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Abstract

We present a framework for learning abstract relational knowledge, with the aim
of explaining how people acquire intuitive theories of physical, biological, or
social systems. Our algorithm infers a generative relational model with latent
classes, simultaneously determining the kinds of entitiesthat exist in a domain, the
number of these latent classes, and the relations between classes that are possible
or likely. This model goes beyond previous category-learning models in psychol-
ogy, which consider the attributes associated with individual categories but not
the relationships that can exist between categories. We apply this domain-general
framework in two specific domains: learning the structure ofkinship systems and
learning causal theories.

1 Introduction

Imagine a hotel employee serving drinks at the general convention of the Episcopal church. All
the guests are in casual clothes, and at first he finds it difficult to identify the people who hold the
most influential positions within the church. Eventually henotices that a group of guests is treated
with deference by everyone – call them the archbishops. Another group is treated with deference by
everyone except the archbishops – call them the bishops. Just by observing the guests mingle, he
might be able to guess the office that each person holds.

Imagine now a child who stumbles across a set of small metallic bars: magnets, although she does
not know it. As she plays with the bars she notices that some some surfaces attract each other and
some repel each other. She should soon realize that there aretwo types of surfaces – call them
North poles and South poles. Each surface repels others of the same type and attracts surfaces of the
opposite type.

Learning to reason about social and physical systems, as in the above scenarios, rests on the ability
to discover latent structure in relational data. Both scenarios highlight latent classes (bishops and
archbishops, North and South poles) that influence the relations (deference, attraction) which mani-
fest among a set of objects (guests, metallic bars). These latent classes provide the building blocks
of our intuitive domain theories, allowing us to understandand predict the interactions between
an indefinite number of novel objects in each domain. While cognitive scientists have developed
successful computational models [1, 2] of how people learn categories defined by theattributesof
objects – their observable features, such as the color or mass of metallic bars – such models cannot
explain how people infer the relationally defined classes ofintuitive domain theories.

This paper explores one approach to explaining the acquisition of intuitive theories, in the form of a
rational model for the discovery of latent classes in relational data. We define a relational generative
model in which a particular relation holds for any pair of objects with some independent probability
that depends only on the classes of those objects. Statisticians and sociologists have used a model
of this kind, called thestochastic blockmodel, to analyze social networks. However, the stochastic
blockmodel assumes a fixed, finite number of classes. When discovering the latent structure of a



domain, people learn the number of classes at the same time asthey learn the class assignments. Our
model, theinfinite blockmodel, allows an unbounded number of classes. We provide an algorithm
that can be used to simultaneously learn the number of classes and the class assignments, and use
this model to explain human inferences in two important settings: learning kinship systems and
learning causal theories.

2 A generative model for relational data

Suppose we are interested in a system withN objects and a single directed relationR among those
objects (we will allow multiple relations later). We can represent the relation as a graphG with
labelled edges, where edgegij between objectsi andj has value1 if R holds betweeni andj and
value0 otherwise. We want to identify the latent classesZ of theN objects, using the information
contained inG. We can do this by defining a process by whichZ andG are generated, and using
Bayesian inference to inferZ for an observed graphG. We will define our generative model in
two stages, first defining howG is generated givenZ, and then defining a process by whichZ is
generated.

2.1 Generating relations from classes

Assume that each potential relation between two objects is generated independently, andp(gij = 1),
the probability that the relation holds betweeni andj, depends only onzi andzj . Given a set of
assignmentsZ, we can write the probability ofG as

p(G|Z, η) =
∏

A,B

η
m1

AB

AB (1− ηAB)m0

AB (1)

whereA andB range over all classes,ηAB is the probability of the relation holding between a
member of classA and a member of classB, andm1

AB is the number of members of classA and
classB for which the relation holds.

While this is a simple model, it is capable of expressing rich relational structure. The matrixη can
be seen as specifying aclass graph: a graph over the classes where the edge between class A and
class B has weightηAB , expressing which relations can hold among objects of different classes.
Different kinds of relational structure correspond to different class graphs. Figure 1 shows several
examples of class graphsη and object graphsG that can be defined using this model, which express
a range of complex relational structures: a graph with community structure, a ring, a hierarchy
and a fully connected graph. Multiple relations can be handled by assuming that each relation is
conditionally independent of the others given class assignmentsz. Attribute information can be
incorporated similarly if we assume that each attribute or relation is conditionally independent of all
other attributes and relations given a set of class assignments.

