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Abstract

We present a framework for learning abstract relationaledge, with the aim
of explaining how people acquire intuitive theories of phgk biological, or
social systems. Our algorithm infers a generative relationodel with latent
classes, simultaneously determining the kinds of entitiasexist in a domain, the
number of these latent classes, and the relations betwasses that are possible
or likely. This model goes beyond previous category-leagmhodels in psychol-
ogy, which consider the attributes associated with indigldcategories but not
the relationships that can exist between categories. Wg &pp domain-general
framework in two specific domains: learning the structurkinghip systems and
learning causal theories.

1 Introduction

Imagine a hotel employee serving drinks at the general ctiore of the Episcopal church. All
the guests are in casual clothes, and at first he finds it diftcudentify the people who hold the
most influential positions within the church. Eventuallyriwices that a group of guests is treated
with deference by everyone — call them the archbishops. Heraroup is treated with deference by
everyone except the archbishops — call them the bishops bywbserving the guests mingle, he
might be able to guess the office that each person holds.

Imagine now a child who stumbles across a set of small metadlis: magnets, although she does
not know it. As she plays with the bars she notices that somesurfaces attract each other and
some repel each other. She should soon realize that thetevargypes of surfaces — call them
North poles and South poles. Each surface repels others shthe type and attracts surfaces of the
opposite type.

Learning to reason about social and physical systems, &g ialiove scenarios, rests on the ability
to discover latent structure in relational data. Both sdeszhighlight latent classes (bishops and
archbishops, North and South poles) that influence theoaka{deference, attraction) which mani-
fest among a set of objects (guests, metallic bars). Thémetlelasses provide the building blocks
of our intuitive domain theories, allowing us to understamdi predict the interactions between
an indefinite number of novel objects in each domain. Whilendtdg scientists have developed
successful computational models [1, 2] of how people leategories defined by thatributesof
objects — their observable features, such as the color os nfasetallic bars — such models cannot
explain how people infer the relationally defined classestoitive domain theories.

This paper explores one approach to explaining the acouif intuitive theories, in the form of a
rational model for the discovery of latent classes in refel data. We define a relational generative
model in which a particular relation holds for any pair of@tis with some independent probability
that depends only on the classes of those objects. Stetistiand sociologists have used a model
of this kind, called thestochastic blockmodgeto analyze social networks. However, the stochastic
blockmodel assumes a fixed, finite number of classes. Wheowdigng the latent structure of a



domain, people learn the number of classes at the same titheydgarn the class assignments. Our
model, theinfinite blockmodelallows an unbounded number of classes. We provide an #igori
that can be used to simultaneously learn the number of dasskthe class assignments, and use
this model to explain human inferences in two importantisg$t learning kinship systems and
learning causal theories.

2 A generative model for relational data

Suppose we are interested in a system witbbjects and a single directed relatiframong those
objects (we will allow multiple relations later). We can regent the relation as a graghwith
labelled edges, where edgg between objectsand;j has valuel if R holds betweer and;j and
value( otherwise. We want to identify the latent clasgesf the N objects, using the information
contained inG. We can do this by defining a process by whi¢tandG are generated, and using
Bayesian inference to infex for an observed grapty. We will define our generative model in
two stages, first defining ho@ is generated givetr, and then defining a process by whighis
generated.

2.1 Generating relations from classes

Assume that each potential relation between two objectsrisgited independently, apgy;; = 1),
the probability that the relation holds betweeandj, depends only or; andz;. Given a set of
assignmentg’, we can write the probability of as

m} m?
p(G1Z,n) = [ nan® (1 = nap)™as (1)
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where A and B range over all classesg.p is the probability of the relation holding between a
member of class! and a member of clasB, andm, 5 is the number of members of clagsand
classB for which the relation holds.

