t), p⃗(t)|q⃗(0), p⃗(0)). Clearly, notations will soon become unpractically heavy and obscure the meaning
of our equations. As often in physics, we will trade rigor for clarity and often silently omit arguments,
dependencies, initial conditions, etc. It is not uncommon to find in textbooks E ≡ H(q⃗, p⃗) and it is only
when Eq. (1.3) is written that the fact that q⃗, p⃗ are assumed to be solutions of (1.2)—and not constant,
arbitrary vectors—becomes explicit. Such concise yet sloppy notations allow us to deal with situations
arguably richer than the systems typically studied in more rigorous contexts, but it comes at a price:
ambiguity, which is a common source of mistakes.

The microcanonical hypothesis: An important consequence of Eq. (1.2) is that, if the energy of the system
at time 0 is E0, then we know that ρ(q⃗, p⃗) = 0 if H(q⃗, p⃗) ̸= E0. Since the solutions of Hamilton’s equations
of motion are trajectories confined within an energy surface, then the support of the distribution we are
looking for must coincide with the energy surface.

But how do we go forward? How do we know which region of the energy surface are more favorable
than others? An answer is suggested by the theory of dynamical systems: we don’t. And if we don’t know
that some regions are more favorable than others, then we should not bias our probability distribution
in any way. If there are no clear reasons that our system should explore some regions more often than
others, then we can assume that the chaotic dynamics induced by the complexity of our 1023 interacting
degrees of freedom makes the system explore the energy surface ergodically and uniformly.

This idea predates significantly the theory of chaos, in the form of the microcanonical hypothesis. For
simplicity, we present the microcanonical hypothesis in the context of discrete systems. We will come back
to its expression for continuous systems in Chapter 32. Consider a classical complex system described
by a discrete set of configurations {C}, then all configurations with the same energy E have the same
probability of occurrence and

PE(C) =
1

Ω(E)
δH(C),E , (1.4)

2If {C} is a continuous space, then PE is a probability density, and Ω(E) is the area of the hyper-surface of configurations
with energy E.
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where Ω(E) is the number of configurations with energy E and δa,b is the Kronecker delta, defined by
δa,b = 1 if a = b and δa,b = 0 otherwise.

Microcanonical entropy. In Eq. (1.4), Ω(E) is simply a normalization constant such that
∑

C PE(C) = 1.
As the energy of the system changes, so does the number of accessible configurations Ω(E). It turns out
that the rate of change of Ω with the energy E or the number of constituents N is typically exponential, so
that a more natural observable to quantify the accessible space of configurations is provided by Boltzmann
microcanonical entropy:

Sm(E) = kB lnΩ(E) , (1.5)

where kB = 1.380649× 10−23J · K−1 is the Boltzmann constant.

Microcanonical temperature: How Ω and Sm vary with E is quantified by the microcanonical temperature:

1

Tm
≡ ∂Sm

∂E
. (1.6)

At this stage, why the definition (1.6) is a good definition for the temperature, and how to relate it to
what you measure using a thermometer, is far from obvious. This will become clearer in chapter 3 when
we establish ensemble equivalence.

Summary:

Starting from the only constraint we had on the classical dynamics describing our system, we have
suggested in Eq. (1.4) a probability distribution to describe the probability to observe a given configuration
C. Is it simple? Yes. Is it practical? Not really, because counting the number of configurations of a given
energy is often a combinatorial challenge. Furthermore, this only allows describing systems in which the
total energy is strictly conserved, which are thus isolated from their environments. While such systems
can be engineered, e.g. using ultrahigh vacuum, this is far from the standard situation that we encounter
around us.

This suggest studying another situation, in which a system is allowed to exchange energy with the
environment. In such a case, the energy is not a constant of motion anymore and, instead, we may simply
know that the average energy of the system is fixed: ⟨E⟩ ≡

∑
C E(C)p(C) = E0. Can we then guess what

a reasonable choice for p(C) is? Yes, following a proposal by Jaynes [2, 3], which makes use of Shannon
entropy [6].

