
8.08/8.S308 - Problem Set 4 - IAP 2025

Due before January 28 23:59

Anything marked as “graduate” count as bonus problems for undergraduate students.

1- Active spins on lattice
We consider an active particle on a square lattice in an arbitrary dimension d. The particle

hops in a given direction at rate h and changes direction at rate α, picking its new direction
among the 2d possibilities uniformly at random. Such a direction change is called a ‘tumble’.
The purpose of the next few questions is to compute the diffusivity of the particle. A trajectory
of duration t can be decomposed into n successive runs, defined as the period between two
tumbles. Note that the number n is itself a random variable, which fluctuates between different
trajectories of the same duration t. During each run, the particle undergoes a displacement a⃗i

along one of the lattice direction (the lattice spacing is taken equal to 1).

1.1) Draw a schematic trajectory with n = 6 for a two-dimensional lattice.

1.2) Show that, if the particle starts at the origin, its displacement r⃗(t) at time t satisfies

⟨r⃗(t)2⟩ =
〈 n∑

i=1
a⃗2

i + 2
∑
i<j

a⃗i · a⃗j

〉
(1)

where brackets represent averages over many trajectories.

1.3) Using simple symmetry arguments, explain why ⟨⃗ai · a⃗j⟩ = 0 for i ̸= j.

1.4) We now assume that ⟨∑n
i=1 a⃗2

i ⟩ ∼
t→∞

⟨n⟩⟨a2⟩, where ⟨n⟩ is the average number of run phases
during a trajectory of length t and ⟨a2⟩ is the second moment of the run length. This is called
the Wald identity; explain briefly the underlying asumption and why it is valid in the large
time limit.

1.5) Compute the mean time between two tumbles. Deduce the mean number ⟨n⟩ of run phases
during a large time t.

1.6) We now want to compute ⟨a2⟩. At any time, what is the probability that the next
configuration change is a hopping event? A tumble? Show that the probability P (a) that the
particle covers a distance a during a run phase is given by

P (a) = αha

(α + h)a+1 (2)

1.7) We introduce the generating function G(z) = ∑∞
a=0 zaP (a). Compute G(z), for z <

1 + α/h, in terms of α, h and z.

1.8) Compute G′(1) and G′′(1). Deduce the first and second moment of the run length a:

⟨a⟩ = h

α
; ⟨a2⟩ = 2h2

α2 + h

α
(3)
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1.9) Using these results and Eq. (1), compute the diffusivity D as:

D ≡ lim
t→∞

1
t

⟨r⃗(t)2⟩
2d

. (4)

2- Rectification of bacterial density by anisotropic tumbles
Let us consider a self-propelled particle on a one-dimensional lattice of L sites with periodic

boundary conditions (in the following, we silently identify site L + 1 and site 1, as well as site 0
and site L). P (i, +; t) and P (i, −; t) are the probabilities to find the particle on site i going to
the right and to the left, respectively. We silently omit the time dependency in the following
and simply write P (i, ±). On site i, the particle may

• hop to the site i + 1 at rate d+
i if it is in the right-going state.

• hop to the site i − 1 at rate d−
i if it is in the left-going state.

• change its orientation from right-going to left-going at rate α+
i .

• change its orientation from left-going to right-going at rate α−
i .

2.1) The configurations corresponding to having the particle at site i in a right-going or left-
going states are noted (i, +) and (i, −), respectively. List all possible transitions into and out
of configuration (i, +) and the corresponding rates, and show that the evolution of P (i, +) is
given by the master equation

∂tP (i, +) = d+
i−1P (i − 1, +) − d+

i P (i, +) + α−
i P (i, −) − α+

i P (i, +) (5)

What is the master equation yielding the evolution of P (i, −)?

2.2) We note P (i) the probability to find the particle at site i, irrespectively of its direction.
How are P (i), P (i, +), and P (i, −) related mathematically? Show the evolution of P (i) to be
of the form

∂tP (i) = Ji−1,i − Ji,i+1 (6)
Give the expression of Ji,i+1 and its physical interpretation. If you were to simulate this system,
how would you measure Ji,i+1?

2.3) We now consider the system in steady state. Show that the probability current is
constant and that its value is given by

J = P (i, +)(d+
i + α+

i ) − P (i, −)(d−
i + α−

i ) (7)

2.4) Graduate. Express P (i, +) as a function of P (i − 1, +), J and of the microscopic rates.