While this is a simple model, it is capable of expressing redational structure. The matrixcan

be seen as specifyingdass graph a graph over the classes where the edge between class A and
class B has weight 45, expressing which relations can hold among objects of miffeclasses.
Different kinds of relational structure correspond to eliféfint class graphs. Figure 1 shows several
examples of class graphsand object graph& that can be defined using this model, which express

a range of complex relational structures: a graph with comitystructure, a ring, a hierarchy
and a fully connected graph. Multiple relations can be heahdily assuming that each relation is
conditionally independent of the others given class assensz. Attribute information can be
incorporated similarly if we assume that each attributestation is conditionally independent of all
other attributes and relations given a set of class assigtane

2.2 Generating classes

Statisticians and sociologists have defined a model fotioelal data using Equation 1, assuming
that thez; are drawn from a fixed multinomial distribution over a finiteber of classes [3]. This
model, called thestochastic blockmodehas been used to analyze the structure of various social
networks. However, it does not capture one of the most imporspects of human learning: the
discovery that the latent structure of a domain involvesrtagenumber of classes.

We can define a model in which the number of classes are notliixetioosing a different method
for generating the;. An intuitive means of doing this is to allow the number ofsdas to “grow” as
more objects are added to the system. Given one object, veedmdy a single class. As each object
is added, we randomly decide whether that object is of theesdass as some object we have seen
before, or if it represents a new class. If the probabilitgt th new object is of a particular class is
directly proportional to the number of objects of that clasen before, the distribution over class
assignmentg’ is that of a Chinese restaurant process (CRP). Under thet@&probability distri-
bution over classes for thigh object, conditioned on the classes of the previous abject ., i — 1
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wheren 4 is the number of objects already assigned to clhsanda is a parameter of the distribu-
tion.

The CRP prior onZ can generate partitions with as many classes as objectshasgotentially
create countably infinitely many classes given a countatifipite number of objects. We thus
call the model in whichZ is generated according to Equation 2 ards generated according to
Equation 1 thanfinite blockmodel Other infinite models have been proposed by machine legarnin
researchers [4, 5] using a similar construction.

2.3 Model inference

Having defined a generative model fGrand Z, we can use Bayesian inference to compute a poste-
rior distribution overZ givenG:

p(Z|G) x p(G|Z)p(Z) 3)

wherep(G|Z) can be derived from Equation 1, ap@?) follows from Equation 2. For the finite
stochastic blockmodel, Snijders and Nowicki [3] descril@ilbs sampler in whicly and the dis-
tribution over classes are explicitly represented. We défine a Gibbs sampler for the infinite
blockmodel, integrating out and using the CRP to sample

Gibbs sampling is a form of Markov chain Monte Carlo, a stadddatistical tool for Bayesian
inference with otherwise intractable distributionsA Gilkdampler is a Markov chain in which the
state corresponds to the variables of interest, in our Zasad transitions result from drawing each
variable from its distribution when conditioned on all athvariables, in our case the conditional
probability of z; given all other assignments_;, p(z;|Z_;). It follows from Equation 3 that this is

p(2i|z—i, G) < p(G|2)p(2i|Z ). (4)

To compute the first term on the right hand side, we integratéhe parametergand in Equation 1
using a symmetric Beta prior over eveyy B:

Betam!,z + 3,m% 5 + 3)
p(G|Z) = (5)
=555

whereg is a hyperparameter. The second term follows from the fattttte CRP is exchangeable,
meaning that the indices of thg can be permuted without affecting the probability 0f As a
consequence, we can treatas the last object to be drawn from the CRP. The resultingitondl
distribution follows directly from Equation 2.

To facilitate mixing, we supplement our Gibbs sampler witb Metropolis-Hastings updates. First,
we consider proposals that attempt to split a class into o merge two existing classes [6]. Split-
merge proposals allow sudden large-scale changes to thentstate rather than the incremental
changes characteristic of Gibbs sampling. Second, we ruretaolblis-coupled Markov Chain
Monte Carlo simulation: we run several Markov chains atedéht temperatures and regularly con-
sider swaps between the chains. If the coldest chain bectiaygsed in a mode of the posterior
distribution, the chains at higher temperatures are fregatader the state space and find other re-
gions of high probability if they exist. To avoid free paraers, we sample the hyperparameiers
andg using a Gaussian proposal distribution and an (impropéfpum prior over each.