Notations: Throughout these lecture notes, the brackets ⟨. . . ⟩ represent averages with respect to the
relevant probability distribution.

1.2.2 The principle of minimal information

Consider a random variable n ∈ {1, . . . , N}, that you can sample freely, characterized by a probability
distribution p(n) that you do not know. A first natural question is ‘how many times do you have to
sample this distribution to have an accurate estimate of p(n)?’. If p(n) = δn,n0 , then a single sample
allows you to determine p. If p is more complex, then you may need many different samples to estimate
the value of p. An alternate but equivalent question is ‘how surprising are the results of sampling p?’. If p
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is a delta function, there is no surprise in the outcome. If p is uniform, then you cannot predict anything
about the result of sampling p and the surprise is maximal. The ideas of Shannon on information theory
allow us to quantify the surprise contained in a distribution using a surprise function s.

Consider a sample n, if p(n) = 1, then there is no surprise in observing n and s(p(n)) = 0. If you look
at two independent samples, n1 and n2, then the surprise contained in the joint observation of n1 and n2
should be additive: s(p(n1, n2)) = s(p(n1)p(n2)) = s(p(n1)) + s(p(n2)). Finally, the surprise should be
decreasing function of p(n): the less likely n, the more surprised you should be to observe it. Putting this
together, one can show that the surprise function has to be written as s(p) = −k ln(p), with k > 0. The
average surprise contained in a distribution is then

Ss(p) = −
∑
C
p(C) ln p(C) , (1.7)

which is called the Shannon entropy.

Gibbs’ entropy. Note that, another definition of the microcanonical entropy, due to Gibbs, reads:

SG(E) = −kB
∑
C
PE(C) lnPE(C) = −kB

∑
C|H(C)=E

1

Ω(E)
ln

1

Ω(E)
= kB lnΩ(E) . (1.8)

As you can see, the definitions of Boltzmann and Gibbs coincide in the microcanonical ensemble. Boltz-
mann’s definition has a strong appeal because of its direct connection to a physical observable (Ω(E)).
Thanks to Shannon [6], we now understand that, up to the constant kB, Gibbs & Boltzmann entropy
also measure the (lack of) information contained in the distribution p. Equation (1.8) thus tells us that,
when sampling a system in the microcanonical ensemble, our surprise is proportional to lnΩ(E). This is
consistent with our intuition: the larger Ω(E), the more configurations are accessible to the system.

Let us now turn back to the choice of distribution we should use to try and describe the statistics of
a system in contact with a thermostat, whose average energy is fixed.

1.2.3 The canonical ensemble

We thus consider a system whose average energy is fixed, due to energy exchange with a thermostat.
What other information do we have on the system? None, and we thus do not have any good reason
to add more information or bias in the distribution p(C). We thus want a distribution that contains the
information that

⟨E⟩ =
∑
C
E(C)p(C) = E0 and

∑
C
p(C) = 1 , (1.9)

but nothing else. We thus want to minimize the information contained in the distribution p(C), under
the constraints (1.9). To do so, we maximize the average surprise contained in the distribution (i.e. the
Shannon entropy), under the constraints (1.9). To proceed, we introduce a function

L(p) = −
∑
C
p(C) ln p(C) + β[E0 −

∑
C
p(C)E(C)] + α[1−

∑
C
p(C)] , (1.10)
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where α and β are two Lagrange multipliers. Let us consider a configuration Ci and extremize L with
respect to p(Ci) 3:

∂L(p)

∂p(Ci)
= − ln p(Ci)− 1− βE(Ci)− α = 0 . (1.11)

This equation can be solved as
p(Ci) = e−1−α−βE(Ci) . (1.12)

The Lagrange multipliers α and β can then be determined to satisfy ⟨E⟩ = E0 and
∑

