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Abstract

We argue that similarity judgments are inferences about
generative processes, and that two objects appear sim-
ilar when they are likely to have been generated by
the same process. We describe a formal model based
on this idea and show how featural and spatial models
emerge as special cases. We compare our approach to
the transformational approach, and present an experi-
ment where our model performs better than a transfor-
mational model.

Every object is the outcome of a generative process.
An animal grows from a fertilized egg into an adult, a
city develops from a settlement into a metropolis, and
an artifact is assembled from a pile of raw materials ac-
cording to the plan of its designer. Observations like
these motivate the generative approach, which proposes
that an object may be understood by thinking about the
process that generated it. The promise of the approach
is that apparently complex objects may be produced by
simple processes, an insight that has proved productive
across disciplines including biology [18], physics [21], and
architecture [1]. To give two celebrated examples from
biology, the shape of a pinecone and the markings on
a cheetah’s tail can be generated by remarkably simple
processes of growth. These patterns can be characterized
much more compactly by describing their causal history
than by attempting to describe them directly.

Leyton has argued that the generative approach pro-
vides a general framework for understanding cognition.
Applications of the approach can be found in generative
theories of perception [12], memory [12], language [3],
categorization [2], and music [11]. This paper offers a
generative theory of similarity, a notion often invoked
by models of high-level cognition. We argue that two
objects are similar to the extent that they seem to have
been generated by the same underlying process.

The literature on similarity covers settings that ex-
tend from the comparison of simple stimuli like tones and
colored patches to the comparison of highly-structured
objects like narratives. The generative approach is rele-
vant to the entire spectrum of applications, but we are
particularly interested in high-level similarity. In par-
ticular, we are interested in how similarity judgments
draw on intuitive theories, or systems of rich conceptual
knowledge [15]. Generative processes and theories are
intimately linked. Murphy [14], for example, defines a
theory as ‘a set of causal relations that collectively gen-

erate or explain the phenomena in a domain.’ We hope
that our generative theory provides a framework in which
to model how similarity judgments emerge from intuitive
theories.

We develop a formal theory of similarity and compare
it to three existing theories. The featural account [20]
suggests that the similarity of two objects is a function
of their common and distinctive features, the spatial ac-
count suggests that similarity is inversely proportional to
distance in a spatial representation, [19] and the trans-
formation account suggests that similarity depends on
the number of operations required to transform one ob-
ject into the other [6]. We show that versions of each of
these approaches emerge as special cases of our genera-
tive approach, and present an experiment that directly
compares our approach with the transformation account.
A fourth theory suggests that similarity relies on a pro-
cess of analogical mapping [5]. We will not discuss this
approach in detail, but finish by suggesting how a gen-
erative approach to analogy differs from the standard
view.

Generative processes and similarity

Before describing our formal model, we give an informal
motivation for a generative approach to similarity. Sup-
pose we are shown a prototype object and asked to de-
scribe similar objects we might find in the world. There
are two kinds of answers: small perturbations of the pro-
totype, or objects produced by small perturbations of
the process that generated the prototype. The second
strategy is likely to be more successful than the first,
since many perturbations of the prototype will not arise
from any plausible generative process, and thus could
never appear in practice. By construction, however, an
object produced by a perturbation of an existing gener-
ative process will have a plausible causal history.

To give a concrete example, suppose the prototype is a
bug generated by a biological process of growth (Figure
1ii). The bug in i is a small perturbation of the proto-
type, but seems unlikely to arise since legs are generated
in pairs. A perturbation of the generative process might
produce a bug with more segments, such as the bug in iii.
If we hope to find a bug that is similar but not identical
to the prototype, iii is a better bet than i.

A sceptic might argue that this one-shot learning prob-
lem can be solved by taking the intersection of the set
of objects similar to the prototype and the set of ob-



i) ii) Prototype iii)

Figure 1: Three bugs. Which is more similar to the
prototype — i or iii?

jects that are likely to exist. The second set depends
critically on generative processes, but the first set (and
therefore the notion of similarity) need not. We think
it more likely that the notion of similarity is ultimately
grounded in the world, and that it evolved for the pur-
pose of comparing real-world objects. If so, then knowl-
edge about what kinds of objects are likely to exist may
be deeply bound up with the notion of similarity.