2.2 Generating classes

Statisticians and sociologists have defined a model for relational data using Equation 1, assuming
that thezi are drawn from a fixed multinomial distribution over a finite number of classes [3]. This
model, called thestochastic blockmodel, has been used to analyze the structure of various social
networks. However, it does not capture one of the most important aspects of human learning: the
discovery that the latent structure of a domain involves a certain number of classes.

We can define a model in which the number of classes are not fixedby choosing a different method
for generating thezi. An intuitive means of doing this is to allow the number of classes to “grow” as
more objects are added to the system. Given one object, we have only a single class. As each object
is added, we randomly decide whether that object is of the same class as some object we have seen
before, or if it represents a new class. If the probability that a new object is of a particular class is
directly proportional to the number of objects of that classseen before, the distribution over class
assignmentsZ is that of a Chinese restaurant process (CRP). Under the CRP,the probability distri-
bution over classes for theith object, conditioned on the classes of the previous objects1, . . . , i− 1



is

p(zi = A|z1, . . . , zi−1) =

{

nA

i−1+α
nA > 0

α
i−1+α

A is a new class (2)

wherenA is the number of objects already assigned to classA, andα is a parameter of the distribu-
tion.

The CRP prior onZ can generate partitions with as many classes as objects, andthus potentially
create countably infinitely many classes given a countably infinite number of objects. We thus
call the model in whichZ is generated according to Equation 2 andG is generated according to
Equation 1 theinfinite blockmodel. Other infinite models have been proposed by machine learning
researchers [4, 5] using a similar construction.

2.3 Model inference

Having defined a generative model forG andZ, we can use Bayesian inference to compute a poste-
rior distribution overZ givenG:

p(Z|G) ∝ p(G|Z)p(Z) (3)

wherep(G|Z) can be derived from Equation 1, andp(Z) follows from Equation 2. For the finite
stochastic blockmodel, Snijders and Nowicki [3] describe aGibbs sampler in whichη and the dis-
tribution over classes are explicitly represented. We willdefine a Gibbs sampler for the infinite
blockmodel, integrating outη and using the CRP to sampleZ.

Gibbs sampling is a form of Markov chain Monte Carlo, a standard statistical tool for Bayesian
inference with otherwise intractable distributionsA Gibbs sampler is a Markov chain in which the
state corresponds to the variables of interest, in our caseZ, and transitions result from drawing each
variable from its distribution when conditioned on all other variables, in our case the conditional
probability ofzi given all other assignmentsZ

−i, p(zi|Z−i). It follows from Equation 3 that this is

p(zi|z−i, G) ∝ p(G|Z)p(zi|Z−i). (4)

To compute the first term on the right hand side, we integrate out the parametersη and in Equation 1
using a symmetric Beta prior over everyηAB:

p(G|Z) =
∏

A,B

Beta(m1
AB + β,m0

AB + β)

Beta(β, β)
(5)

whereβ is a hyperparameter. The second term follows from the fact that the CRP is exchangeable,
meaning that the indices of thezi can be permuted without affecting the probability ofZ. As a
consequence, we can treatzi as the last object to be drawn from the CRP. The resulting conditional
distribution follows directly from Equation 2.

To facilitate mixing, we supplement our Gibbs sampler with two Metropolis-Hastings updates. First,
we consider proposals that attempt to split a class into two or to merge two existing classes [6]. Split-
merge proposals allow sudden large-scale changes to the current state rather than the incremental
changes characteristic of Gibbs sampling. Second, we run a Metropolis-coupled Markov Chain
Monte Carlo simulation: we run several Markov chains at different temperatures and regularly con-
sider swaps between the chains. If the coldest chain becomestrapped in a mode of the posterior
distribution, the chains at higher temperatures are free towander the state space and find other re-
gions of high probability if they exist. To avoid free parameters, we sample the hyperparametersα
andβ using a Gaussian proposal distribution and an (improper) uniform prior over each.