C p(C) = 1. Using
the normalization to fix α leads to the celebrated canonical distribution:

p(C) = 1

Z
e−βE(C) where Z =

∑
C
e−βE(C) , (1.13)

is the so-called partition function in the canonical ensemble. The value of β is then fixed by noting that

E0 = ⟨E⟩ = 1

Z

∑
C
E(C)e−βE(C) = − 1

Z
∂β
∑
C
e−βE(C) = −∂β lnZ . (1.14)

Summary:

Starting from the observation that the dynamics of complex macroscopic systems is both irrelevant
and impractical to describe their typical states, we have suggested to replace this problem by a formally
simpler one: to characterize directly the probability distribution of observing the configurations of a
system. We decided to put as little information as we can in these distributions: enforcing the constraints
given by the laws of physics, and nothing else. Shannon information theory told us that this can be done
by a constrained extremization of the Gibbs-Shannon entropy. For an isolated system, you will show in
the problem set that this gives back the microcanonical ensemble. For a system whose average energy is
fixed, it yields the canonical distribution.

This construction of the various statistical ensembles, which can be generalized beyond the cases
discussed here is simple and appealing, but it is not completely satisfactory. Indeed, we have extremized
the Gibbs-Shannon entropy under the constraints that we are aware of, but nature follows its own rules
whether we know them or not: a physical theory should not be based on our knowledge or ignorance. A
partial answer comes from classical mechanics and chaos: H is a constant of motion but we can expect that
in complex systems all other quantities are “stirred” by the chaotic dynamics so that the energy surface
is visited uniformly. There are many issues with this statement. For instance, even when it is correct, it
is hard to prove. And there are cases in which we know that it is wrong: For instance, the KAM theorem
tells us that it is wrong at the level of perturbation theory close to integrability [5]4. Furthermore, even
when the chaotic dynamics of the system would lead to an ergodic sampling of the energy surface, the
time for the dynamics to do so diverges exponentially with the number of degrees of freedom, so this is
not why statistical mechanics works in practice. Many other reasons have been put forward to “justify”

3We note that ∂2L(p)
∂p(Ci)∂p(Cj)

= − 1
p(Ci)

δij so that any local extremum is necessarily a maximum.
4Consider N independent harmonic oscillators, that admit N constants of motion, and add a random non-linear coupling

between them that scales with a control parameter ε. As ε → 0, the measure of the energy surface that corresponds to
chaotic dynamics vanishes and most of the energy surface is regular. The microcanonical hypothesis is thus violated for such
a system.
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equilibrium statistical mechanics, and we will review some of them (e.g. justifying statistical mechanics at
the quantum level and deriving classical statistical mechanics as its high temperature limit). A rigorous
proof of equilibrium statistical mechanics remains an open research problem for most systems. We will
close this introductory chapter by mentioning another nice argument, that is discussed in the series of
books by Landau and Lifschitz [4]. To do so, we first develop a bit the connection between trajectories
and probability densities for classical systems.

1.2.4 From trajectories to probabilities, from Hamilton’s to Liouville’s equation

We consider N classical particles in a 3d-space whose positions and momenta are given by

q⃗i =

qi,xqi,y

qi,z

 and p⃗i =

pi,xpi,y

pi,z

 . (1.15)

Note the slight notation change from the previous sections: i ∈ {1, . . . , N} is now the particle index and
qi,α, pi,α are the spatial components of the position and momenta of particle i, respectively. There are
thus 6N phase-space coordinates in total.

We then write the corresponding equations of motion as

˙⃗qi =
∂H

∂p⃗i
and ˙⃗pi = −∂H

∂q⃗i
, (1.16)

where we have introduced the operators

∂

∂q⃗i
≡


∂

∂qi,x
∂

∂qi,y
∂

∂qi,z

 and
∂

∂p⃗i
≡


∂

∂pi,x
∂

∂pi,y
∂

∂pi,z

 . (1.17)

