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These lecture notes follow the structure of the Graduate Statistical Mechanics course given
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The lecture notes are organized as follows. Chapter 1 is an introduction to classical equi-
librium statistical mechanics: what is the purpose of this theory? What are the essential
ideas? It introduces the concepts of statistical ensembles and discusses possible reasons why
the overall approach is reasonable. Appendix ?? is a brief reminder on probability theory,
which covers a content close to Chapter 2 of [1].

Chapter 2 then considers the dynamics of a dilute gas of interacting particles. Starting
from classical mechanics, we build the BBGKY hierarchy and show how an explicit coarse-
graining of the system on the scale intermediate between the particle size and the system
size allows one to justify a closure in the form of the Boltzmann equation. From there, we
derive a large-scale description of the relaxation of the density, velocity and temperature fields
towards an equilibrium description. This chapter thus legitimates using equilibrium statistical
mechanics to describe ideal gases.

Chapter 3 then covers in more detail the standard equilibrium ensembles. Change of
ensembles and ensemble equivalence are discussed and most concepts are illustrated using
either the ideal gas or two-level systems. Thermodynamic relations are recovered as a large-
N limit of the equilibrium ensembles.

Chapter 4 then turns to the static properties of interacting particle systems beyond the
dilute limit. We present a cluster expansion that allows one to derive the leading-order
correction to the ideal gas law. This expansion is compatible with the van der Waals equation,
which is constructed as a mean-field approximation. This equation is shown to predict a liquid-
gas phase separation, whose mean-field properties are discussed. We show how a similar
closure allows one to understand the emergence of ferromagnetism in the Ising model.

Chapter 5 then deals with quantum statistical mechanics. Quantum statistics are presented
from a density-matrix perspective, whose validity is discussed in the light of Eigenstate Ther-
malization Hypothesis. We start the chapter by discussing how quantization of energy allows
one to solve a number of experimental puzzles: the heat capacity of diatomic gases, the heat
capacity of solids, and the black-body radiation. Finally, we consider quantum ideal gases,
the Fermi statistics and the Bose-Einstein condensation.
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CHAPTER 1. INTRODUCTION

1.1 What is statistical mechanics?

The beginning of the twentieth century has witnessed three scientific revolutions. Quantum
mechanics and relativity have taught us that physics at the infinitely small and infinitely large
scales is fundamentally different from what we experience at our scale. Statistical mechanics,
on the other hand, addresses the question of the infinitely complex : how can we understand
the diversity of the world around us, given the relatively limited diversity of atoms that makes
up most of the materials we encounter? The answer to that question lies in two apparently
contradicting ideas.

On the one hand, paraphrasing Anderson [1], “more is different”. This quote captures the
fact that a large number of interacting particles are able to acquire properties inaccessible
to the individual units. Consider for instance a molecule of silica. Its dynamics is given by
Newton’s first law so that any force you exert on it leads to its motion through space. Gently
pushing on a heavy glass table tells a completely different story: the amorphous packing of
silica molecules into a tempered glass confers them the collective ability to resist motion and
deformation. Collectively, the silica molecules have created a solid. The process through which
one goes from a free-flowing silica sand to a solid glass involves a number of complex phase
transitions, the understanding of which is a central goal of statistical mechanics. Starting
from the microscopic scale, statistical physics thus aims at understanding how new properties
emerge from the collective behaviors of individual units.

On the second hand, if “more is different”, then understanding the macroscopic world may
seem a hopeless goal: All forms of matter would acquire system-dependent properties, turning
the beauty of the universal laws of physics into a depressing catalogue of material properties
that would need to be studied on a case-by-case basis. Luckily, different is often the same, in
the sense that emerging phenomena often share profound similarities. For instance, hexagonal
lattices are observed in a multitude of situations: in a honeycomb, on the pineapple fruit’s
surface, in the Giant causeway in Ireland, in the arrangement of cell tissues (e.g., in the
hexagonal patterning of the Drosophila eye), etc. While our world is complex, its complexity
respects rules and symmetries that allow categorizing collective states of matter based on
their properties: solid, liquid, and gaseous phases for instance describe a large part of the
materials you find around you. At the collective ‘macroscopic’ scale, statistical physics aims
at understanding what determines the types of patterns and forms of organizations that can
be observed in nature.

