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Rectangular Unfoldings of Polycubes

Martin L. Demaine⇤ Robert Hearn† Jason Ku‡ Ryuhei Uehara§

Abstract

In this paper, we investigate the problem that asks if
there exists a net of a polycube that is exactly a rect-
angle with slits. For this nontrivial question, we show
a�rmative solutions. First, we show some concrete ex-
amples: (1) no rectangle with slits with fewer than 24
squares can fold to any polycube, (2) a 4 ⇥ 7 rectangle
with slits can fold to a heptacube (nonmanifold), (3)
both of a 3 ⇥ 8 rectangle and a 4 ⇥ 6 rectangle can fold
to a hexacube (nonmanifold), and (4) a 5 ⇥ 6 rectangle
can fold to a heptacube (manifold). Second, we show a
construction of infinite family of polycubes folded from
a rectangle with slits. The smallest one given by this
construction is a 6 ⇥ 20 rectangle with slits that can
fold to a polycube of genus 5. This construction gives
us a polycube for any positive genus. Moreover, by this
construction, we can show that there exists a rectangle
with slits that can fold to k di↵erent polycubes for any
given positive integer k.

1 Introduction

It is well known that a unit cube has eleven edge de-
velopments. When we unfold the cube, no overlap oc-
curs on any of these eleven developments. In fact, any
development of a regular tetrahedron is a tiling, and
hence no overlap occurs [1]. However, this is not neces-
sarily true for general polycube, which is a polyhedron
obtained by face-to-face gluing of unit cubes. For ex-
ample, we can have an overlap when we unfold a box
of size 1 ⇥ 1 ⇥ 3 (Figure 1), while we have no overlap
when we unfold a box of size 1 ⇥ 1 ⇥ 2 (checked by ex-
haustive search). On the other hand, even for the Dali
cross (3-dimensional development of 4-dimensional hy-
per cube), there is a non-overlapping unfolding that is
a polyomino with slits that satisfies Conway’s criterion
in the induced plane tiling [2].

In this context, we investigate a natural but nontriv-
ial question that asks if we can fold a polycube from a
rectangle with slits or not. We first note that a con-
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Figure 1: Cutting along the bold lines of the left box of
size 1 ⇥ 1 ⇥ 3, overlap occurs at the dark gray square
on the right development. This development was first
found by Takeaki Uno in 2008. We have four places to
glue the top, however, this development is essentially
unique way for this box to overlap except the place of
the top, which is examined by exhaustive search.

vex polycube (or a “box”) cannot be folded from any
rectangle with slits. In general, any slit has no meaning
of a development of a convex polycube as proved in [3,
Lemma 1]. Therefore, a rectangle cannot fold to any
convex polycube even if we make slits in any way. That
is, if the answer to the question is yes, the polycube
should be concave.

In this paper, we show two series of a�rmative an-
swers to the question. First, we develop an algorithm
that searches slits of a given rectangle to fold a poly-
cube. Based on the algorithm, we find some concrete
slit patterns:

Theorem 1 (1) No rectangle with slits with fewer than
24 squares can fold to any polycube, (2) a 4⇥7 rectangle
with slits can fold to a heptacube, which is nonmanifold,
(3) both of a 3⇥8 rectangle and a 4⇥6 rectangle can fold
to a hexacube, which is also nonmanifold, and (4) a 5⇥6
rectangle can fold to a heptacube, which is manifold.

Second, we show a construction of infinite family of
polycubes folded from a rectangle with slits.

Theorem 2 For any positive integer g, there is a rect-
angle with slits that can fold to a polycube of genus g.

As a result, we can conclude that there are infinite many
polycubes that can be folded from a rectangle with slits.
In the construction in Theorem 2, we use a series of
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Figure 2: The right rectangle is an unfolding of the
left polycube of volume 7. The left figures describe the
polycube by slices of it.

gadgets that have many di↵erent ways of folding. Using
this property, we also have the following corollary.

Corollary 3 For any positive integer k, there is a rect-
angle with slits that can fold to k di↵erent polycubes.

