
8.08/8.S308 - Problem Set 3 - IAP 2025

Due before January 22, 23:59

Anything marked as “graduate” counts as bonus problem for undergraduate students.

1- Backward Fokker-Planck Equation
The dynamics of a colloidal particle can be described, at the trajectory level, by a stochastic

equation:

ẋ = f(x) +
√

2D(x)η(t); with ⟨η(t)⟩ = 0; ⟨η(t)η(t′)⟩ = δ(t − t′); (1)

and, at the level of probability distribution, through a Fokker-Planck equation

∂P (x, t|x0, t0)
∂t

= ∂

∂x

[
∂

∂x
D(x) − f(x)

]
P (x, t|x0, t0) (2)

where P (x, t|x0, t0) is the probability to find the colloid at x at time t knowing that it was at
x0 at time t0. This equation is called the “Forward Fokker-Planck equation” because, once the
system has been at x0 at time t0, it describes what happens in the future (Fig. 1, left).

Conversely, P (x, t|x0, t0) can be seen as a function of the variables x0 and t0: what is the
probability of reaching x at time t if leaving x0 at t0. One can thus study how P (x, t|x0, t0)
evolves with t0 (cf Fig. 1, right). This is the purpose of the Backward Fokker-Planck equation,
which we construct in this exercise.

Figure 1: P (x, t|x0, t0) can be seen either as a function of x, t, for fixed values of x0 and t0—this
is the perspective of the forward Fokker-Planck equation (left)—or as a function of x0 and t0, for
fixed values of x and t—this is the point of view of the backward Fokker-Planck equation (right).

1.1) Consider a particle evolving with equation (1). The probability to find it at x0, x′ and x
at the successive times t0 < t′ < t, P (x, t; x′, t′; x0, t0), satisfies

P (x, t; x′, t′; x0, t0) = P (x, t|x′, t′)P (x′, t′|x0, t0)P (x0, t0) (3)

where P (x0, t0) is the probability that the particle was at x0 at t0. Explain intuitively the
content of equation (3). On which property of the dynamics (1) does equation (3) rely?
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Figure 2: Energy landscape leading to the existence of a metastable state around xℓ, separated
from the main energy well by an energy barrier. We want to compute the mean first-passage time
from x to b.

1.2) For three random variables a,b,c, one has P (a, c) =
∫

dbP (a, b, c). Apply this formula to
P (x, t; x′, t′; x0, t0) to show that P (x, t|x0, t0) is solution of the Chapman-Kolmogorov equation:

∀t′ ∈]t, t0[, P (x, t|x0, t0) =
∫

dx′P (x, t|x′, t′)P (x′, t′|x0, t0) (4)

What is the physical meaning of equation (4)?

1.3) Take the derivative of equation (4) with respect to t′ and show that P (x, t|x0, t0) is solution
of the Backward Fokker-Planck equation:

∂P (x, t|x0, t0)
∂t0

= −
[
D(x0)

∂

∂x0
+ f(x0)

]
∂

∂x0
P (x, t|x0, t0) (5)

Hint: Remember that lim
t′→t0

P (x′, t′|x0, t0) = δ(x′ − x0)

1.4) For a stochastic process which does not explicitly depend on time (a.k.a. ‘homogeneous
in time’), one has P (x, t|x0, t0) = P (x, t + τ |x0, t0 + τ). Show this to imply that

∂tP (x, t|x0, t0) = −∂τ P (x, 0|x0, τ = t0 − t) (6)

Using the Backward Fokker-Planck, applied to P (x, 0|x0, t0 − t), show that

∂P (x, t|x0, t0)
∂t

=
[
D(x0)

∂

∂x0
+ f(x0)

]
∂

∂x0
P (x, t|x0, t0) (7)

2- The Kramers Problem
We study the time it takes for a particle evolving with the Langevin dynamics

ẋ = −V ′(x) +
√

2kTη(t) where ⟨η(t)⟩ = 0; ⟨η(t)η(t′)⟩ = δ(t − t′) (8)

to cross an energy barrier of height ∆E (Fig 2). More precisely, we would like to compute the
mean first-passage time to reach b for a particle that was at x at t = 0.

2.1) We use absorbing boundary conditions at a and b, i.e. a particle reaching a or b is removed
from the system. What does the function

G(x, t) =
∫ b

a
dx′P (x′, t|x, 0) (9)
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measure ?