In addition, more can also be simpler. Consider the three-body problem in classical me-
chanics. As we know since Poincaré, there is no closed-form solution to the dynamics of three
interacting bodies and, for most initial conditions, the resulting dynamics is chaotic. In short,
this is a horribly complicated problem on which we cannot predict much. Now, consider one
cubic meter of air, which contains O(1023) molecules of N2 and O2. If I tell you that its
temperature is 300K, its pressure is 1 bar, and its humidity is 50%, you will have a very clear
idea of what I am talking about. Three numbers are thus enough to give you all the informa-
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1.2. EQUILIBRIUM STATISTICAL MECHANICS — THE ENSEMBLE APPROACH

tion you need to characterize the collective state of O(1023) degrees of freedom! Statistical
mechanics aims at understanding this emerging simplicity.

In short, the goal of statistical mechanics is to derive a micro-to-macro approach that allows
predicting the large-scale properties of a system starting from its microscopic description. On
the way, it will determine which microscopic details are crucial or irrelevant, and identify the
relevant variables to describe a system at the macroscopic scale. While this may sound like a
fundamental and theoretical question, the applications of statistical mechanics are everywhere
around you: from the control of the rheological properties of your toothpaste to the engineering
of LCDs, statistical physics plays a major role in material design. Note also that nothing so
far restricts the principles of statistical mechanics to physical systems and its methodological
toolbox can be applied (with, or without wisdom) to economics, sociology, epidemiology, and
computer science.

In this course, we will focus on the properties of large collections of particles in thermal
equilibrium. This course is complemented by others at MIT: 8.334 in the spring term focuses
on phase transitions and the emerging phenomenology they induce, 8.08/8.S308 in IAP focuses
on stochastic and nonequilibrium dynamics, with application to the thriving field of active
matter, and finally 8.592 in fall focuses on applications to biophysics.

1.2 Equilibrium Statistical Mechanics — The ensemble approach

In most fields of physics, the fundamental laws are given as dynamical equations: Newton’s
laws of classical mechanics, Einstein’s equations for GR, Schrödinger’s equation for QM,
Navier-Stokes for fluid mechanics, Maxwell’s equation for electromagnetism, etc. Solving
such equations in a simple context is already a challenging task, but doing so for a system
with 1023 degrees of freedom is completely out of reach 1. Furthermore, it is also quite useless
since these equations predict the state of a system at a time t given the perfect knowledge
of initial conditions at a time t′ < t. Any error on the initial condition will lead to a lack
of precision on the state of the system at time t. What classical mechanics taught us in
the 20th century is that most complex systems are chaotic: any initial uncertainty increases
exponentially in time at a rate given by the largest so-called Lyapunov exponent [5].

Instead of trying to face this daunting task, equilibrium statistical mechanics proposes
to take a completely different stance: since the air around us looks right now much like it
looked like a few seconds ago, maybe solving these dynamical equations is useless and the
only thing we need to do is to characterize the most probable state of a system and the typical
fluctuations around it. Assuming that we can describe a classical system by a set of positions
and momenta q⃗, p⃗, with q⃗ = (q1, . . . , qN ) and p⃗ = (pq, . . . , pN ), we can try to characterize
the probability P ({q⃗, p⃗}) = ρ({q⃗, p⃗})dΓ to observe the system within a given phase-space
volume dΓ =

∏N
i=1 dq⃗idp⃗i around q⃗, p⃗. Of course, this is only viable if one can guess what the

1Note that simulations are getting closer and closer to being able to solve such complicated systems, but
only on very short time scales.
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CHAPTER 1. INTRODUCTION

right probability density ρ({q⃗, p⃗}) is, and it is only useful if this distribution is not horribly
complicated.

