Class Times:
 Block K: Tuesday and Thursday, 2:30-3:50pm

Course Website:
 http://webct.brown.edu

Office Hours:
 Thursday 4-5pm, and by appointment
 Metcalf Research 219

Contact Information:
 The best way to reach me is by e-mail: tom.griffiths@brown.edu

Course objective:
 The objective of this course is to provide advanced students in cognitive science and computer science with the skills to develop computational models relevant to their interests. Computational modeling is one of the central methods in cognitive science research, and recent developments in artificial intelligence, machine learning, and statistics have provided a wealth of new tools for developing computational accounts of human cognition. Since people are better at solving many computational problems than current methods in computer science, studying human cognition can also lead to new methods of solving those problems.

Who should take this course:
 The course is designed for advanced students in cognitive science or computer science who are interested in developing computational models of cognition. Prerequisites are a basic familiarity with programming and mathematics, as might be obtained from CS 4 or AM 9, and interest in and awareness of some of the questions addressed by cognitive science, as might be obtained from any CG course.

Readings:
 There is no textbook for the class. Readings will consist of approximately two journal articles or book chapters per class (≈ 100 pages/week).

Course requirements:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Percentage of final grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Four problem sets (involving some programming)</td>
<td>40%</td>
</tr>
<tr>
<td>A final project or paper on cognitive modeling</td>
<td>50%</td>
</tr>
<tr>
<td>(1 page proposal, presentation, 10 page writeup)</td>
<td></td>
</tr>
<tr>
<td>Discussion notes</td>
<td>10%</td>
</tr>
</tbody>
</table>
Schedule of classes and readings:

PART I: FOUNDATIONS

September 6: Computational cognitive science

September 8: Computational problems

September 13: Levels of analysis

Problem Set 1 out

September 15: Representation I: Rules and symbols

September 20: Representation II: Spaces, trees, and features

September 22: Learning I: Innate domain-specific knowledge

September 27: Learning II: General-purpose learning mechanisms

Problem Set 1 due, Problem Set 2 out

September 29: Learning III: Bias and variance

October 4: Tools I: Probability theory and Bayesian inference

October 6: Tools II: Graphical models and structured probability distributions

PART II: APPLICATIONS

October 11: Similarity I: Spaces and features
Problem Set 2 due, Problem Set 3 out

October 13: Similarity II: Bayesian generalization

October 18: Semantic representation I: Networks and spaces

October 20: Semantic representation II: Topics

October 25: Categorization I: Prototypes and exemplars
Problem Set 3 due

October 27: Categorization II: Statistical models

November 1: Unsupervised learning I: Discovering latent structure

Project Proposal due, Problem Set 4 out

November 3: Unsupervised learning II: Model selection

November 8: Unsupervised learning III: Infinite models

November 10: Game theory (guest lecture)

November 15: Causality I: Causal graphical models

Problem Set 4 due

November 17: Causality II: Theories

November 22: Evolution I: Evolutionary models

November 29: Evolution II: Cultural transmission

December 1: *Final Project presentations (double session)*

December 16: *Final Project due*