The one-shot learning problem is of practical impor-
tance, but is not the standard context in which similarity
is discussed. More commonly, subjects are shown a pair
of objects and asked to rate the similarity of the pair.
Note that both objects are observed to exist and the
previous argument does not apply. Yet generative pro-
cesses are still important, since they help pick out the
features critical for the similarity comparison. Suppose,
for instance, that a forest-dweller discovers a nutritious
mushroom. Which is more similar to the mushroom: a
mushroom identical except for its size, or a mushroom
identical except for its color? Knowing how mushrooms
are formed suggests that size is not a key feature. Mush-
rooms grow from small to large, and the final size of
a plant depends on factors like the amount of sunlight
it received and the fertility of the soil that it grew in.
Reflections like these suggest that the differently-sized
mushroom should be judged more similar.

A final reason why generative processes matter is that
they are deeply related to essentialism. Medin and
Ortony [13] note that ‘surface features are frequently
constrained by, and sometimes generated by, the deeper,
more central parts of objects.’ Even if we observe only
the surface features of two objects, it may make sense
to judge their similarity by comparing the deeper prop-
erties inferred to generate the surface features. Yet we
can say more: just as surface features are generated by
the essence of the object, the essence itself has a gener-
ative history. Surface features are often reliable guides
to the essence of an object, but the object’s causal his-
tory is a still more reliable indicator, if not a defining
criterion of its essence. Keil [9] discusses the case of an
animal that is born a skunk, then undergoes surgery that
leaves it looking exactly like a raccoon. Since the animal
is generated in the same way as a skunk (born of skunk
parents), we conclude that it remains a skunk, no matter
how it appears on the surface.

These examples suggest that the generative approach
may help to explain a broad class of theory-dependent in-
ferences. We now present a formal model that attempts
to capture the intuitions behind all of these cases.

A computational theory of similarity

Given a domain D, we develop a theory that specifies the
similarity between any two samples from D. A sample
from D will usually contain a single object, but work-
ing with similarities between sets of objects is useful for
some applications. We formalize a generative process as
a probability distribution over D that depends on pa-
rameter vector θ.

Suppose that s1 and s2 are samples from D. We con-
sider two hypotheses: H1 holds that s1 and s2 are in-
dependent samples from a single generative process, and
H2 holds that the samples are generated from two inde-
pendently chosen processes. Similarity is defined as the
probability that the objects are generated by the same
process: that is, the relative posterior probability of H1

compared to H2:

sim(s1, s2) =
P (H1|s1, s2)

P (H2|s1, s2)

=
P (s1, s2|H1)P (H1)

P (s1, s2|H2)P (H2)
.

Since we are interested only in the similarity of s1 and s2

relative to other pairs of samples, the prior ratio P (H1)
P (H2)

is a constant and we discard it:

sim(s1, s2) ∝
P (s1, s2|H1)

P (s1, s2|H2)

=

∫

P (s1|θ)P (s2|θ)p(θ)dθ
∫

P (s1|θ)p(θ)dθ
∫

P (s2|θ)p(θ)dθ
.

(1)

For some applications, Equation 1 may be difficult to
calculate and we will approximate it by replacing the
integrals with likelihoods at the maximum a posteriori
(MAP) values of θ:

sim(s1, s2) =
P (s1|θ12)P (s2|θ12)p(θ12)

P (s1|θ1)p(θ1)P (s2|θ2)p(θ2)
, (2)

where θ12 = argmaxθP (s1, s2|θ), θ1 = argmaxθP (s1|θ),
and θ2 = argmaxθP (s2|θ).