Consider an experiment in which the system is prepared in a given ‘macroscopic state’—to which we
refer as a ‘macrostate’ in the following—using a reproducible protocol. For instance, a gas is compressed
into a volume V1 using a piston and, at t = 0, the piston is removed so that the gas can expand into a
larger volume V2 > V1. We refer here to a ‘macroscopic state’ because we do not control precisely the
microscopic positions of all the particles and there are many microscopic configurations, or ‘microstates’,
that correspond to this macrostate. If you repeat N times this experiment, the system starts in an equally
large number of different initial conditions, {q⃗i,j(t = 0) ≡ q⃗ 0

i,j , p⃗i,j(t = 0) ≡ p⃗ 0
i,j}1≤i≤N,1≤j≤N , where i

labels a particle and j an experiment. By constructing a histogram of all these initial conditions, we could
in principle build the probability density ρ({q⃗ 0

i , p⃗
0
i }, t = 0) to pick a given initial condition {q⃗ 0

i , p⃗
0
i }. By

definition of the probability density, for an experiment chosen at random, the initial conditions lie within
an infinitesimal volume element dΓ near {q⃗ 0

i , p⃗
0
i } with probability

P = ρ({q⃗ 0
i , p⃗

0
i }, 0)dΓ where dΓ ≡

∏
i

dΓi ≡
∏
i

d3q⃗id
3p⃗i ≡

∏
i

∏
α=x,y,z

dqi,αdpi,α (1.18)

During each experiment, as time goes on, the positions and momenta {q⃗i,j(t), p⃗i,j(t)}1≤i≤N evolve in
time according to Hamilton’s equation of motion (1.16). Using the instantaneous values of {q⃗i,j(t), p⃗i,j(t)}1≤i≤N
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Figure 1.1: Chaotic billiards have been an object of study in chaos theory for a long time. In these systems, a
particle propagates ballistically and experiences specular reflection on the billiard walls. The Hamiltonian is thus
a combination of a standard kinetic energy term, p⃗2/2m and of a potential U(q⃗) that diverges at the billiard
walls. Here, we consider a 2d square billiard, in which two fixed circular obstacles have been introduced (this
is a variation of the so-called Sinai billiard, which contains a single inclusion and for which ergodicity has been
proven). At the beginning of one experiment, one billiard ball is placed close to the center of the billiard and
sent in a random direction. Its trajectory x(t), y(t) can then be recorded. The top row shows the billiard ball
position, {(xj(t), yj(t)}1≤j≤N , for N = 10 000 realizations of this experiments, for several values of the time
t. The bottom row shows the construction of ρ(x, y, t) using the trajectories produced in the experiments. At
t = 300, the particles seem to explore uniformly all the accessible space so that ρ(x, y) seems to have converged
to something very close to the uniform distribution.

for each experiment, we can create histograms to build the probability density ρ({q⃗i, p⃗i}, t) of finding the
particles of a given experiment at {q⃗i, p⃗i} at time t (See Fig. 1.1 for an illustration).

Now, consider a physical quantity of interest O({q⃗i, p⃗i})—say, the kinetic or the potential energy of
the system—to which we refer as an ‘observable’. You can compute the average value of the observable O
at time t over the N experiments as ⟨O⟩N (t) = 1

N
∑N

j=1O({q⃗i,j(t), p⃗i,j(t)}1≤i≤N ). In the limit N → ∞,
this empirical average is equal to that computed using the probability density ρ:

⟨O⟩(t) = ⟨O({q⃗i(t), p⃗i(t)}⟩ = lim
N→∞

1

N

N∑
j=1

O({q⃗i,j(t), p⃗i,j(t)}1≤i≤N ) (1.19)

=

∫ ∏
k

d3q⃗kd
3p⃗kO({q⃗i, p⃗i})ρ({q⃗i, p⃗i}, t) (1.20)

Note that, in the expressions in blue, {q⃗i(t), p⃗i(t)} refers to solutions of Hamilton’s equations of mo-
tion (1.16) that you can think as resulting from the various experiments, and are thus dependent on time.
In the expression in red, {q⃗i, p⃗i} are coordinate of R6N over which we integrate, and the time dependence
is entirely contained in ρ({q⃗i, p⃗i}, t).