2 Proof of Theorem 1

We first show the results and give a brief idea of the
algorithm that we used for finding the patterns.

2.1 Pattern 1: 4⇥ 7 rectangular unfolding of a hep-
tacube

In Figure 2, we give a heptacube that has a 4⇥7 rectan-
gular unfolding. Cubes a and f touch along a diagonal.
In the unfolding, D, B, R, L, U, F mean Down, Back,
Right, Left, Up, Front, respectively. This heptacube
has 90 rectangular unfoldings.

2.2 Patterns 2 and 3: 3 ⇥ 8 and 4 ⇥ 6 rectangular
unfoldings of a symmetric hexacube of genus 1

In Figure 3, we give a hexacube that has two rectan-
gular unfoldings. One is of size 3 ⇥ 8 and the other is
of size 4 ⇥ 6. This polycube has no diagonal touch, al-
though it is genus 1 at the central point. There are 1440
rectangular unfoldings, and one of each type is shown
in Figure 3. (This 24-face hexacube has 12 symmetries;
therefore, the number of distinct rectangular unfoldings
is 120 rather than 1440.)

2.3 Pattern 4: 5⇥6 rectangular unfolding of a sym-
metric heptacube

In Figure 3, we give a heptacube that has rectangular
unfolding of size 5 ⇥ 6. This polycube has no diagonal
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Figure 3: The left down polycube of volume 6 has two
di↵erent rectangular unfoldings of size 3 ⇥ 8 and 4 ⇥ 6
with slits.
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Figure 4: The left polycube of volume 7 has rectangular
unfolding of size 5 ⇥ 6.
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Figure 5: Spanning tree corresponding to the pattern in
Figure 1.

touch with genus 0. Curiously, this heptacube has only
4 rectangular unfoldings. All unfoldings are shown in
Figure 4. As you can observe, these 4 unfoldings are
almost the same except the cut of unit length at the
top left corner.

Our program confirmed that there are no rectangular
polycube unfoldings with fewer than 24 faces, and the
one shown in Figure 3 is unique for 24 faces. These facts
complete the proof of Theorem 1. We here observe the
algorithm used in this section.

2.4 Algorithm

The input of our algorithm is a polycube Q.
We here consider the polycube Q of surface area
n squares as a graph G(Q) = (V, E); the
set V of n unit squares and E = {{u, v} |
the unit squares u and v share an edge on Q}. On the
graph G(Q), a slit on Q cuts the corresponding edge.
Then it is known that an unfolding of the polycube Q
is given by a spanning tree of G(Q) (see, e.g., [3]). For
example, the cutting pattern in Figure 1 corresponds to
the spanning tree in the right graph in Figure 5. There-
fore, when a polycube Q is given, the algorithm can
generate all unfoldings by generating all spanning trees
for the graph G(Q). (We note that, as mentioned in In-
troduction, some slits can be redundant in this context;
however, we do not care about this issue. Therefore,
some unfoldings in the figures contain redundant slits.)

For each spanning tree of G(Q), the algorithm checks
whether the corresponding unfolding overlaps or not. If
not, it gives a valid net of Q. If, moreover, it forms
a rectangle, it is a solution of our problem. For a
given spanning tree, this check can be done in linear
time. Since all spanning trees of a given graph G can
be enumerated in O(1) time per tree (see [5]), all un-
foldings of a given polycube Q of area n can be done
in O(nT (G(Q))) time, where T (G(Q)) is the number of
spanning trees of G(Q).

We note that our algorithm runs for any given poly-

A
BCDEFG

H
I J

K A

H K J
I

BCDEF
G

Figure 6: An F gadget.

Figure 7: A construction of a rectangle of size 6 ⇥ 20.
It can fold to a polycube of genus 5.

Figure 8: A construction of rectangle of size 6 ⇥ 24. It
can fold to a polycube of genus 1.

cube Q, and it can check if Q has a valid net or not. By
exhaustive check, we have the following theorem:

Theorem 4 All polycubes that consist of 12 or fewer
cubes have an edge unfolding without overlapping.