2.5) Graduate. We now consider a closed system of L sites (d−
1 = d+

L = 0). What is the value
of J in the steady-state? Show that

∀i ≥ 2, P (i, +) =
 i∏

j=2

d+
j−1

d−
j

d−
j + α−

j

d+
j + α+

j

 P (1, +); P (i, −) = d+
i + α+

i

d−
i + α−

i

P (i, +) (8)
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Figure 1: Left: Steady-state density of bacteria in a cavity with asymmetric obstacles in the middle.
Center: Sketch of the cavity. The distance between obstacles is larger than the size of the bacteria.
Right: Description of the bacteria trajectories when they collide with an obstacle.

2.6) Graduate. We consider a system with uniform, isotropic hoping rates d+
i = d−

i = d. For
1 ≤ i ≤ ℓ and for ℓ + h < i ≤ L, α+

i = α−
i = α. For ℓ < i ≤ ℓ + h, on the other hand, we

take α+
i = α and α−

i = α + ε. Compute P (i, +), P (i, −) and P (i) for all i. Make a sketch of
log P (i) as a function of i.

2.7) Graduate. In Fig. 1, the steady-state density distribution of bacteria swimming in a two-
dimensional cavity containing at its center a one-dimensional line of asymmetric obstacles is
shown. Explain this experimental result. (Feel free to model the experiment in any way you
like.)

3- Zero-range process
We consider a one-dimensional lattice with L sites and periodic boundary conditions. N

particles hop stochastically on the lattice and a configuration of the system is thus characterised
by the occupancy numbers {n} ≡ (n1, . . . , nL) for all sites. We consider u(n) an arbitrary
positive function of n such that u(0) = 0. With a rate u(ni), one particle on site i is transferred
to site i + 1, so that ni → ni − 1 and ni+1 → ni+1 + 1.

3.1) Consider a configuration {n}. What are the configurations {n′} connected to {n} by a
single-particle displacement? What are the corresponding transition rates from {n} to {n′}
and from {n′} to {n}?

3.2) Explain the principle of detailed balance for a model with a discrete set of configurations.
Can this model satisfy detailed balance? Show that the master equation can be written as

∂tP ({n}) =
L∑

k=1
[u(nk−1 + 1)P ({nk−1 + 1, nk − 1}) − u(nk)P ({n})] (9)

where {nk−1 + 1, nk − 1} is the configuration obtained from {n} by adding a particle at site
k − 1 and substracting a particle from site k.

3.3) We look for a factorized steady-state:

P ({n}) = Z−1
L,N

L∏
k=1

f(nk) (10)
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Show that a sufficient condition for (10) to be a solution of Eq. (9) is

u(nk−1 + 1)f(nk−1 + 1)
f(nk−1)

= u(nk) f(nk)
f(nk − 1) (11)

Explain why this imposes both left-hand side and right-hand side to be equal to a constant λ
independant of nk and nk−1.

3.4) We assume λ = f(0) = 1 without loss of generality. Compute f(nk) and show that

P ({n}) = Z−1
L,N

L∏
k=1

nk∏
j=1

1
u(j) , (12)

where Z−1
L,N is a normalization constant.

3.5) Show that

ZL,N =
∑
{n}

L∏
k=1

f(nk)δ(
L∑

i=1
ni − N) (13)

where δ(p = 0) = 1 and δ(p ̸= 0) = 0.

3.6) Graduate. Let p(n) be the (marginal) probability that n particles are at site 1, irrespec-
tively of the other occupancy numbers, but given that there are N particles in total. Show
that

p(n) = f(n)ZL−1,N−n

ZL,N

(14)

p p p p

Figure 2: In a TASEP, all particles hop forward at rate p provided the arrival site is empty. (Con-
versely, all the particles could be hoping towards the left.)

3.7) Graduate. We now consider the following mapping, valid for periodic boundary conditions,
from a lattice with L sites and N particles to a lattice with N + L sites and L particles. Each
site of the system 1 corresponds to a particle of the system 2. The occupancy number of site i
in system 1 then corresponds to the number of empty sites between the (i − 1)th particle and
the ith particle in system 2. Draw two configurations of your choice, that you find illustrative,
for L = 6 and N = 5. Show that if system 1 is a zero-range process with u(n) = p, then
the system 2 corresponds to a TASEP. To do so, one will represent all possible representative
transitions in one system and the corresponding transitions in the second system.

3.8) Graduate. Consider the TASEP illustrated in Figure 2. Write down the master equation
for a system of M = N + L sites and N particles. Show that in steady state, all configurations
have equal probability. Given the mapping discussed at the question 3.7, is this compatible
with (12)?
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