Similarity is symmetric under this measure:
sim(s1, s2) = sim(s2, s1). Whether a symmetric
measure is suitable may depend on the context in subtle
ways. Consider, for example, the difference between the
questions ‘How similar are s1 and s2?’ and ‘How similar
is s1 to s2?’ If an asymmetric measure is required, the
similarity of s1 to s2 could be defined as the probability
that s1 is produced by the process that generated s2, or
that s2 is produced by the process that generated s1.
This paper, however, will focus on the symmetric case.

We now show how to apply our generative framework
by deriving a featural model, a spatial model and a trans-
formational model as special cases.

Featural models

Suppose that objects are represented as binary feature
vectors, and let s1 and s2 be two objects, s1 ∪ s2 be the
set of features shared by both objects, and s1 − s2 and



s2 − s1 be the sets of features possessed by one object
but not the other. Tversky’s contrast model proposes
that

sim(s1, s2) = γ1F (s1 ∪ s2)− γ2F (s1 − s2)− γ2F (s2 − s1)

where γ1, γ2, and γ3 are positive constants and F (·)
measures the saliency of a feature set.

Let n be the number of features possessed by one or
both of the objects. To apply our generative framework,
let the domain D be the set of all n-place binary vectors.
A generative process over D is specified by a n-place
vector θ, where θi is the probability that an object has
value 1 on feature i. We place independent beta priors
on each θi:

θi ∼ Beta(α, β)

si ∼ Binomial(θi),

where si is the ith feature value for object s, α and β
are hyperparameters and Beta(·, ·) is the beta function.
This generative process is known by statisticians as the
beta-Bernoulli model, and has previously appeared in
the psychological literature as part of Anderson [2]’s ra-
tional analysis of categorization.

Using Equation 1, we can show that

log(sim(s1, s2)) = k1|s1 ∪ s2| − k2(|s1 − s2| − |s2 − s1|)

where k1 = log
(

α+1
α

)

− log
(

α+β+1
α+β

)

, k2 = log
(

α+β+1
α+β

)

,

and F (X) = |X| is the cardinality of X.1 Note that
log(·) is a monotonic transformation which can be ap-
plied without changing the rank order of the similarities
between all pairs of feature vectors.

We therefore see that the generative approach reduces
to a version of the contrast model where γ2 = γ3 and
F (·) = | · |. Our rederivation of Tversky’s result makes
at least two contributions. First, it provides an interpre-
tation of k1 and k2: these parameters are functions of α
and β, which make statements about properties of the
world. β

α+β
is the a priori probability that an object has

any given feature, and α+β measures the confidence we
should place in this probability. In contrast, the param-
eters γ1, γ2 and γ3 in Tversky’s model are free parame-
ters with no real meaning independent of the model. A
second contribution is that our approach automatically
provides a setwise similarity measure if s1 and s2 are
sets of feature vectors rather than single objects. Setwise
measures are needed by some psychological models [17],
but cannot be derived from the contrast model without
additional assumptions.

Spatial models

Spatial models propose that dissimilarity corresponds to
the distance between two representations in a multidi-
mensional space. Under a suitable generative process,
spatial models also emerge as a special case of our gen-
erative framework. Suppose that the domain D is a

1Full derivations of all results can be found at www.mit.
edu/~ckemp/

multidimensional space with dimension n. We formal-
ize a generative process as a Gaussian distribution over
D with mean µ and covariance matrix Σ. For simplicity,
we place a uniform (hence improper) prior over µ:

µ ∼ Uniform(Rn)

s ∼ Normal(µ,Σ),

where µ and s are random variables with n dimensions,
and Σ is a constant n by n matrix.

Using Equation 1, we can show that

log(sim(s1, s2)) = −(s1 − s2)
T Σ−1(s1 − s2)

where again we are interested only in the rank order
of the similarities. Under a Gaussian generative pro-
cess, then, similarity is inversely related to the Maha-
lanobis distance between two representations. If the co-
variance matrix is spherical (Σ = σ2I, where I is the
n-dimensional identity matrix and σ is a constant), then
similarity is inversely related to the Euclidean distance
between representations:

log(sim(s1, s2)) = −(s1 − s2)
T (s1 − s2).

