Recitation 3 - Amer AL-Hiyasat

lopics:

- 1) Conditional distributions + constructive definition of the Wiener procen
- 2) General Brownia motions
- 3) Stouhastic Differential Equations

Conditional distributions

Consider a Wiener Procen W(t). Suppose I give you W(U) for some U>0. What is the conditional distribution of $(W(t \le u) \mid W(u))$? The following fact is useful: <u>Claim</u>: $W_t - (t/u) W_u$ is independent of W_u for true. <u>Pf</u>: Clearly the quantitity is Gaussian, so it suffices to show that the covariance is zero. $\langle (W_t - t/u W_u) W_u \rangle_c = \min(t, u) - \frac{t}{u} < W_u^2 \rangle_c$ $= t - \frac{t}{u} u = 0$.

This mokes life easy:

$$\langle W_t | W_u \rangle = \langle W_t - (t_u) W_u | W_u \rangle + \frac{t}{u} W_u$$

 $= \langle W_t - \frac{t}{u} W_u \rangle + \frac{t}{u} W_u$
 $= \left(\frac{t}{u} W_u \right)$

This mokes sense: the mean is just obtained by bhearly interpolating the the two points. The variance is:

⇒t

U

$$\left\langle W_{t}^{2} \middle| W_{u} \right\rangle_{c} = \left\langle \left(W_{t} - \left\langle W_{t} \middle| W_{u} \right\rangle \right)^{2} \middle| W_{u} \right\rangle$$
$$= \left\langle \left(W_{t} - \frac{t}{u} W_{u} \right)^{2} \middle| W_{u} \right\rangle$$
$$\stackrel{\text{by cloim}}{=} \left\langle \left(W_{t} - \frac{t}{u} W_{u} \right)^{2} \right\rangle$$
$$= t - 2 \frac{t}{u} \min(t, u) + \frac{t^{2}}{u^{2}} u$$
$$= \left[t \left(1 - t/u \right) \right]$$

As expected, variance is smallest vear t os u, and mathemized at t=u/2. Stangely, this is independent of W_u ! As W_u is made larger, the relative width vanishes: $\frac{\sqrt{W_t^2 | W_u \sum_{k=1}^{\infty} \leq \frac{u/2}{t/u | W_u|}}{\frac{1}{\sqrt{W_t^2 | W_u \sum_{k=1}^{\infty} \leq \frac{u}{t/u | W_u|}}} \Rightarrow 0 \text{ as } W_u \Rightarrow 0$.

Note that the result above gives a procedure to sampling a Wienor
procent on the interval
$$(0, u)$$

1) Set $W(0) = 0$.
2) Set $W(u)$ by drowing a $\mathcal{N}(0, u)$ number.
3) Set $W(u/2)$ by drowing a $\mathcal{N}(\frac{1}{2}W(u), \frac{1}{2}W(u))$
4) Repeat for the intervals $(0, u/2)$ and $(\frac{1}{2}u)$,
centimize recursively.

The Brownia Bridge

In the special case u=1 and $W_u = 0$, the resulting and the distribution is called a Brownian Bridge. This can be uniquely defined as follows Def: A standard Brownian Bridge is a Gaussian process $\xi X(t)$: $t \in [0,1]$ swith antimuous paths, mean zero, and $\langle X(s|X(t)) \rangle_c = s(1-t)$ for $0 \leq s \leq t \leq 1$. You can verify that if W is a Wiener procent, the following give Brownian bridges: X(t) = W(t) - t W(1) $Y(t) = (1-t) W(\frac{t}{1-t})$

Fou an interpret this as a wiener power "pilmed" at W(J)=0. You may verify that a Brownian bridge has the following Fourier representation: $B_t = \sum_{k=1}^{\infty} \frac{Z_k}{k} \frac{\sqrt{2} \sin(k\pi t)}{\pi}$

where the $\{Z_k\}$ are i.i.d $\mathcal{N}(0, 1)$. The spectral density thus falls as $1/k^2 \implies$ this is like a simple Gaussian field theory with $Hamiltonian \mathcal{H}[\psi] = \int dx (\nabla \psi)^2 (don't warry if this is meaningshern to you).$

General Brownin motions (with driff) We may generalize the wiener proven by adding a drift and a scale to w(t). A procens X(t) defined as X(t) = X(0) + µt + JW(t) is called a (µ, J²) - Brownin motion (through this terminology is rarely used in physica). I bring this up because of an importent fact: Thm: /f a stochantic procen X how curtinuous paths and stationary independent inversents, then X is a Browning motion an defined above.