1.2.1 The microcanonical ensemble

Classical equations of motion. The simplest way to proceed is to start from what we know on
our system: if the energy is given by a time-independent Hamiltonian H(q⃗, p⃗), the trajectories
q⃗(t), p⃗(t) will be solutions of Hamilton’s equations of motion:

d

dt
q⃗(t) =

∂H

∂p⃗
,

d

dt
p⃗(t) = −∂H

∂q⃗
, (1.1)

where ∂H
∂x⃗ denotes the vector whose coordinates are ∂H

∂xi
. All the symmetries and conservation

laws that are encoded in the dynamics (1.1) must be reflected in ρ.
Conservation of energy. A first important property of dynamics (1.1) is that it conserves the
value of the Hamiltonian along a trajectory:

H(q⃗(t), p⃗(t)) = H(q⃗(0), p⃗(0)) ≡ E . (1.2)

The energy is a constant of motion. To show this, we can use the chain rule:

dH(q⃗(t), p⃗(t))

dt
=

∂H

∂t
+
∑
i

(
∂H

∂qi

dqi
dt

+
∂H

∂pi

dpi
dt

)
= 0+

∑
i

(
∂H

∂qi

∂H

∂pi
− ∂H

∂pi

∂H

∂qi

)
= 0 , (1.3)

where we have used that ∂tH = 0 since the Hamiltonian does not explicitly depend on time.
Note of caution. We note here a difficulty commonly encountered in physics textbooks (and
in these lecture notes). In Eq. (1.2), we have written H(q⃗(t), p⃗(t)) ≡ E to explicitly state that
E is the value of the function H(q⃗, p⃗) evaluated with arguments q⃗(t), p⃗(t) that are solutions
of (1.1), instead of simply writing H(q⃗, p⃗) ≡ E. This degree of ‘precision’ ensures clarity, even
if we have already been somewhat sloppy: since the values of q⃗(t), p⃗(t) depend on the initial
conditions, we should really write something like H(q⃗(t), p⃗(t)|q⃗(0), p⃗(0)). Clearly, notations
will soon become unpractically heavy and obscure the meaning of our equations. As often
in physics, we will trade rigor for clarity and often silently omit arguments, dependencies,
initial conditions, etc. It is not uncommon to find in textbooks E ≡ H(q⃗, p⃗) and it is only
when Eq. (1.3) is written that the fact that q⃗, p⃗ are assumed to be solutions of (1.2)—and
not constant, arbitrary vectors—becomes explicit. Such concise yet sloppy notations allow us
to deal with situations arguably richer than the systems typically studied in more rigorous
contexts, but it comes at a price: ambiguity, which is a common source of mistakes.

Lecture 1 stopped here
The microcanonical hypothesis: An important consequence of Eq. (1.2) is that, if the energy of
the system at time 0 is E0, then we know that ρ(q⃗, p⃗) = 0 if H(q⃗, p⃗) ̸= E0. Since the solutions
of Hamilton’s equations of motion are trajectories confined within an energy surface, then the
support of the distribution we are looking for must coincide with the energy surface.

But how do we go forward? How do we know which region of the energy surface are more
favorable than others? An answer is suggested by the theory of dynamical systems: we don’t.
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1.2. EQUILIBRIUM STATISTICAL MECHANICS — THE ENSEMBLE APPROACH

And if we don’t know that some regions are more favorable than others, then we should not
bias our probability distribution in any way. If there are no clear reasons that our system
should explore some regions more often than others, then we can assume that the chaotic
dynamics induced by the complexity of our 1023 interacting degrees of freedom makes the
system explore the energy surface ergodically and uniformly.

This idea predates significantly the theory of chaos, in the form of the microcanonical
hypothesis. For simplicity, we present the microcanonical hypothesis in the context of dis-
crete systems. We will come back to its expression for continuous systems in Chapter 32.
Consider a classical complex system described by a discrete set of configurations {C}, then
all configurations with the same energy E have the same probability of occurrence and

PE(C) =
1

Ω(E)
δH(C),E , (1.4)

where Ω(E) is the number of configurations with energy E and δa,b is the Kronecker delta,
defined by δa,b = 1 if a = b and δa,b = 0 otherwise.
Microcanonical entropy. In Eq. (1.4), Ω(E) is simply a normalization constant such that∑

C PE(C) = 1. As the energy of the system changes, so does the number of accessible
configurations Ω(E). It turns out that the rate of change of Ω with the energy E or the number
of constituents N is typically exponential, so that a more natural observable to quantify the
accessible space of configurations is provided by Boltzmann microcanonical entropy:

Sm(E) = kB lnΩ(E) , (1.5)

where kB = 1.380649× 10−23J · K−1 is the Boltzmann constant.
Microcanonical temperature: How Ω and Sm vary with E is quantified by the microcanonical
temperature:

1

Tm
≡ ∂Sm

∂E
. (1.6)

At this stage, why the definition (1.6) is a good definition for the temperature, and how to
relate it to what you measure using a thermometer, is far from obvious. This will become
clearer in chapter 3 when we establish ensemble equivalence.
Summary: Starting from the only constraint we had on the classical dynamics describing our
system, we have suggested in Eq. (1.4) a probability distribution to describe the probability
to observe a given configuration C. Is it simple? Yes. Is it practical? Not really, because
counting the number of configurations of a given energy is often a combinatorial challenge.
Furthermore, this only allows describing systems in which the total energy is strictly conserved,
which are thus isolated from their environments. While such systems can be engineered, e.g.
using ultrahigh vacuum, this is far from the standard situation that we encounter around us.

This suggest studying another situation, in which a system is allowed to exchange energy
with the environment. In such a case, the energy is not a constant of motion anymore

2If {C} is a continuous space, then PE is a probability density, and Ω(E) is the area of the hyper-surface
of configurations with energy E.
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CHAPTER 1. INTRODUCTION

and, instead, we may simply know that the average energy of the system is fixed: ⟨E⟩ ≡∑
C E(C)p(C) = E0. Can we then guess what a reasonable choice for p(C) is? Yes, following

a proposal by Jaynes [2, 3], which makes use of Shannon entropy [6].
Notations: Throughout these lecture notes, the brackets ⟨. . . ⟩ represent averages with respect
to the relevant probability distribution.

1.2.2 The principle of minimal information

Consider a random variable n ∈ {1, . . . , N}, that you can sample freely, characterized by a
probability distribution p that you do not know. A first natural question is ‘how many times
do you have to sample this distribution to have an accurate estimate of p(n)?’. If p(n) = δn,n0 ,
then a single sample allows you to determine p. If p is more complex, then you may need
many different samples to estimate the value of p. An alternate but equivalent question is
‘how surprising are the results of sampling p?’. If p is a delta function, there is no surprise in
the outcome. If p is uniform, then you cannot predict anything about the result of sampling p

and the surprise is maximal. The ideas of Shannon on information theory allow us to quantify
the surprise contained in a distribution using a surprise function s.

Consider a sample n, if p(n) = 1, then there is no surprise in observing n and s(p(n)) = 0.
If you look at two independent samples, n1 and n2, then the surprise contained in the joint
observation of n1 and n2 should be additive: s(p(n1, n2)) = s(p(n1)p(n2)) = s(p(n1)) +

s(p(n2)). Finally, the surprise should be decreasing function of p(n): the less likely n, the
more surprised you should be to observe it. Putting this together, one can show that the
surprise function has to be written as s(p) = −k ln(p), with k > 0. The average surprise
contained in a distribution is then

Ss(p) = −
∑
C

p(C) ln p(C) , (1.7)

which is called the Shannon entropy.
Gibbs’ entropy Note that, another definition of the microcanonical entropy, due to Gibbs,
reads:

SG(E) = −kB
∑
C

PE(C) lnPE(C) = −kB
∑

C|H(C)=E

1

Ω(E)
ln

1

Ω(E)
= kB lnΩ(E) . (1.8)

As you can see, the definitions of Boltzmann and Gibbs coincide in the microcanonical ensem-
ble. Boltzmann’s definition has a strong appeal because of its direct connection to a physical
observable (Ω(E)). Thanks to Shannon [6], we now understand that, up to the constant kB,
Gibbs & Boltzmann entropy also measure the (lack of) information contained in the distri-
bution p. Equation (1.8) thus tells us that, when sampling a system in the microcanonical
ensemble, our surprise is proportional to lnΩ(E). This is consistent with our intuition: the
larger Ω(E), the more configurations are accessible to the system.