Even thoughy is integrated out, it is simple to recover the class graplerg®. The maximum

. . . . 1 . . . . .
likelihood value ofn4 g givenz is —manth__ predictions about missing edges are also simple
myptmap+26

to compute. The probability that an unobserved edge betajeets i and j has value 1jgg;; =
m,, +B
1) = mg, Aml,. 126"

maintain countsn?, ; andm, ; over only the observed part of the graph.

If some edges in graph G are missing at random, we can ighera and



We do not claim that the MCMC simulations used to fit our modelr@presentative of cognitive
processing. The infinite block model addresses the quesfiariat people know about relational
systems, and our simulations will show that this knowledge lse acquired from data, but we do
not address the process by which this knowledge is acquired.

3 Relational and attribute models on artificial data

We ran the infinite blockmodel on the relational structutesmn in Figure 1, which represent some
of the structures encountered in the real world. Our algorisolves each of these cases perfectly,
finding the correct number of classes and the correct assighof objects to classes.

To further explore our model’s ability to recover the truemher of classes, we gave it graphs based
on randomly-generategl matrices of different dimensions. When the hyperparametisrsmall,
the average connectivity between blocks is usually ver bigvery low. Asg increases, the blocks
of objects are no longer so cleanly distinguished. Figurad@vs that the model makes almost no
mistakes when thg is small but recovers the true number of classes less oft@rirageases.

For comparison, we also evaluated the performance of a numfiled on attributes rather than
relations. The analogous model for attributes usevar K matrix F' rather than theV x N
relation graphG, where f;; is 1 if objecti possesses attributeand 0 otherwise. Assuming that
attributes are generated independently andptff, = 1), the probability that objecthas attribute
k, depends only on;, we have

nlk n »
p(FIZ,0) =[] 0% (1 — 0a)"
Ak

where the product ovet, k is a product over all classesand feature#, n'f* denotes the number
of objectsi for which z; = A and f;;, = 1, andf 4 is the probability that featurke takes valud for
classA. Using a CRP prior orf, we can apply Gibbs sampling as in Equation 4 to idféZ | F),
except now we use

Betanlf + 8,n% + 3)
p(F|z) =
yk Beta3, 3)

in place of Equation 5. This model is an infinite mixture mod@$l and is equivalent to Anderson’s
rational model of categorization [1].

The infinite mixture model can be applied to these data if waved the relational grapty into

an attribute matrixt’. We flattened eaclv by N adjacency matrix into an attribute matrix with
K = 2N features, one for each row and column of the matrix. For eXxanapmatrix for the social
relation “defers to” is flattened into an attribute matrixtiwiwo features corresponding to each
person P: “defers to P” and “is deferred to by P”. This modedsdwell wheng is small, but its
performance falls off more sharply than that of the blockel@$3 increases.

4 Kinship Systems

Australian tribes are renowned among anthropologistsifiercomplex relational structure of their
kinship systems. For instance, several of these kin syséeensomorphic to the dihedral group of
order eight. Even trained field workers find these systenfiedlifto understand [7] which raises an
intriguing question of cognitive development: how do cheld discover the social structure of their
tribe? The learning problem is particularly interestingcg& many communities appear to have no
explicit representations of kinship rules, let alone aalttransmission of such rulesWe focus here
on the Alyawarra, a Central Australian tribe studied exieztg by Denham [8]. Using Denham'’s
data we show that our model is able to discover some of theeptiep of the Alyawarra kinship
system.

Findler describes a case where the “extremely forceful injunction sgaimale person having sexual
relations with his mother-in-law” could only be expressed by naming the pdio could and could not engage
in this act [7]



Figure 1: Class graphs (top row) and corresponding graphs ajects (bottom row). Only the
edges in the class graphs with large weights are shown. Ginevbject graph, the infinite block-
model perfectly recovers the true class assignments incsseh
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Figure 2: Model success at recovering the true number afilatasses in artificially generated data.
The infinite blockmodel performs better than the infinite taie model as the hyperparameter
increases.

