The Wiener Process

Recap

A Wiener Procen or Standard Brownian Motion on be defined in two ways:
(A procens
$$\frac{1}{2}W(t): t \ge 0$$
 is having.
i) Continuous paths
ii) Stationary, independent increments
iii) $W(t) \sim N(0,t) \forall t \ge 0$
or
(A Gaussian procens with continuous paths, when zero and correlation kinctures:
 $\langle W(t_i), W(t_2) \rangle_c = min(t_1, t_2)$

Some poperties of the wiener procent
Then: Suppose
$$W$$
 is a wiener procent and let $c > 0$. Then the procent
 $X(t) = C^{-1/2} W(ct)$
is a Wiener procent.
PE: Follows immobilitely from $@: X(t)$ is clearly Gaussian.
 $\langle X(t_1) | X(t_2) \rangle_c = C^{-1} \langle W(ct_1) | W(ct_2) \rangle_c$
 $= C^{-1} \min(ct_1, ct_2) = \min(t_1, t_2)$

Thim: The procen
$$X(t) = W(c+t) - W(c)$$
 is a Wiere-procen independent
of $W(t \leq c)$, for any $c > 0$.
PF: Follows immediately from (2) is and (2).
This is the sense in which Brownien mobiles is Markavian and Stationery-
it is constantly vestaring.

The process
$$X(t) = t W(1/t)$$
 is a Wiener process.
PG: $X(t)$ is Gaussian and continuous (ignore technicalities at $t=0$). Covariance function:
 $\left\langle t_1 W(1/t_1) \ t_2 W(1/t_2) \right\rangle_c = t_1 t_2 \min\left(\frac{1}{t_1}, \frac{1}{t_2}\right) = \frac{t_1 t_2}{\max(t_1, t_2)} = \min(t_1, t_2).$

General Brownikh mothers

We may generalize the wiener procen by adding a drift and a scale to w(t).

A procen X(t) defined as

 $X(t) = X(0) + \mu t + \sigma W(t)$

is called a (μ, σ^2) -Brownia motion (though this termhology is rarely used in physica).

I bring this up because of an important fact:

Thm: /f a stochantic procen X has cartinuous paths and stationary independent inventents, then X is a Brownich motion on defined above.

The Gaussonity of invenents thus comes "for free". This can be intrited from the central limit theorem: If invenents are staticnary and independent, then any one increment can be partitioned as the sum of many smaller increments that are iid.

Some pathologies of Brownich Parties

- 1) For any $\varepsilon > 0$, W(t) crosses zero infinitely many times on the interval $(0, \varepsilon)$. One way to understand this is to use that t W(1/t) is a Wiener procen. It is believable that a wiener procens crosses 0 infinitely many times on the interval $(1/\varepsilon, \infty)$ (we may come back to this when use talk about recurrence of random walks). But if s W(1/s) = 0 for infinitely many $s \varepsilon (1/\varepsilon, \infty)$, then W(t) = 0 for infinitely many $t \varepsilon (0, \varepsilon)$.
- 2) W(t) is nowhere differentiable, with prob 1. This may be understand from the independence of increments: W(t+5) - W(t)and $W(t-\delta) - W(t)$ are independent $t + t, \delta > 0$.

Another way: consider
$$\Delta W = W(t+\delta) - W(t)$$
.
This has variance $\langle \Delta W^2 \rangle = \delta$, hence $\lim_{\delta \to 0} \frac{\Delta W}{\delta} \sim \sqrt{\delta}$

Computing things: First passage times
telt
$$\frac{1}{2}$$
 with $\frac{1}{3}$ be a Wiener power. Define the first pansage time for some $\frac{1}{2}$ be $\frac{1}{2}$ to $\frac{1}{2$

 $\langle T_b \rangle = \infty$ But T_b is finite with prob 1: $\lim_{t\to\infty} \mathbb{P}[T_b < t] = \operatorname{erfc}(0) = 1$. We say that a Brownian mobiler in 10 is "null-recurrent": if it crosses zero, it comes back almost swelf, but the time to so is infinite an average.