3 Proof of Theorem 2

Next we turn to a construction of family of polycubes.
We first introduce a gadget shown in Figure 6, which

is called an F gadget. An F gadget is a rectangle of size
3 ⇥ 6 with some slits, which can be folded to F shape
as shown in Figure 6. Gluing two copies of F gadgets
(precisely, one is the mirror image), we can obtain an
L-shaped pipe with hole of size 1⇥2. Therefore, joining
four of the L-shaped pipes, we can construct a polycube
as shown in Figure 7. By elongating the gadgets, we can
change the size and genus as shown in Figure 8.

Now we introduce another series of gadgets in Fig-
ure 9, which is called I gadgets. An I gadget of size i
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Figure 9: I gadgets.

is a rectangle of size 3 ⇥ (i + 2) with some slit. The I
gadget of size i has a zig-zag slit of length 2i as shown
in Figure 9. This gadget can be folded not only in the I
shape in a natural way, but also many other ways. For
example, I(4) has nine ways of folding in total as shown
in the right in Figure 9. Therefore, in general, I(i) has
exponentially many ways of foldings. (The exact value
is open, but it is at least 9i/4 by joining i/4 of I(4)s.)

Combining these gadgets, it is easy to construct a
rectangle with some slits for folding a polycube of any
genus. In Figure 10(a), we give an example of a rectan-
gle with some slits that can be folded to a polycube of
genus 2. Figure 10(b) describes the polycube of genus 2
folded from (a) (since all polycubes folded in this man-
ner are of thickness 2, we draw them by top-view).

We can observe that there are many polycubes folded
from (a) by the property of the I gadget. That is, each
I gadget in a rectangle can be folded to one of nine
di↵erent shapes unless it intersects with others and the
length has consistency. That is, choosing each way of
folding properly, we can fold to (exponentially) many
di↵erent polycubes from the rectangle of length 6 ⇥ n
with slits. For a rectangle in Figure 10(a), one of the
variants is given in Figure 10(c). Now it is easy to see
that Theorem 2 and Corollary 3 hold.

4 Concluding Remarks

In this paper, we show some concrete polycubes folded
from a rectangle with slits. Among them, there is a
polycube of genus 0. We also show that there are in-
finitely many polycubes folded from a rectangle with
slits. This construction gives us infinitely many poly-
cubes of genus g for any positive integer g, and it also
gives us infinitely many rectangles that can fold to (at
least) k di↵erent polycubes for any positive integer k.
However, so far, we have no construction that gives in-
finitely many polycubes of genus 0, which is an open
problem.

The series of I gadgets in Figure 9 gives us interesting
patterns. For a given i, the number of ways of folding of
I(i) seems to be an interesting problem from the view-
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Figure 10: (a) A construction of rectangle of size 6⇥48.
(b) A polycube of genus 2 folded from the rectangle.
(c) Another polycube of genus 1 folded from the same
rectangle.

point of computational origami. From the viewpoint of
puzzle, it is also an interesting problem to decide the
kind of polyominoes folded from I(i) for general i. In
the construction in Theorem 2 and Corollary 3, we use
the rectangle of size 6⇥n. It may be interesting whether
we can use the rectangle of size 4 ⇥ n or not.

In Theorem 4, we stated that all polycubes consist-
ing of 12 or fewer cubes have an edge unfolding with-
out overlap. This theorem begins to address an open
problem that asks whether there exists a polycube that
has no non-overlapping edge unfolding. It seems very
challenging to find such an “ununfoldable” polycube
by brute-force search: our program is able to quickly
find solutions for randomly sampled polycubes with as
many as 1000 cubes (as well as for hand-constructed
polycubes that appear hard to unfold), and exhaus-
tive search becomes infeasible at much smaller numbers.
This problem sometimes appears as “grid unfoldings” in
the context of unfolding of orthogonal polyhedra. See
[6, 7, 8, 9, 10] for further details.
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