Let us now turn back to the choice of distribution we should use to try and describe the
statistics of a system in contact with a thermostat, whose average energy is fixed.
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1.2. EQUILIBRIUM STATISTICAL MECHANICS — THE ENSEMBLE APPROACH

1.2.3 The canonical ensemble

We thus consider a system whose average energy is fixed, due to energy exchange with a
thermostat. What other information do we have on the system? None, and we thus do not
have any good reason to add more information or bias in the distribution p(C). We thus want
a distribution that contains the information that

⟨E⟩ =
∑
C

E(C)p(C) = E0 and
∑
C

p(C) = 1 , (1.9)

but nothing else. We thus want to minimize the information contained in the distribution
p(C), under the constraints (1.9). To do so, we maximize the average surprise contained in the
distribution (i.e. the Shannon entropy), under the constraints (1.9). To proceed, we introduce
a function

L(p) = −
∑
C

p(C) ln p(C) + β[E0 −
∑
C

p(C)E(C)] + α[1−
∑
C

p(C)] , (1.10)

where α and β are two Lagrange multipliers. Let us consider a configuration Ci and extremize
L with respect to p(Ci) 3:

∂L(p)

∂p(Ci)
= − ln p(Ci)− 1− βE(Ci)− α = 0 . (1.11)

This equation can be solved as

p(Ci) = e−1−α−βE(Ci) . (1.12)

The Lagrange multipliers α and β can then be determined to satisfy ⟨E⟩ = E0 and
∑

C p(C) =
1. Using the normalization to fix α leads to the celebrated canonical distribution:

p(C) = 1

Z
e−βE(C) where Z =

∑
C

e−βE(C) , (1.13)

is the so-called partition function in the canonical ensemble. The value of β is then fixed by
noting that

E0 = ⟨E⟩ = 1

Z

∑
C

E(C)e−βE(C) = − 1

Z
∂β

∑
C

e−βE(C) = −∂β lnZ . (1.14)

Summary: Starting from the observation that the dynamics of complex macroscopic systems
is both irrelevant and impractical to describe their typical states, we have suggested to replace
this problem by a formally simpler one: to characterize directly the probability distribution of
observing the configurations of a system. We decided to put as little information as we can in
these distributions: enforcing the constraints given by the laws of physics, and nothing else.
Shannon information theory told us that this can be done by a constrained extremization of
the Gibbs-Shannon entropy. For an isolated system, you will show in the problem set that

3We note that ∂2L(p)
∂p(Ci)∂p(Cj)

= − 1
p(Ci)

δij so that any local extremum is necessarily a maximum.
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CHAPTER 1. INTRODUCTION

this gives back the microcanonical ensemble. For a system whose average energy is fixed, it
yields the canonical distribution.

This construction of the various statistical ensembles, which can be generalized beyond
the cases discussed here is simple and appealing, but it is not completely satisfactory. Indeed,
we have extremized the Gibbs-Shannon entropy under the constraints that we are aware of,
but nature follows its own rules whether we know them or not: a physical theory should not
be based on our knowledge or ignorance. A partial answer comes from classical mechanics
and chaos: H is a constant of motion but we can expect that in complex systems all other
quantities are “stirred” by the chaotic dynamics so that the energy surface is visited uniformly.
There are many issues with this statement. For instance, even when it is correct, it is hard
to prove. And there are cases in which we know that it is wrong: For instance, the KAM
theorem tells us that it is wrong at the level of perturbation theory close to integrability [5]4.
Furthermore, even when the chaotic dynamics of the system would lead to an ergodic sampling
of the energy surface, the time for the dynamics to do so diverges exponentially with the
number of degrees of freedom, so this is not why statistical mechanics works in practice.
Many other reasons have been put forward to “justify” equilibrium statistical mechanics, and
we will review some of them (e.g. justifying statistical mechanics at the quantum level and
deriving classical statistical mechanics as its high temperature limit). A rigorous proof of
equilibrium statistical mechanics remains an open research problem for most systems. We
will close this introductory chapter by mentioning another nice argument, that is discussed
in the series of books by Landau and Lifschitz [4].

1.2.4 Liouville theorem, conserved quantities, and the statistical indepen-
dence of macroscopic volumes

Let us derive Liouville’s equation and Liouville’s theorem to provide an appealing justification
for the form of the Boltzmann weight.

