8.08/8.S308 - Problem Set 2 - IAP 2025

Due before January 16, 23:59

Anything marked as "graduate" count as bonus problems for undergraduate students.

1- Equipartition theorem and Itō calculus

We consider a particle of mass m, position x(t) and momentum p(t) in a quadratic potential $V(x) = \frac{1}{2}\omega x^2$. The Boltzmann constant is $\beta = (kT)^{-1}$ and the particle mobility $\mu = \frac{1}{\gamma}$.

1.1) Write down the underdamped Langevin dynamics of x(t) and p(t). Show that in the large damping limit $(\gamma \to \infty)$ it reduces to

$$\dot{x}(t) = -\frac{\omega}{\gamma}x(t) + \sqrt{\frac{2kT}{\gamma}}\eta(t)$$
(1)

where $\eta(t)$ is a zero-mean unit-variance Gaussian white noise. Show that its solution is

$$x(t) = x(0)e^{-\frac{\omega}{\gamma}t} + \sqrt{\frac{2kT}{\gamma}} \int_0^t e^{-\frac{\omega}{\gamma}(t-s)} \eta(s) ds$$
(2)

Compute $\langle x(t) \rangle$ and $\langle x(t)^2 \rangle$ and show that, in the steady state,

$$\langle V(x)\rangle = \frac{kT}{2}.\tag{3}$$

1.2) Using Itō formula, construct the time-evolution equation of $x^2(t)$ starting from Eq. (1). What is the first-order differential equation satisfied by $\langle x^2(t) \rangle$? Solve it for an initial distribution $P[x(t=0)] = \delta(x)$ and deduce Eq. (3) in the steady state.

1.3) Let us now consider N Brownian particles of positions x_i , interacting via the potential

$$V(x_1,\ldots,x_N) = \frac{1}{2} \sum_{i,j=1}^N x_i \Omega_{ij} x_j ,$$

where Ω is a symmetric positive-definite matrix and the particles experience N independent noises $\eta_i(t)$. What is the overdamped Langevin dynamics of each oscillator? Using Itō formula, show that

$$\frac{1}{2}\frac{d}{dt}(\vec{x}\cdot\vec{x}) = -\mu\vec{x}\cdot\Omega\vec{x} + \sqrt{2\mu kT}\vec{x}\cdot\vec{\eta} + \mu NkT$$
(4)

Is equipartition satisfied in the steady state?

1.4) We now consider the underdamped dynamics: $m\dot{q} = p$ and $\dot{p} = -\gamma p/m - V'(q) + \sqrt{2\gamma kT}\eta(t)$. Construct the evolution equations of $\langle q^2(t) \rangle$, $\langle V(q(t)) \rangle$, $\langle q(t)p(t) \rangle$ and $\langle p^2(t) \rangle$ and show that, in the steady state,

$$\langle qp \rangle = \langle pV'(q) \rangle = 0 \quad ; \quad \left\langle \frac{p^2}{m} \right\rangle = \langle qV'(q) \rangle = kT$$
 (5)

<u>2- Geometrical Brownian Motion</u>

We consider the celebrated Black–Scholes model, which describes the evolution of the value y(t) of an investment using the Itō-Langevin equation:

$$\dot{y}(t) = f y(t) + \sqrt{2D} y(t) \eta(t) , \qquad (6)$$

where f and D are real numbers and $\eta(t)$ is a Gaussian white noise of zero mean and unit variance $\langle \eta(t)\eta(t')\rangle = \delta(t-t')$.

2.1) Determine the equations of evolution of $\langle y(t) \rangle$ and $\langle y(t)^2 \rangle$.

2.2) Compute the mean and the variance of y at time t knowing that $y(t=0) = y_0 > 0$.

2.3) If f is negative, show that the value of y(t) is going down on average. Depending on the value of D, do you think that $\langle y(t) \rangle$ is a reliable prediction for the value of y(t) at large times?

2.4) We now consider the stochastic process x(t) = h(y(t)) where h is a strictly increasing smooth function, defined for y > 0. Compute $\frac{d}{dt}x(t)$ in terms, among other things, of y(t) and $\eta(t)$.

2.5) The variance of the noise term in (6) depends on y(t), this is called a multiplicative noise. What is the condition on h under which the statistics of the noise term in the Langevin equation for x(t) does *not* depend on x (i.e. the noise is additive)?

2.6) We now consider the case $y(t) = \exp[x(t)]$. Show that, for this choice, the dynamics of x read:

$$\dot{x} = f - D + \sqrt{2D}\eta(t) \tag{7}$$

2.7) We now consider the case D = f. Give without derivation the Fokker-Planck equation describing the evolution of $P_x(x,t)$, the probability density that the random variable x(t) takes value x at time t?