Even thoughη is integrated out, it is simple to recover the class graph given Z. The maximum

likelihood value ofηAB givenz is m1

AB+β

m0

AB
+m1

AB
+2β

. Predictions about missing edges are also simple

to compute. The probability that an unobserved edge betweenobjects i and j has value 1 isp(gij =

1) =
m1

zizj
+β

m0
zizj

+m1
zizj

+2β
. If some edges in graph G are missing at random, we can ignore them and

maintain countsm0
AB andm1

AB over only the observed part of the graph.



We do not claim that the MCMC simulations used to fit our model are representative of cognitive
processing. The infinite block model addresses the questionof what people know about relational
systems, and our simulations will show that this knowledge can be acquired from data, but we do
not address the process by which this knowledge is acquired.

3 Relational and attribute models on artificial data

We ran the infinite blockmodel on the relational structures shown in Figure 1, which represent some
of the structures encountered in the real world. Our algorithm solves each of these cases perfectly,
finding the correct number of classes and the correct assignment of objects to classes.

To further explore our model’s ability to recover the true number of classes, we gave it graphs based
on randomly-generatedη matrices of different dimensions. When the hyperparameterβ is small,
the average connectivity between blocks is usually very high or very low. Asβ increases, the blocks
of objects are no longer so cleanly distinguished. Figure 2 shows that the model makes almost no
mistakes when theβ is small but recovers the true number of classes less often asβ increases.

For comparison, we also evaluated the performance of a modeldefined on attributes rather than
relations. The analogous model for attributes uses anN × K matrix F rather than theN × N
relation graphG, wherefik is 1 if object i possesses attributek and0 otherwise. Assuming that
attributes are generated independently and thatp(fik = 1), the probability that objecti has attribute
k, depends only onzi, we have

p(F |Z, θ) =
∏

A,k

θ
n1k

A

Ak (1− θAk)n0k
A

where the product overA, k is a product over all classesA and featuresk, n1k
A denotes the number

of objectsi for whichzi = A andfik = 1, andθAk is the probability that featurek takes value1 for
classA. Using a CRP prior onZ, we can apply Gibbs sampling as in Equation 4 to inferP (Z|F ),
except now we use

p(F |z) =
∏

A,k

Beta(n1k
A + β, n0k

A + β)

Beta(β, β)

in place of Equation 5. This model is an infinite mixture model[5], and is equivalent to Anderson’s
rational model of categorization [1].

The infinite mixture model can be applied to these data if we convert the relational graphG into
an attribute matrixF . We flattened eachN by N adjacency matrix into an attribute matrix with
K = 2N features, one for each row and column of the matrix. For example, a matrix for the social
relation “defers to” is flattened into an attribute matrix with two features corresponding to each
person P: “defers to P” and “is deferred to by P”. This model does well whenβ is small, but its
performance falls off more sharply than that of the blockmodel asβ increases.

4 Kinship Systems

Australian tribes are renowned among anthropologists for the complex relational structure of their
kinship systems. For instance, several of these kin systemsare isomorphic to the dihedral group of
order eight. Even trained field workers find these systems difficult to understand [7] which raises an
intriguing question of cognitive development: how do children discover the social structure of their
tribe? The learning problem is particularly interesting since many communities appear to have no
explicit representations of kinship rules, let alone cultural transmission of such rules.1 We focus here
on the Alyawarra, a Central Australian tribe studied extensively by Denham [8]. Using Denham’s
data we show that our model is able to discover some of the properties of the Alyawarra kinship
system.

1Findler describes a case where the “extremely forceful injunction against a male person having sexual
relations with his mother-in-law” could only be expressed by naming the pairs who could and could not engage
in this act [7]
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Figure 1: Class graphs (top row) and corresponding graphs over objects (bottom row). Only the
edges in the class graphs with large weights are shown. Givenan object graph, the infinite block-
model perfectly recovers the true class assignments in eachcase.
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Figure 2: Model success at recovering the true number of latent classes in artificially generated data.
The infinite blockmodel performs better than the infinite mixture model as the hyperparameterβ
increases.