The question that equilibrium statistical mechanics tries to address is the following: if I let the system
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evolve for an arbitrary long time, does ρ({q⃗i, p⃗i}, t) keep evolving or does it converge to a well defined
steady-state distribution ρ({q⃗i, p⃗i}, t = ∞) ≡ ρst({q⃗i, p⃗i}), and, if so, what is the expression of ρst?
Figure 1.1 illustrates this idea on the example of a modified Sinai Billiard, for which the convergence to
the uniform distribution is relatively convincing. To make progress on that question theoretically, it is
useful to construct the time evolution of ρ({q⃗i, p⃗i}, t), which is given by Liouville’s equation.

Liouville’s equation.
For any phase-space coordinate {q⃗i, p⃗i}, the time evolution of the probability density of finding the

system at {q⃗i, p⃗i} is then given by

∂ρ({q⃗i, p⃗i}, t)
∂t

∣∣∣∣
{q⃗i,p⃗i} held fixed

(1.21)

We stress the difference with Eq. (1.2) where the function H was evaluated with arguments q⃗(t), p⃗(t) that
evolve in time. The conservation of probability then reads 5

∂tρ({q⃗i, p⃗i}, t) = −
∑
i

[ ∂
∂q⃗i

· [ ˙⃗qiρ({q⃗i, p⃗i}, t)] +
∂

∂p⃗i
· [ ˙⃗piρ({q⃗i, p⃗i}, t)]

]
. (1.22)

Note that, when we write a conservation law for a field ϕ(r⃗, t) as ∂tϕ = −∇ · j⃗, the divergence acts
in the full space on which the variable r⃗ lives. Here, {q⃗i, p⃗i} describe the 6N -dimensional phase space
of the system, which is why the divergence in Eq. (1.22) involves a sum over ∂

∂q⃗i
and ∂

∂p⃗i
. Using the

dynamics (1.16), one then finds the celebrated Liouville’s equation:

∂tρ({q⃗i, p⃗i}, t) =
∑
i

[∂H
∂q⃗i

· ∂ρ({q⃗i, p⃗i}, t)
∂p⃗i

− ∂H

∂p⃗i
· ∂ρ({q⃗i, p⃗i}, t)

∂q⃗i

]
. (1.23)

Note that our vectorial notation is simply a way to save a sumation over the coordinates x, y, z, since
expanding the dot products leads to

∂tρ({q⃗i, p⃗i}, t) =
N∑
i=1

∑
α=x,y,z

[ ∂H
∂qi,α

∂ρ({q⃗i, p⃗i}, t)
∂pi,α

− ∂H

∂pi,α

∂ρ({q⃗i, p⃗i}, t)
∂qi,α

]
. (1.24)

Liouville’s equation is often compactly rewritten as

∂tρ({q⃗i, p⃗i}, t) = −{ρ,H} , (1.25)

where we have introduced the Poisson bracket

{A,B} ≡
∑
i

[∂A
∂q⃗i

· ∂B
∂p⃗i

− ∂B

∂q⃗i
· ∂A
∂p⃗i

]
. (1.26)

5This footnote is a brief reminder of the derivation of a conservation law. Consider a variable x⃗ that evolves as ˙⃗x(t) =

u(x⃗(t)) and a (probability) density ρ(x⃗, t) advected by this flow. In any volume V and dimension d, the variation of ρ inside
V is due to the flux of the mass/probability current j⃗(x⃗, t) = ρ(x⃗, t)u⃗(x⃗) through the surface ∂V of V : d

dt

∫
V
ρ(x⃗, t)ddx⃗ =

−
∫
∂V

j⃗ ·dd−1S⃗ = −
∫
V
∇· j⃗ ddx⃗, where the last equality stems from the divergence theorem. Since this holds for any volume