2.8) We define the Fourier transform of P_x as

$$\hat{P}_x(q,t) = \int_{-\infty}^{\infty} dx P_x(x,t) e^{-iqx}$$
(8)

If the initial condition is given by $y(t=0) = y_0$, what are the values of $P_x(x,0)$ and $\hat{P}_x(q,0)$?

2.9) Show that $\partial_t \hat{P}_x(q,t) = -Dq^2 \hat{P}_x(q,t)$.

2.10) Solve this equation and inverse the Fourier transform to get

$$P_x(x,t) = \frac{1}{\sqrt{4\pi Dt}} \exp\left[-\frac{(x - \ln(y_0))^2}{4Dt}\right]$$
(9)

2.11) We now want to infer $P_y(y,t)$, the probability density that the random variable y(t) solution of (6) (with D = f) takes value y at time t, knowing that it was at y_0 at time zero. To do so, we consider first the case of two general random variables x and y such that x = h(y) with h an increasing function. Again, we note $P_x(x)$ and $P_y(y)$ the probability densities associated to the two variables. Explain the physical meanings of

$$F_x(\bar{x}) = \int_{-\infty}^{\bar{x}} dx P_x(x); \quad \text{and} \quad F_y(\bar{y}) = \int_{-\infty}^{\bar{y}} dy P_y(y) \quad (10)$$

2.12) For each \bar{y} , for what value $\bar{x}(\bar{y})$ do we have $F_x(\bar{x}(\bar{y})) = F_y(\bar{y})$? Taking the derivative of this equality with respect to a wisely chosen variable, show that

$$P_y(\bar{y}) = P_x(h(\bar{y}))h'(\bar{y}) \tag{11}$$

2.13) Conclude that the distribution of the solution of (6) (with D = f) knowing that $y(t = 0) = y_0$ is

$$P_{y}(y,t) = \frac{1}{y\sqrt{4\pi Dt}} \exp\left[-\frac{\left(\ln(y) - \ln(y_{0})\right)^{2}}{4Dt}\right]$$
(12)

3. Graduate: The Dean-Kawasaki Equation

Let us consider N interacting particles

$$\dot{x}_i = -\sum_j V'(x_i - x_j) + \eta_i; \qquad \langle \eta_i \rangle = 0; \qquad \langle \eta_i(t)\eta_j(t') \rangle = 2kT\delta_{i,j}\delta(t - t')$$
(13)

where V(u) is the interaction potential.

3.1) Show that

$$\rho(x,t) = \sum_{i} \delta(x - x_i(t))$$

is a distribution which measures the *local* (number) density of particles.

3.2) We consider a differentiable function f(x) and define

$$F(t) = \sum_{i} f(x_i(t)) \tag{14}$$

Using the definition of $\rho(x, t)$, show that

$$\dot{F}(t) = \int dx f(x) \dot{\rho}(x,t)$$

3.3) Using Itō formula on equation (14), show that $\dot{F}(t)$ can be alternatively written as

$$\dot{F}(t) = \int dx f(x) \partial_x [kT \partial_x \rho(x,t) + \int dy V'(x-y)\rho(x)\rho(y) - \sum_i \eta_i \delta(x-x_i(t))]$$
(15)

Hint: $g(x_i)$ can always be written as $\int g(x)\delta(x-x_i)$. Show that the density $\rho(x,t)$ evolves as

$$\dot{\rho}(x,t) = \partial_x [kT \partial_x \rho(x,t) + \int dy V'(x-y)\rho(x,t)\rho(y,t) + \xi(x,t)]$$
(16)

where $\xi(x, t)$ is a random variable. Give its expression in terms of x, η_i and $x_i(t)$.

3.4) Show that

$$\langle \xi(x,t) \rangle = 0 \quad \text{et} \quad \langle \xi(x,t)\xi(x',t') \rangle = \delta(t-t')\delta(x-x')\rho(x,t)2kT \tag{17}$$

where $\langle \dots \rangle$ are averages over the noises $\eta_i(t)$ for given density profiles $\rho(x, t)$ and $\rho(x', t')$.

(3.5) Show that the dynamics (16) can be written as

$$\dot{\rho}(x,t) = \partial_x \left[\rho(x,t) \partial_x \frac{\delta \mathcal{F}[\rho]}{\delta \rho(x,t)} + \xi(x,t) \right]$$
(18)

Give the expression of the functional $\mathcal{F}[\rho]$ and its interpretation.