Denham took photographs of 225 people, and asked 104 of them to provide a single kinship term
for the subject of each photograph in the collection. We analyze the 104 by 104 square submatrix of
the full 104 by 225 matrix of relations. Figure 3 shows three of 27 different kinship terms recorded.
For each term, the(i, j) cell in the corresponding matrix is shaded if personi used that term to
refer to personj. The Alyawarra have four kinship sections which are clearlyvisible in the first two
matrices. ‘Adiadya’ refers to a classificatory younger brother or sister: that is, to a younger person
in one’s own section, even if he or she is not a biological sibling. ‘Umbaidya’ is used by female
speakers to refer to a classificatory son or daughter, and by male speakers to refer to the child of
a classificatory sister. We see from the matrix that women in section 1 have children in section 4,
and vice versa. ’Anowadya’ refers to a potential marriage partner. The eight rough blocks indicate
that that men in section 1 may marry women from section 2, men in section 3 may marry women
from section 4, and so on. These marriage restrictions are one example of the important behavioral
consequences of the Alyawarra kinship system.

We fit the infinite blockmodel to all 27 kin-relation matricessimultaneously, treating each matrix as
conditionally independent of all the others given an assignment of objects to classes. The maximum
likelihood solution is represented in Figure 3. Denham recorded the age, gender and kinship section
of each of his informants, and Figure 3 shows the compositionof each class along each of these
dimensions. The six age categories were chosen by Denham, and reflect his knowledge of Alyawarra
terms for age groupings [8].
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Figure 3: Top: Object graphs for three Alyawarra kinship terms described in the text. The 104
individuals are sorted by the 13 classes found by the infiniteblockmodel (tick marks separate latent
classes). Bottom: Breakdown of the 13 classes by kinship section, gender and age.

The blockmodel finds 13 classes, each of which includes members of just one kinship section.
Section 1 is split into four classes corresponding to older men, older women, younger men and
younger women. Section 3 is split into three classes: younger men, older men, and women. The
remaining sections have one class for the younger people, and a class each for older men and older
women. Note that none of the demographic data were used to fit the model — the 13 classes were
discovered purely from the relational kinship data.

When given the same data, the maximum likelihood partition found by the purely attribute-based
infinite mixture model is qualitatively worse. It includes only 5 classes: one for each of three kin
sections, and two for Section 1 (split into older and youngerpeople). We might expect that the
true class structure has at least 16 classes (4 sections by 2 genders by 2 age categories) and probably
more, since the age dimension might be broken into more than two categories. While the blockmodel
comes much closer to this ideal, it clearly has limitations,such as failing to represent the higher-
order relationships (hierarchical or factorial) between the classes. We are currently exploring such
extensions.

5 Causal Theories

Tenenbaum and Niyogi (2003) studied people’s ability to learn simple causal theories in situations
similar to the magnetism example mentioned earlier. Here weuse the infinite blockmodel to explain
some of their findings. Their subjects were placed in a virtual world, where they were able to
move around a set of identical-looking objects. Some objects “activate” other objects whenever they
touch. If x activatesy (denotedx → y), theny lights up and beeps wheneverx andy touch. In
some worlds, activation is symmetric (denotedx− y): bothx andy light up and beep. Unknown to
the subjects, each object is in one of two classes,A or B, which determines its activation relations.
Figure 5 shows the theories used in four different conditions of the experiment, expressed as class
graphs, as well as graphs of the activation relations over objects generated by these theories. In the
first two worlds, everyA activates (asymmetrically or symmetrically) everyB. In the remaining two
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Figure 4: Left: the four class graphs used in the experimentsof Tenenbaum and Niyogi. Right:
Bayes factors (y-axis) for the first three stages (x-axis) ofeach experiment comparing the infinite
blockmodel to a null hypothesis where each object is placed in its own class. (◦ : A → B, + :
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Figure 5: Predictions about new objects (v, w, y, z), after seeing old objects from the theoryA→ B.
Edges with question marks show activation relations to be predicted. The cross on the edge between
u andv indicates thatu andv have been observed not to activate each other. Tables show predictions
of experimental subjects (P), of the infinite blockmodel (B)and of the infinite mixture model (A).

worlds, eachA activates (asymmetrically or symmetrically) a random subset (on average, 50%) of
B’s. These four theories all correspond to stochastic blockmodels. They can be denoted using class

graphs asA→ B, A−B, A
0.5
→ B andA

0.5
− B, respectively.