Liouville’s equation. We consider N classical particles in a 3d-space whose positions and
momenta are given by

q⃗i =

qi,x

qi,y

qi,z

 and p⃗i =

pi,x

pi,y

pi,z

 . (1.15)

We then write the corresponding equations of motion as

˙⃗qi =
∂H

∂p⃗i
and ˙⃗pi = −∂H

∂q⃗i
, (1.16)

4Consider N independent harmonic oscillators, that admit N constants of motion, and add a random
non-linear coupling between them that scales with a control parameter ε. As ε → 0, the measure of the
energy surface that corresponds to chaotic dynamics vanishes and most of the energy surface is regular. The
microcanonical hypothesis is thus violated for such a system.
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1.2. EQUILIBRIUM STATISTICAL MECHANICS — THE ENSEMBLE APPROACH

where we have introduced the operators

∂

∂q⃗i
≡


∂

∂qi,x
∂

∂qi,y
∂

∂qi,z

 and
∂

∂p⃗i
≡


∂

∂pi,x
∂

∂pi,y
∂

∂pi,z

 . (1.17)

Let us denote ρ({q⃗i, p⃗i}, t) the probability density of finding the system at {q⃗i, p⃗i} at time
t. We thus choose an initial condition {q⃗i(0), p⃗i(0)} at random, such that it lies within an
infinitesimal volume element dΓ near {q⃗ 0

i , p⃗ 0
i }, where

dΓ ≡
N∏
i=1

∏
α=x,y,z

dqi,αdpi,α ≡
N∏
i=1

dq⃗idp⃗i, (1.18)

with probability
ρ({q⃗ 0

i , p⃗ 0
i }, t = 0)dΓ . (1.19)

For any phase-space coordinate {q⃗i, p⃗i}, the time evolution of the probability density of finding
the system at {q⃗i, p⃗i} is then given by

∂ρ({q⃗i, p⃗i}, t)
∂t

∣∣∣∣
{q⃗i,p⃗i} held fixed

(1.20)

We stress the difference with Eq. (1.2) where the function H was evaluated with arguments
q⃗(t), p⃗(t) that evolve in time. The conservation of probability then reads 5

∂tρ({q⃗i, p⃗i}, t) = −
∑
i

[ ∂

∂q⃗i
· [ ˙⃗qiρ({q⃗i, p⃗i}, t)] +

∂

∂p⃗i
· [ ˙⃗piρ({q⃗i, p⃗i}, t)]

]
. (1.21)

Using the dynamics (1.16), one then finds the celebrated Liouville’s equation:

∂tρ({q⃗i, p⃗i}, t) =
∑
i

[∂H
∂q⃗i

· ∂ρ({q⃗i, p⃗i}, t)
∂p⃗i

− ∂H

∂p⃗i
· ∂ρ({q⃗i, p⃗i}, t)

∂q⃗i

]
. (1.22)

Note that our vectorial notation is simply a way to save a sumation over the coordinates
x, y, z, since expanding the dot products leads to

∂tρ({q⃗i, p⃗i}, t) =
N∑
i=1

∑
α=x,y,z

[ ∂H

∂qi,α

∂ρ({q⃗i, p⃗i}, t)
∂pi,α

− ∂H

∂pi,α

∂ρ({q⃗i, p⃗i}, t)
∂qi,α

]
. (1.23)

5This footnote is a brief reminder of the derivation of a conservation law. Consider a variable x⃗ that evolves
as ˙⃗x(t) = u(x⃗(t)) and a (probability) density ρ(x, t) advected by this flow. In any volume V and dimension d,
the variation of ρ inside V is due to the flux of the mass/probability current j⃗(x, t) = ρ(x, t)u⃗(x⃗) through the
surface ∂V of V : d

dt

∫
V
ρ(x⃗, t)ddx⃗ = −

∫
∂V

j⃗ · dd−1S⃗ = −
∫
V
∇ · j⃗ ddx⃗, where the last equality stems from the

divergence theorem. Since this holds for any volume V , one has that ∂tρ(x⃗, t) = −∇ · j⃗ = −∇ · [ρu⃗(x⃗)]. For
a more direct derivation, you can work in 1d and compare the mass/probability in [x, x+ dx] between time t

and t+ dt, and then send dt and dx to zero. Equation (1.21) is a direct application of this theorem with the
flow given in Eq. (1.16).
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CHAPTER 1. INTRODUCTION