Conditional distributions

Consider a Wiener Process W(t). Suppose I give you W(u) for some u > 0. What is the conditional distribution of $(W(t \le u) \mid W(u))$? The following fact is useful: lemma: $W_t - (t/u) W_u$ is independent of W_u for tru. Pf: Clearly the quantitity is Gaussian, so it suffices to show that the covariance is zero. $\langle (W_t - t/u W_u) W_u \rangle_c = \min(t, u) - \frac{t}{u} \langle W_u^2 \rangle_c$ $= t - \frac{t}{u} u = 0$.

This mokes life easy:

$$\langle W_t | W_u \rangle = \langle W_t - (t_u) W_u | W_u \rangle + \frac{t}{u} W_u$$

 $= \langle W_t - \frac{t}{u} W_u \rangle + t_u W_u$
 $= \left(\frac{t}{u} W_u \right)$

This mokes sense: the mean is just obtained by thearly interpolating the the two points. The variance is:

⇒t

U

$$\left\langle W_{t}^{2} \middle| W_{u} \right\rangle_{c} = \left\langle \left(W_{t} - \left\langle W_{t} \middle| W_{u} \right\rangle\right)^{2} \middle| W_{u} \right\rangle$$
$$= \left\langle \left(W_{t} - \frac{t}{u} W_{u}\right)^{2} \middle| W_{u} \right\rangle$$
$$\stackrel{\text{by limms}}{=} \left\langle W_{t} - \frac{t}{u} W_{u} \right\rangle^{2}$$
$$= t - 2 \frac{t}{u} \min(t, u) + \frac{t^{2}}{u^{2}} u$$
$$= \left[t \left(1 - t/u \right) \right]$$

As expected, variance is smallest near W_{u} t as u, and mathemized at t=u/2. Stangely, this is independent of W_{u} ! As W_{u} is made larger, the relative width vanishes: $i\frac{\langle W_{e}^{2}|W_{u}\rangle_{c}}{\langle W_{e}|W_{u}\rangle} \leq \frac{u/2}{t/u} = 0$ as $W_{u} \rightarrow \infty$.

Note that the result above gives a provedure be sampling a Wiene
proven an the interval
$$(0, u)$$

1) Set $W(0) = 0$.
2) Set $W(u)$ by drowing a $\mathcal{N}(0, u)$ number.
3) Set $W(u/2)$ by drowing a $\mathcal{N}(\frac{1}{2}W(u), \frac{1}{2}W(u))$
4) Repeat for the intervals $(0, u/2)$ and $(\frac{1}{2}u_1)$,
unitarial controls $(0, u/2)$ and $(\frac{1}{2}u_1)$,
 $(unitarial controls underval)$

The conditional correlation function is, for set cu $\langle W(s) W(t) | W(u) \rangle_c = s(u-t)$ I leave the poof on an excercise.

The Brownie Bridge

In the special case u= I and Wn = O, the resulting conditional distibution is called a Brownian Bridge. This can be uniquely defined as follows Der: A standard Brownian Bridge is a Gaussian process {X(t): t < [0,1] } with antimony paths, mean zero, and $\langle X(s|X|t) \rangle_c = s(1-t)$ for $0 \leq s \leq t \leq 1$. You can verify that if W is a Wiener procent, the following give Brownian bridges: X(t) = W(t) - tW(1) $Y(t) = (1-t) W\left(\frac{t}{1-t}\right)$

You can interpret this as a wiener process "primed" at W(IJ=0. You may verify that a Brownia bridge has the following Fourier representation: $B_t = \sum_{k=1}^{\infty} \frac{Z_k}{L} \left[\frac{\int 2 \sin(k\pi t)}{\pi} \right]$

where the {Zk} are i.i.d N(0,1). The spectral density thus falls as 1/h2 => this is like a simple Gaussian held theory with Hamiltonia $\mathcal{H}[\psi] = \int dx (\nabla \psi)^2 (don't warry if this is meaningshern to you).$