Tenenbaum and Niyogi (2003) examined whether subjects can discover these simple theories after
interacting with some subset of the objects. Their experiments had seven phases, and three new
objects were addeded to the screen during each phase (see [9]for details). As new objects were
added, subjects made predictions about how these objects would interact with old objects or with
each other. At the end of the experiment, subjects also verbally described how the objects work. No
mention of classes was made during the instructions, so inferring the existence of two classes and
the relation between them constitutes a genuine discovery.

We consider two aspects of these experiments: the relative difficulty of learning the four theories
shown in Figure 5, and the specific predictions that people make about relations for new objects
after they have learned one of these theories. Given experience with 18 objects, people had no
difficulty learning the two deterministic theories (withηAB = 1): A → B and A − B. The

asymmetric nondeterministic structure,A
0.5
→ B, was much more difficult; only about half of 18

subjects succeeded on this task. The symmetric nondeterministic structure,A
0.5
− B, was the most

difficult; only two out of 18 subjects attained even partial success.

These findings are consistent with the behavior of a Bayesianlearner inferring the theory that best



explains the observed relations. The weight of the evidencethat the world respects a block structure
can be expressed as the marginal likelihood of the observed relational data under the infinite block
model. We computed these likelihoods by enumerating then summing over all possible class assign-
mentsZ for up to 9 objects. Figure 5 plots Bayes factors (log ratio ofevidence terms) for the infinite
blockmodel relative to a “null hypothesis” where each object belongs to its own class. The Bayes
factors increase in all cases as more objects and relations are observed, but the rate of increase varies
across the four theories in accordance with their relative ease of learning.

Learning the correct causal theory based on a set of observedrelations should allow people to infer
the unobserved causal relations that will hold for a new object x in the same domain – as long
as they observe sufficient data to infer the class membershipof x. Figure 5 shows several kinds
of relational prediction that human learners can perform. All of these examples assume a learner
who has observed the objects and relations in Figure 5 generated by theA → B theory. Given a
new objectx which has just been activated by an oldA object, a learner with the correct theory
should classifyx as aB, and thus predict that anotherA will activatex, but that nothing will happen
betweenx and aB. Analogous predictions can be made ifx is observed only to be activated by
a new objecty. Figure 5 shows that people make these predictions correctly after learning the
theory [9], as does the infinite blockmodel. The infinite mixture model performs poorly on these
tasks (Figure 5) as a consequence of treating relations likeattributes. Under this model, learning
about relations between new objects is identical to learning about entirely new features, andnoneof
the learner’s previous experience is relevant. By treatingrelations properly, the blockmodel offers
a qualitative increase in representational power over previous attribute-based models of concept
learning. Only the blockmodel thus accounts for a principlefunction of intuitive theories: to support
generalizations from previous experience to wholly new systems in the same domain.

6 Conclusions and future directions

We have presented an infinite generative model for representing abstract relational knowledge and
discovering the latent classes generating those relations. This analysis hardly begins to approach
the richness and flexibility of people’s intuitive domain theories, but may at least provide some of
the critical building blocks. It may also be of use in other fields. Our framework for discovering
latent classes de novo, when even their number is unknown, may be seen as an extension of rela-
tional models previously proposed in mathematical anthropology (stochastic block models [3]) and
machine learning (probabilistic relational models (PRMs)[10] . We are also exploring the cognitive
relevance of other kinds of relational structures proposedin machine learning and anthropology,
such as the overlapping class model of Kubica et al. [11], or structures (where each object in class
A can and must relate to exactly one object in some other classB). Developing a framework that
can form spotaneous and flexible combinations of these structures remains a formidable open task.
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