Liouville’s equation is often compactly rewritten as

∂tρ({q⃗i, p⃗i}, t) = −{ρ,H} , (1.24)

where we have introduced the Poisson bracket

{A,B} ≡
∑
i

[∂A
∂q⃗i

· ∂B
∂p⃗i

− ∂B

∂q⃗i
· ∂A
∂p⃗i

]
. (1.25)

Liouville’s theorem Let us now show that ρ is constant along a trajectory, i.e. that ρ({q⃗i(t), p⃗i(t)}, t)
is a constant of motion. Using the chain rule, we find:

d

dt
ρ({q⃗i(t), p⃗i(t)}, t) = ∂tρ+

∑
i

[ ˙⃗qi · ∂q⃗iρ+ ˙⃗pi · ∂p⃗iρ] . (1.26)

Using Eqs. (1.22) and (1.16), one finds that the probability density is a constant of motion:

d

dt
ρ({q⃗i(t), p⃗i(t)}, t) = 0 . (1.27)

Conserved quantity and statistical ensembles. Liouville’s theorem offers an elegant justifica-
tion of the form of statistical ensemble, which is discussed in detail in Ref [4]. The underlying
idea is to assume that, in a macroscopic system, mesoscopic volumes are independent.

Consider a very large system S and two subsystem S1 and S2 that describe two sets of
degrees of freedom {q⃗i, p⃗i}i∈S1 and {q⃗i, p⃗i}i∈S2 . If these subsystems are very large compared
to any correlation length, then, in the steady state, they are statistically independent and the
steady-state density distributions should satisfy

ρ1∪2({q⃗i, p⃗i}i∈S1∪S2) ≈ ρ1({q⃗i, p⃗i}i∈S1)ρ2({q⃗i, p⃗i}i∈S2) (1.28)

Taking the logarithm of this equality leads to

ln ρ1∪2 = ln ρ1 + ln ρ2 , (1.29)

so that ln ρ is additive.
Justification of the functional form of the Boltzmann weight. One then note that the energy
is also an additive constant of motion. If it is the only one, then ln ρ ∝ E. Denoting by −β

the proportionality constant leads back to the Boltzmann weight given in Eq. (1.13)6. Again,
there are many caveats in this reasoning (the energy is not strictly additive due to surface
terms, there might be other additive constants of motions, etc.), but this is another intuitive
and appealing justification for why the canonical ensemble is relevant to describe the statistics
of systems in equilibrium.

A natural question is whether we can do better to justify the use of these ensembles. In
the next chapter, we answer this question positively and show explicitly that the statistics of
a dilute gas of interacting particles can be described by the canonical ensemble.

6This reasoning can be extended to consider other conserved additive quantities like the particle number,
the linear and angular momentum, etc. This then leads to other statistical ensembles.
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1.2.5 Key concepts and results to remember

• The notion of statistical ensemble.

• Conservation of energy along classical mechanics trajectories.

• Microcanonical ensemble: probability distribution, definition of entropy and tempera-
ture.

• Canonical ensemble: distribution and partition function.

• Shannon entropy and the notion of information contained in a distribution.

• Liouville equation and Liouville theorem.
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LP Pitaevskii. Statistical physics: theory of the condensed state, volume 9. Butterworth-
Heinemann, 1980.

[6] Edward Ott. Chaos in dynamical systems. Cambridge university press, 2002.

[7] Claude Elwood Shannon. A mathematical theory of communication. The Bell system
technical journal, 27(3):379–423, 1948.

21


	Introduction
	What is statistical mechanics?
	Equilibrium Statistical Mechanics — The ensemble approach
	The microcanonical ensemble
	The principle of minimal information
	The canonical ensemble
	Liouville theorem, conserved quantities, and the statistical independence of macroscopic volumes
	Key concepts and results to remember


	The kinetic theory of gases
	Equilibrium Statistical Mechanics 
	Interacting Particle Systems
	Quantum Statistical Mechanics
	Appendices
	Bibliographie

