
 Recitation 7 Markov JumpProcesses andtheir simulation

IIFfr.ithamlTeen learning aboutMarkov processes that are continuous in both their
stateand intime Marker Jump Processes are continuous time processes with a

discrete state space S Q Q Q The number of states maybe finite
or infinite At any point in time the system occupies somestate t S
Here are some examples

1 A chemical reaction A B

State space S A B n 2

2 A random walk on a ID lattice
state at anytime in the particleposition C I 1 6 1 as
Thus S I n a

3 A collection of particles hopping on a finite ID lattice of size L with
birth death and hard core exclusion

Youcanthink of this as a microtable in a solution of microtubule binding protein

c i 1
Eachstate is represented by a vector of occupancy numbers

H In HI Matti huh where n 0 or 1
Then S 0,1

A trajitory of a Markov process isspecified by a sequence of state x and a

corresponding sequence of dwell time
trajectory Xo To x Til xp Tn to where Xie S

The jumps occur at times xH
x

x

ti ti t Tim for is 0 Xs
o Xu
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Asdiscussed in lecture the state occupation probabilities follow a master equation

dePQi t EiW 9 0 P p it Wfp PCQ.it
where WQ Q is the transition rate fromstate tostateQ defined in terms of

the conditional probability

Is P t 19jt W9 9 for it j

In the context of chemical reactions the state 9 kn

space is oftenrepresented as a graph witharrows

denotingallowedtransition and the corresponding rates
95

q qindicated on the arrows ki WQ 9;1

2 Simulating a Markov Jump Process

21 Dwell times and transition probabilities

To simulate a Markov jump process requires a rate for choosing the dwell time and
thenext state transition given the current state
Dwell timesWeshowed in lecture that the dwell times are exponentially distributed

accordingto the escape rate
r 9.1 EFW19 9

so that
T Exp rid plti α riet

Neststate we showed in lecture that upon escaping state i the probabilitythat

the system lands in state is

Ping
W

Together there define an algorithm to exactly sample the trajectories of a jump

process often called the Gillespie algorithm though it is much olderthan Gillespie



2.2 The Gillespie algorithm Directmethod

The Gillespiealgorithmdeveloped by Doobandothers in 1945 andpopularized by
Gillespie in 1976 77 generates the nextstate and jumptime of a Markerjump
process as follows

1 Initializethetime andstate variables t to and Xo

2 Computethe escape rate r Wix Q1
3 Drawtwo independent R.US uniformly on 0,1 called U and Ua

4 Timeupdate set t t T where T I log u

5 State update set Q where

j min w x p Uar

6 Return to step2

Why does this work

For step147 check that logYu Exp r

Forstep15 we wish to pickthenextstate with a probability proportional totherate of
jumpingfrom to that state Seethebelowpicture

wa.fi ii ii ii iitu.r
1 pr

Whyare the dwell timeand nextreaction independent Go back to today's lecture notes

and check that the joint density p T is p T j W j exp we e t

This algorithm is etactandis sometimes called the direct method It is rejection free in the

sense that every random number generation is associated with a state transition It is an

sampleof a kinetic Monte Carlo algorithm

In many situations e.g large reaction network manyparticles on a lattice the number

of possible state transitions is verylarge This means theescapyrates are verylarge and
the dwell times are veryshort so very many iterations of the algorithm are neededtoelapse

a reasonably long time interval It alsomeans that computation of the escape rates is



itselfcostly as it takes a timewhich scales linearlywiththenumberof possible transitions

There are some optimizations that can be done when many of the reactions

are independent e.g faraway particles on a lattice These rely on an alternative

description of a Markov jumpprocess

2.3 First reaction and Nextreaction methods

In the above we characterize a Markov jumpprocess in terms of thedistributions governing
the dwell timeand the next state transition choice An equivalent description is
the following suppose that the system is in state Q at some time To each

possible escape reaction Q Q is associated a stopwatch and a waiting time

Tij ExpWIP Q
is drawn The stop watches are started The first time a stopwatch hits Tig for
some j reaction is executed The waiting times are then drawn anew

and the stopwatches restarted
Schematically

possible transitions

99 Dwell time Min Tis

currentstate Tik
Q Next state Qp where p orgmin t

Til

de

To see that this is equivalent to the above the following mustbe shown

Consider a collection of n independent exponentially distributed random variables with rates
K ka kni that is T Tn with Ti Exp ki

f The minimum T min To is Exper distributed with r Eki
2 The probabilitythat T is the smallest amongthe T is

again T i kifr



For 11 it suffices toprovethe statement for n 2 because it maythen be applied
pairwise min Ti T2 n min min T T2 Tz tn min min minTi Ta Ts Ty a

and so on For n 2 we have

P min IT Tal t P Test P Test Idsk e ksfdsk.es
e
kit test

1 P min Ti T2 t

we thus identifythe CDF as that of an Exp kitka R V Ba

For 12 we use indicator variables

orgyin T i pI 1 Tas T
where I A 1 if eventA occurs and zero otherwise
Thetermswithinthe product are not independent if I tell you The T for some k this
tells you something aboutthe smallness of Ti so that Tm Til is nowmore likely
Toresolve this we condition on T and use the tower rule E x E G X Y

orgyin T i ITL Tp Ti T

II P T Til

ftp.tEkTi t

kifdtetp E.kit
Be
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2.31 Firstreaction method

Based on the above Gillespie proposedthe followingalgorithm at each step

draw an ExpW x Q variable Tp for every pe 8 Set t min Tp

and x arggin To
This algorithm is obviously less efficient because it draws up to ISI random variables
at eachstepand identifies their minimum Its usefulness is thus mostly pedagogial



2.3.2 Next reaction method Gibsonand Bruik 2000
The idea here is todraw all the possible transition times T 3 and to store them in an

efficientdata structurethat maintains their order

At each step the smallest T transition is executed andonlythose reactions which

are affected are redrawn

The original implementation is specialized tochemical reactions so we list here only
themain idea

The transition times are storedin a min heapdatastructure usually indexed

0 01

0.031 05

o.lt 0109 0.113 0.2

1.21 8.2 0 3 3

The next reaction is always the roof and can be found in 0111 time

An additional data structure keeps track of the dependency structure between

the elements e.g nearestneighborsites on a lattice

Example spins on a lattice leg a kinetic Ising model

Consider a model with spine s 1 on a lattice Id Spin i flips at a rate which

is a function of S and the nearest neighbors of i denoted Oli

fliprate w s jet lil

This can be simulated as follows

1 Initialize the spinlattice Foreach i Ld drawthe flip time of spin i according
to T Exp W S jet lil

2 Organize the Ld pairs i Ti into a min heap sorted according to Ti Create

a data structure of pointers to thetreeforeach i
3 Setthe simulation time to Z Tj where j argm.in T

4 Flipspin j
5 For each ie 5151and for j itself redraw T as T t Dti where

Δ Ti EtpW 5h her ill Re organizethe heap Return to step3



The slowest stepisthe time to reorganize the heapwhich isOllogNl insteadof OINI

This is a big improvement over the directmethod

2 Disaletimerjedonalgorithms