V , one has that ∂tρ(x⃗, t) = −∇ · j⃗ = −∇ · [ρu⃗(x⃗)]. For a more direct derivation, you can work in 1d and compare the
mass/probability in [x, x + dx] between time t and t + dt, and then send dt and dx to zero. Equation (1.22) is a direct
application of this theorem with the flow given in Eq. (1.16).
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1.2. EQUILIBRIUM STATISTICAL MECHANICS — THE ENSEMBLE APPROACH

We note that any function of the Hamiltonian H satisfies

{f(H), H} = f ′(H){H,H} = 0 , (1.27)

so that the canonical distribution ρβ ∝ exp[−βH] or the microcanonical distribution ρE ∝ δ(H − E)

are fixed points of Liouville’s equation. A historically important question in classical mechanics, which
is beyond the topic of this course, is whether one can prove that the dynamics induced by Liouville’s
equation make ρ({q⃗i, p⃗i}, t) converge towards such fixed points. Before closing this chapter, we mention
an appealing argument in favor of the canonical distribution being the right fixed point to describe
subsystems in contact with a thermostat.

1.2.5 Liouville theorem, conserved quantities, and the statistical independence of
macroscopic volumes

Liouville’s theorem. Let us first show that ρ is constant along a trajectory, i.e. that ρ({q⃗i(t), p⃗i(t)}, t) is
a constant of motion. Using the chain rule, we find:

d

dt
ρ({q⃗i(t), p⃗i(t)}, t) = ∂tρ+

∑
i

[ ˙⃗qi · ∂q⃗iρ+ ˙⃗pi · ∂p⃗iρ] . (1.28)

Using Eqs. (1.23) and (1.16), one finds that the probability density is a constant of motion:

d

dt
ρ({q⃗i(t), p⃗i(t)}, t) = 0 . (1.29)

Conserved quantity and statistical ensembles. Liouville’s theorem offers an elegant justification of the
form of statistical ensemble, which is discussed in detail in Ref [4]. The underlying idea is to assume that,
in a macroscopic system at steady state, mesoscopic volumes are independent.

Consider a very large system S and two subsystems S1 and S2 that describe two sets of degrees of
freedom {q⃗i, p⃗i}i∈S1 and {q⃗i, p⃗i}i∈S2 . If these subsystems are very large compared to any correlation length,
then, in the steady state, they are statistically independent and the steady-state density distributions
should satisfy

ρ1∪2({q⃗i, p⃗i}i∈S1∪S2) ≈ ρ1({q⃗i, p⃗i}i∈S1)ρ2({q⃗i, p⃗i}i∈S2) (1.30)

Taking the logarithm of this equality leads to

ln ρ1∪2 = ln ρ1 + ln ρ2 , (1.31)

so that ln ρ is additive.

Justification of the functional form of the Boltzmann weight. One then note that the energy is also an
additive constant of motion. If it is the only one, then ln ρ ∝ E. Denoting by −β the proportionality
constant leads back to the Boltzmann weight given in Eq. (1.13)6. Again, there are many caveats in this
reasoning (the energy is not strictly additive due to surface terms, there might be other additive constants

6This reasoning can be extended to consider other conserved additive quantities like the particle number, the linear and
angular momentum, etc. This then leads to other statistical ensembles.
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CHAPTER 1. INTRODUCTION

of motions, etc.), but this is another intuitive and appealing justification for why the canonical ensemble
is relevant to describe the statistics of systems in equilibrium.

A natural question is whether we can do better to justify the use of these ensembles. In the next
chapter, we answer this question positively and show explicitly that the statistics of a dilute gas of
interacting particles can be described by the canonical ensemble.

1.2.6 Key concepts and results to remember

• The notion of statistical ensemble.

• How one goes from trajectories to probability densities.

• Conservation of energy along classical mechanics trajectories.

• Microcanonical ensemble: probability distribution, definition of entropy and temperature.

• Canonical ensemble: distribution and partition function.

• Shannon entropy and the notion of information contained in a distribution.

• Liouville equation and Liouville theorem.
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