Transformational models

The transformational approach holds that s1 is similar to
s2 if s1 can be readily transformed into s2. Suppose we
are given a set of objects D and a set of transformations
T . We assume that every transformation is reversible
— if there is a transformation mapping s1 into s2, there
must also be a transformation mapping s2 into s1. A
generative process over D is specified by a prototype
θ ∈ D chosen from a uniform (and possibly improper)
distribution over D. To generate an object s from a pro-
cess, we sample a transformation count k from an expo-
nential distribution, choose k transformations at random
from T , then apply them to the prototype:

θ ∼ Uniform(D)

k ∼ Exponential(λ)

ti ∼ Uniform(T )

s = tk · tk−1 . . . · t1(d)

where λ is a constant, and ti is the ith transformation
chosen. A generative process in this family will tend to
produce small variations of the chosen prototype.

We use Equation 2, and approximate each term in the
expression using MAP settings of k and t:

P (s1|θ1) =

∫

P (s1|θ1, k, t)P (k)P (t)dkdt ≈ P (s|θ1, k̂, t̂)

where θ1, k̂ and t̂ are set to values that maximize

P (θ, k, t|s). Since θ1 = s1 and k̂ = 0, P (s1|θ1, k̂, t̂) = 1.
Similarly, we use

P (s1|θ12)P (s2|θ12) ≈ P (s1|θ12, k̂1, t̂1)P (s2|θ12, k̂2, t̂2).



In this case, k̂1 + k̂2 is the length of the shortest path
joining s1 and s2 where each step along the path is a
transformation from T . Since the transformations are
reversible, P (θ|s1, s2) is the same for any θ along this
path, and we can set θ12 to any of these values. It is
now straightforward to show that log(sim(s1, s2)) is ap-
proximated by the transformation distance between s1

and s2, or the length of the shortest path joining these
objects. We suspect that a similar analysis can be given
if we relax the assumption that transformations are re-
versible, although we leave the details for future work.

This derivation does not imply that the generative ap-
proach is strictly more powerful than the transforma-
tional approach. One can also argue that the genera-
tive approach is a special case of the transformational
approach. Hahn et al. [6] are careful to note that the
similarity of two objects depends on the transformation
distance between their representations, not between the
objects themselves. If each object is represented as a
generative process — for example, as the generative pro-
cess most likely to have created the object — then the
transformational account may end up looking similar to
the generative approach.

The ability of these approaches to mimic each other
is a mark of their expressive power. Expressive power
is both a boon and a shortcoming. Classic approaches
like the featural and spatial approaches operate over
simple representations (feature vectors and multidimen-
sional spaces), and are too limited to capture similar-
ity judgments between complex structured representa-
tions. Both the transformational and the generative ap-
proaches are powerful enough to deal with complex rep-
resentations, and we describe later how the generative
approach can compute the similarity between systems of
relations.

Expressive power is a shortcoming when a powerful
approach is able to model any conceivable effect, regard-
less of whether it matches human data or not. To avoid
this problem we can limit the generative approach and
the transformational approach by allowing only genera-
tive processes, representations and transformations that
seem natural. It is difficult to specify precisely what
makes a generative process natural, but a natural process
should be simple, and motivated if possible by knowledge
about how real world objects are generated. A process is
unlikely to be natural if it is tendentious, or contrived in
order to produce a highly specific result. Of the genera-
tive processes described so far, the beta-Bernoulli and
Gaussian models are natural, and are widely used in
statistics and machine learning. The prototype model
seems less natural.

Even though the transformational and the generative
approaches may reduce to one another, it does not follow
that the two are interchangeable or equally successful.
A result that is naturally captured by one may not be
naturally captured by the other. To compare the two,
we must decide which approach offers greater scope for
providing natural explanations of the phenomena we care
about.

Experiment

We compared the generative approach with the trans-
formational approach using colored strings as stimuli.
An advantage of choosing this domain is that we can
formulate instances of the competing approaches that
seem natural but make different predictions. An indica-
tion that both models are natural is that both draw on
previously published work, and neither was developed
specifically for this comparison.