Denham took photographs of 225 people, and asked 104 of thgmotide a single kinship term
for the subject of each photograph in the collection. Weya@athe 104 by 104 square submatrix of
the full 104 by 225 matrix of relations. Figure 3 shows thré2ddifferent kinship terms recorded.
For each term, thé¢i, j) cell in the corresponding matrix is shaded if pergamsed that term to
refer to persory. The Alyawarra have four kinship sections which are cleadjble in the first two
matrices. ‘Adiadya’ refers to a classificatory younger bestor sister: that is, to a younger person
in one’s own section, even if he or she is not a biologicalisghl ‘Umbaidya’ is used by female
speakers to refer to a classificatory son or daughter, anddby speakers to refer to the child of
a classificatory sister. We see from the matrix that womereatien 1 have children in section 4,
and vice versa. 'Anowadya’ refers to a potential marriageénge. The eight rough blocks indicate
that that men in section 1 may marry women from section 2, mesection 3 may marry women
from section 4, and so on. These marriage restrictions aerample of the important behavioral
consequences of the Alyawarra kinship system.

We fit the infinite blockmodel to all 27 kin-relation matricgisnultaneously, treating each matrix as
conditionally independent of all the others given an agsigmt of objects to classes. The maximum
likelihood solution is represented in Figure 3. Denham rded the age, gender and kinship section
of each of his informants, and Figure 3 shows the composidiosach class along each of these
dimensions. The six age categories were chosen by Denhdmeféect his knowledge of Alyawarra
terms for age groupings [8].
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Figure 3: Top: Object graphs for three Alyawarra kinshiprterdescribed in the text. The 104
individuals are sorted by the 13 classes found by the infbidekmodel (tick marks separate latent
classes). Bottom: Breakdown of the 13 classes by kinshifiosegender and age.

The blockmodel finds 13 classes, each of which includes mesmtfejust one kinship section.
Section 1 is split into four classes corresponding to oldennolder women, younger men and
younger women. Section 3 is split into three classes: yaunmm, older men, and women. The
remaining sections have one class for the younger peoplea atass each for older men and older
women. Note that none of the demographic data were used tefinbdel — the 13 classes were
discovered purely from the relational kinship data.

When given the same data, the maximum likelihood partitiamébby the purely attribute-based
infinite mixture model is qualitatively worse. It includenlp 5 classes: one for each of three kin
sections, and two for Section 1 (split into older and youngeople). We might expect that the
true class structure has at least 16 classes (4 sectionsdnd2ig by 2 age categories) and probably
more, since the age dimension might be broken into more thandtegories. While the blockmodel
comes much closer to this ideal, it clearly has limitatiosisch as failing to represent the higher-
order relationships (hierarchical or factorial) betwelea tlasses. We are currently exploring such
extensions.

5 Causal Theories

Tenenbaum and Niyogi (2003) studied people’s ability tarlesimple causal theories in situations
similar to the magnetism example mentioned earlier. Heraseghe infinite blockmodel to explain
some of their findings. Their subjects were placed in a Vinuarld, where they were able to
move around a set of identical-looking objects. Some obj&xttivate” other objects whenever they
touch. Ifz activatesy (denotedr — y), theny lights up and beeps wheneverandy touch. In
some worlds, activation is symmetric (denoted y): bothx andy light up and beep. Unknown to
the subjects, each object is in one of two clasgesr B, which determines its activation relations.
Figure 5 shows the theories used in four different conditiohthe experiment, expressed as class
graphs, as well as graphs of the activation relations ovgrctdhgenerated by these theories. In the
first two worlds, everyA activates (asymmetrically or symmetrically) eveé?y In the remaining two
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Figure 4: Left: the four class graphs used in the experimehi&enenbaum and Niyogi. Right:
Bayes factors (y-axis) for the first three stages (x-axi®2adh experiment comparing the infinite
blockmodel to a null hypothesis where each object is planetsiown class. {1 A — B, +:
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Figure 5: Predictions about new objects, y, z), after seeing old objects from the theoty— B.
Edges with question marks show activation relations to bdipted. The cross on the edge between
u andv indicates that: andv have been observed not to activate each other. Tables skeadieiions

of experimental subjects (P), of the infinite blockmodel &}l of the infinite mixture model (A).

worlds, each4 activates (asymmetrically or symmetrically) a random stigsn average, 50%) of
B’s. These four theories all correspond to stochastic blaxdets. They can be denoted using class

graphsasi — B,A— B, A %2 BandA o B, respectively.