2.2) G(x, t + dt) and G(x, t) are not necessarily equal. Why? How is their difference connected
to Q(x, t)dt, the probability that a particle leaves [a, b] for the first time between t and t + dt?
Show that

Q(x, t) = −∂tG(x, t) (10)

What is the mathematical definition of Q̄(x), the mean time it takes for the particles to
exit [a, b]? Show that

Q̄(x) =
∫ ∞

0
G(x, t)dt (11)

(We admit without proof that limt→∞ tG(x, t) = 0.)

2.3) Using the Backward Fokker-Planck equation, show that G(x, t) is a solution of

∂tG(x, t) = kT
∂2

∂x2 G(x, t) − V ′(x) ∂

∂x
G(x, t) (12)

Then, show that Q̄(x) is a solution of the ordinary differential equation

kTQ̄′′(x) − V ′(x)Q̄′(x) = −1 (13)

2.4) We now take a = −∞, so that particles only exit [a, b] at x = b. Show that the mean
first-passage time until b is given by:

Q̄(x) = 1
kT

∫ b

x
ds eβV (s)

∫ s

−∞
du e−βV (u) (14)

(To do so, simply check that this expression is a solution of (13) with the proper boundary
condition as x → b.)

2.5) Graduate. We now turn to the low temperature limit. For x and b as in Fig 2, show that
the integral over s is dominated by the vicinity of xh when T → 0 and that the integral over
u is dominated by the vicinity of xℓ. Using a Taylor expansion of the potential around these
points, prove the validity of the Arrhenius law:

Q̄(x) ≃
T →0

2π√
|V ′′(xh)V ′′(xℓ)|

eβ[V (xh)−V (xℓ)] (15)

2.6) Graduate. Does this result depend on x? on b? What is the typical time-scale for this
system to reach its steady-state?

Graduate: 3- Non-equilibrium dynamics with 2 degrees of freedom
Let us consider the Itō-Langevin dynamics

γ1ẋ1 = f1(x1, x2) +
√

2γ1T1η1; γ2ẋ2 = f2(x1, x2) +
√

2γ2T2η2; (16)

where µi and Ti are positive constants, and η1(t) and η2(t) are two independent Gaussian White
Noises of statistics ⟨ηi⟩ = 0 and ⟨ηi(t)ηj(t′)⟩ = δi,jδ(t−t′). The force field f⃗ = (f1, f2) is smooth.
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3.1) We consider P (x0
1, x0

2, t) the density of probability to observe the stochastic processes x1(t)
and x2(t), solutions of (16), at positions x0

1 and x0
2 at time t. Show that

P (x0
1, x0

2, t) = ⟨δ(x1(t) − x0
1)δ(x2(t) − x0

2)⟩x1,x2 (17)

where the average is computed over the realisations of the stochastic processes x1(t) and x2(t).

3.2) Taking the derivative of (17) with respect to time, and using Itō calculus where appropri-
ate, show that P (x0

1, x0
2, t) is solution of the Fokker-Planck equation

∂tP (x0
1, x0

2, t) = ∂

∂x0
1

[
∂

∂x0
1
µ1T1 − µ1f1

]
P (x0

1, x0
2, t) + ∂

∂x0
2

[
∂

∂x0
2
µ2T2 − µ2f2

]
P (x0

1, x0
2, t) (18)

where we have introduced the mobilities µi = 1
γi

. You can neglect all boundary terms when
doing integration by parts.

3.3) We drop the superscript x0
i from now on. Show that the Fokker-Planck equation (18)

can be put under the form of a conservation equation ∂tP (x1, x2, t) = −∇ · J⃗ and give the
expression of J⃗ = (J1, J2).

3.4) We consider fi = −∂xi
U(x1, x2), where U is a smooth potential which depends explicitly

on x1 and x2. Under which conditions does the current J⃗ vanish in the steady state? What is
the expression of P (x1, x2) in such steady states?

3.5) We now consider µi = 1, Ti = T and f⃗ = −∇U + g⃗, where g⃗ is not the gradient of a
potential. Show that if g⃗ · ∇U = 0 and ∇ · g⃗ = 0, then P = exp[−U/T ]/Z is an acceptable
steady-state (if U is a confining potential and Z a normalization constant). Does the current
vanish in steady-state?
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