The transformation model uses the set of transforma-
tions suggested by Imai [7] and adopted by Hahn et al.
[6]. These authors suggest five transformations over bi-
nary strings: insertion, deletion, phase shift (shifting
all squares one position to the right or left), mirror-
imaging (reflection about the central axis), and reversal
(the transformation that maps white squares into black
squares and vice versa). We extend these transforma-
tions to ternary strings in the natural manner. All of
the transformations are weighted equally, and the dis-
similarity between two strings is defined as the number
of transformations required to transform one into the
other.

We implement the generative approach using Hidden
Markov Models (HMMs), a class of generative processes
that is standard in fields including computational biology
and computational linguistics. A HMM is determined by
a set of internal states, a matrix of transition probabili-
ties q that specifies how to move between the states, and
a matrix of observation probabilities o that specifies how
to generate symbols from a given state. To generate a
sequence from a HMM, we choose an initial state from a
distribution π, probabilistically generate a color using o,
then probabilistically choose the next state using q. We
continue until some stopping criterion has been satisfied.

A HMM can be represented using a vector θ =
{π, o, q}. Any given θ induces a probability distribution
over the set of all strings, and we can therefore apply
the generative approach to similarity developed above.
For simplicity, we use uniform priors on each component
of θ and follow the MAP approach in Equation 2. To
compute MAP values of θ we used Murphy [16]’s imple-
mentation of the standard EM algorithm for inference in
HMMs.

Each experimental subject assessed 20 binary triads
then 16 ternary triads. Five binary triads are shown
in Figure 2, and the full set is available from www.mit.
edu/~ckemp/. One triad was presented per screen, and
subjects decided whether the leftmost or the rightmost
string was most similar to the prototype string. One of
these strings was the ‘HMM string,’ the string most sim-
ilar to the prototype string according to our generative
approach. The remaining string was the ‘transformation
string’ (each triad was chosen so that the two models
made different predictions). The left-right order of the
HMM and transformation strings was chosen randomly
for each screen.

The triads were chosen systematically to cover most
kinds of strings that can be represented using HMMs
with a handful of states. We generated a comprehen-
sive set of HMM types, then designed a few triads for
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Figure 2: Five binary triads used in the experiment. For each triad, at least 9 of 12 subjects chose the HMM
string. The prototype and HMM strings are consistent with the HMM types shown on the right. Arrows indicate
high-probability transitions, and the darkness of a state shows its probability of generating the color black.

each type. A HMM type includes an architecture (a
graph with arrows indicating probable transitions be-
tween states) and a purity parameter for each state. A
pure state generates only one color, but a noisy state
generates multiple colors. Figure 2 shows several of the
HMM types used to generate binary strings.

Given a HMM type, we chose a prototype string and a
HMM string consistent with the type. The HMM string
was usually, but not always the same length as the pro-
totype string. The transformation string was created by
transforming the prototype string at a few key points.
Two or three transformations were used to create most
of the binary transformation strings. The ternary strings
are longer, and between three and five transformations
were used in most cases.

Results for 12 subjects are shown in Table 1. For the
binary strings, 73% of the judgments favored the gen-
erative approach, and a majority of subjects chose the
generative string on 17 out of 20 triads. No triad clearly
favored the transformation model: 5 out of 12 subjects
chose the HMM string on the most successful triad for
this model. The general pattern of results was similar
for the ternary strings, but this time a handful of tri-
ads clearly favored the transformation model. Overall,
these results suggest that similarity judgments between
sequences are sensitive to regularities that can be ex-
pressed using HMMs.