Tenenbaum and Niyogi (2003) examined whether subjects isanwkr these simple theories after
interacting with some subset of the objects. Their expanséad seven phases, and three new
objects were addeded to the screen during each phase (siee {@tails). As new objects were
added, subjects made predictions about how these objects witeract with old objects or with
each other. At the end of the experiment, subjects also Nedescribed how the objects work. No
mention of classes was made during the instructions, sorindethe existence of two classes and
the relation between them constitutes a genuine discovery.

We consider two aspects of these experiments: the relaiffieutty of learning the four theories
shown in Figure 5, and the specific predictions that peoplkenadout relations for new objects
after they have learned one of these theories. Given experiwith 18 objects, people had no
difficulty learning the two deterministic theories (witfyp = 1): A — B andA — B. The

asymmetric nondeterministic structuré, %% B, was much more difficult; only about half of 18

0.5
subjects succeeded on this task. The symmetric nondetstimistructure, A — B, was the most
difficult; only two out of 18 subjects attained even partiatcess.

These findings are consistent with the behavior of a Baydsamer inferring the theory that best



explains the observed relations. The weight of the evidémaiethe world respects a block structure
can be expressed as the marginal likelihood of the obseslatianal data under the infinite block
model. We computed these likelihoods by enumerating themrgng over all possible class assign-
mentsZ for up to 9 objects. Figure 5 plots Bayes factors (log ratievaflence terms) for the infinite
blockmodel relative to a “null hypothesis” where each objeongs to its own class. The Bayes
factors increase in all cases as more objects and relatierbaerved, but the rate of increase varies
across the four theories in accordance with their relataiseef learning.

Learning the correct causal theory based on a set of obsezlatbns should allow people to infer
the unobserved causal relations that will hold for a new abjein the same domain — as long
as they observe sufficient data to infer the class membedghip Figure 5 shows several kinds
of relational prediction that human learners can perforni.oAthese examples assume a learner
who has observed the objects and relations in Figure 5 gieeby theA — B theory. Given a
new objectz which has just been activated by an oldobject, a learner with the correct theory
should classifyr as aB, and thus predict that anothdrwill activate z, but that nothing will happen
betweenz and aB. Analogous predictions can be maderifs observed only to be activated by
a new objecty. Figure 5 shows that people make these predictions coyraftér learning the
theory [9], as does the infinite blockmodel. The infinite mmh& model performs poorly on these
tasks (Figure 5) as a consequence of treating relationsatikibutes. Under this model, learning
about relations between new objects is identical to legralvout entirely new features, andneof
the learner’s previous experience is relevant. By treatatations properly, the blockmodel offers
a qualitative increase in representational power overipusvattribute-based models of concept
learning. Only the blockmodel thus accounts for a principtection of intuitive theories: to support
generalizations from previous experience to wholly newesyss in the same domain.

6 Conclusions and future directions

We have presented an infinite generative model for repriegseabstract relational knowledge and
discovering the latent classes generating those relatibhs analysis hardly begins to approach
the richness and flexibility of people’s intuitive domairetiies, but may at least provide some of
the critical building blocks. It may also be of use in othetdge Our framework for discovering
latent classes de novo, when even their number is unknowy b@aeen as an extension of rela-
tional models previously proposed in mathematical antblianyy (stochastic block models [3]) and
machine learning (probabilistic relational models (PRA§)] . We are also exploring the cognitive
relevance of other kinds of relational structures propadseghachine learning and anthropology,
such as the overlapping class model of Kubica et al. [11]froicires (where each object in class
A can and must relate to exactly one object in some other @as®eveloping a framework that
can form spotaneous and flexible combinations of thesetategremains a formidable open task.
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