The Gaussonity of invenents thus comes "for free". This can be intuited from the central limit theorem: If invenents are staticnary and independent, then any one increment can be partitioned as the sum of many smaller increments that are iid.

Stochastic differential equations The solution to a (deterministic) ODE of the form $\dot{x} = f(x)$ is a smooth function x(t) (so logg as f is smooth). Such a solution con everywhere be locally approximated by a linear function: $x(t) \simeq x(t_0) + f(x(t_0)) (t-t_0)$ as $t \longrightarrow t_0$ A stochastic differential equation $\dot{x} = f(x) + \nabla(x) \gamma(t)$

has solutions x(t) which can be locally approximated by a general Brownian motion: $x(t) \simeq x(t_0) + f(x(t_0))(t-t_0) + \tau(x(t_0)) W(t-t_0)$ as $t \longrightarrow t_0$

Stochastic Integrals

A stochastic differential equation is a shorthand for the corresponding stochastic integral:

$$x(t) = \int_{0}^{t} ds f(x(s)) + \int_{0}^{t} ds \sigma(x(s)) \eta(s)$$

In math, integrals of the form
$$\int_{t_0}^t ds \eta(s) h(s) = \int_{t_0}^t ds \eta(s) h(s)$$

i.e. we replace $ds \eta(s) \longrightarrow dW(s)$. The corresponding notation for a SDE is $dx = f(x,t) dt + \nabla(x,t) dW$

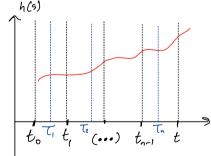
We define (1) as a stochastic version of the Riemann - Stielty integral: Partition the interval [to, t] mb a subintervals,

$$t_0 \leq t_1 \leq \cdots \leq t_{n-1} \leq t$$

Pick times T; within these subinterrals:

 $t_{i-1} \in \tau_i \in t_i$ The stochastic integral is defined as the limit $\int_{t}^{t} h(s) dW(s) = \lim_{n \to \infty} S_n$, where $S_n \equiv \sum_{i=1}^{n} h(\tau_i) \left[W(t_i) - W(t_{i-1}) \right]$ where W is a shorded Wiener procent. h(s)

Note that the value of this integral depends
on the choice of
$$\tau_i$$
. For example, consider
 $h(s) = W(s)$. Then:
 $\langle S_n \rangle = \sum_{i=1}^{n} \langle W(\tau_i) [W(t_i) - W(t_{i-1})] \rangle$
 $= \sum_{i=1}^{n} [\min(\tau_i, t_i) - \min(\tau_i, t_{i-1})]$
 $= \sum_{i=1}^{n} (\tau_i - t_{i-1})$



If we use an " α -discretization" as mentioned in tecture: $T_i \equiv \alpha t_i + (1-\alpha) t_{i-1}$, $0 \le \alpha \le 1$, Thun $\langle S_n \rangle = \hat{\sum}_{i=1}^{n} \alpha (t_i - t_{i-1}) = \alpha (t - t_0)$ This ranges anywhere between 0 and $t - t_0$. In the Ito perscription, we make the choice $\alpha = 0$

In the Strafonovich personiphien, we use $\label{eq:constraint} X = 1/2 \; .$

For arbitrary h(s), there is no general correspondence between the two integrals, but in the important special case where h(s) = h(x(s)) and x(s) is the solution to an SDE, there is in fact a general formula relating the two perscriptions. We will come back to this in a Return receivation.