A natural response is that all of the prototype strings
were consistent with simple HMMs, and it is not surpris-
ing that a model based on HMMs should perform better
than an alternative model. It is true that our sample of
strings was biased towards strings generated by simple
processes, and is therefore unrepresentative of the set
of all possible strings. We suggest, however, that sam-
ples from real-world domains are biased in precisely the
same way — indeed, that is one of the motivations for
our approach. Consider the set of all possible animals,
which includes creatures like the manticore, a beast with
a man’s face, a lion’s body and a scorpion’s tail. We can
imagine animals that are much more bizarre than the
manticore, but any sample of real-world animals will be
biased towards animals generated by a relatively simple

Data Judgments Triads

Binary triads 73 85
Ternary triads 63 69
All triads 69 78

Table 1: Percentages of judgments and of triads that
favored the generative model. A triad favored the gen-
erative model if more than half of the subjects chose the
HMM string.

process — descent with modification.
A second response is that the transformation model

performs poorly because we have left out several cru-
cial transformations. The ideal transformation model
would include all relevant transformations, just as the
ideal generative model would include all relevant gener-
ative processes. There may be an additional set of simple
transformations that would reverse our findings, but we
have been unable to think of it.

Discussion

Our results suggest some conclusions about the gener-
ative and transformational approaches that apply well
beyond the domain of strings. A major problem with
the transformational account is that it does not distin-
guish between generic and non-generic configurations [8].
Consider the strings in Figure 2a. The transformation
string is only two transformations away from the proto-
type string, but the transformation string is non-generic :
since the dark squares appear in a clump, it has a Gestalt
property that is not shared by the prototype string. Fig-
ure 3a shows another example. The difference between
i and ii is that all the dots have been shifted by a small
amount, but i is non-generic – it has a striking property
that is missing from ii.

The generative approach deals neatly with generic and
non-generic configurations. The configuration in a.i is
most likely to have been generated by a process that pro-
duces dots arrayed along a line, and this process has no
chance of producing a.ii. The configuration in a.ii is most
likely to have been generated by a process that produces
a line-shaped cloud of dots, and generating a stimulus



like a.i would be an astonishing coincidence under such
a process. It follows that a.i and a.ii are unlikely to have
been generated by the same process, even though a very
small transformation will convert one into the other

Another way to state the problem is that simple trans-
formations will not suffice for the transformational ap-
proach. Consider the stimuli in Figure 3b. Removing
an edge between a pair of nodes must be an acceptable
transformation, since ii is very similar to iii, which is
identical except for a missing edge. Yet the remove edge
transformation must be highly context-sensitive: in par-
ticular, it must be more expensive to convert ii into i
than into iii. This example suggests that a given trans-
formation must be assigned a cost that depends on global
properties of the stimulus.

Given an appropriate set of high-level features, a fea-
tural approach could probably account for our data. In
Figure 2e, for example, the prototype and the transfor-
mation strings share the property of ‘streakiness’ and
the transformation string alone looks ‘irregular.’ It is
not sufficient, however, to choose a set of features that
fits the data. The choice of features must be justified —
since the space of possible features is vast, a convincing
featural model must use features that seem natural. It
may be possible to reconcile the featural and the gen-
erative approaches by arguing that natural features are
those that provide signatures of an underlying generative
process.

Colored strings are relatively unstructured objects,
but we can handle more complex domains using pro-
cesses that generate structured objects. Kemp et al. [10],
for example, describe a process that generates systems
of relations. Analogies form one special family of com-
parisons between relational systems, and we believe that
the generative approach offers a view of analogy that is
is intriguingly different from previous approaches. Exist-
ing models generally assume that systems are analogous
to the extent that there is a structure-preserving one-to-
one map between their elements [4]. The generative ap-
proach, however, allows analogous systems to have very
different numbers of elements, as long as they appear to
have been produced by the same process. Consider, for
instance, the graphs in Figure 2c. Even though there is
a better mapping between ii and i, ii seems more analo-
gous to iii. This is only one suggestive example, but we
believe that the generative approach to analogy deserves
further investigation.

We have argued that similarity judgments are infer-
ences about generative processes, and suggested how this
idea applies to comparisons between highly structured
objects. The generative processes formalized here have
been simpler than the processes that appear in people’s
intuitive theories, but we are optimistic that our frame-
work will help explain how similarity is guided by so-
phisticated theoretical knowledge.
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