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1 Reference Frames

Reference frames are defined by an origin and right-handed set of unit vectors. We assume there exists
some inertial reference frame, typically Ô = (O,ˆI, ˆJ, ˆK), which is fixed in time. Reference frames in general
have six degrees of freedom with respect to other reference frames. They can translate with three degrees
of freedom and can rotate with another three.

When we specify an intermediate frame Â = (A,ˆiA,ˆjA, ˆkA), we must define the translation of its ori-
gin, OrA(t), and the rotation of its unit vectors ˆiA, ˆjA, and ˆ

kA as functions of ˆI, ˆJ, ˆ

K, and the angles of
the problem. Typically, it is su�cient to say that the intermediate frame is fixed to some rigid body and
draw its unit vectors in relation to the ground.

We use reference frames to help us deal with rotation. As such, we typically only need to define one
intermediate frame with respect each rotation in a problem. If there are two rotations, you will generally
use three reference frames: one ground, and two intermediate.

2 Variables of Motion

Variables of motion are scalar distances or angles that change in time and define how the motion of the
system is parameterized. The equations of motion of a system will be di↵erential equations of the variables
of motion. We will talk about defining a complete and independent set of generalized coordinates when
we introduce the variational method of finding the equations of motion, but, for now, expect to be given
what these variables must be.

3 Newton’s Laws

In classical mechanics, we except without proof Newton’s three laws of motion. They are:

(1) If no forces act on a particle, it will move in a straight line at constant or zero velocity.

(2)
P

Fm =
Od
dt
(Opm) for mass m, inertial frame Ô, and Opm = mOvm.

(3) Reaction forces between particles are equal in magnitude and opposite in direction.

The first law allows us to define an inertial (or approximately inertial) reference frame. It is useful to note
that the second law is a fundamental law, while the relationship between torques and angular momentum
is derivative. Let us derive it.
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Define ⌧B
m = Brm ⇥ Fm and OhB

m = Brm ⇥ Opm. Then:
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Since Ovm is parallel to Opm,
Ovm ⇥ Opm = 0, and:

X
⌧B
m =

Od

dt

�
OhB

m

�
+ OvB ⇥ Opm

Note that the traditional notion that the sum of the torques is equal to the change in the angular momen-
tum requires that the pivot B be stationary or that the velocity of the pivot and the linear momentum of
the mass be parallel.

We have not learned how to apply Newton’s second to distributed masses, but we have learned how to
apply Newton’s second law to both point masses and massless rigid bodies. It can be helpful to write
down Newton’s second law for every moving body in a problem, which may be necessary to find enough
equations to solve for the unknowns.

4 Kinematics

We derived the following mathematical definition for taking a derivative of a vector defined in an interme-
diate frame:

Od

dt
ArP = AṙP + O!A ⇥ ArP

From this equation, we can derive velocities and accelerations in any frame by taking derivatives of position
vectors. For one intermediate reference frame, the velocity and acceleration equations are:

OvP = OṙA + AṙP + O!A ⇥ ArP

OaP = Or̈A + Ar̈P + 2 O!A ⇥ AṙP + O!̇A ⇥ ArP + O!A ⇥ (O!A ⇥ ArP )

The first two terms are translational accelerations, the third is the Coriolis acceleration, the fourth is the
Euler acceleration, and the last is the centripetal acceleration.
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5 Free Body Diagrams
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When drawing free body diagrams, it is good practice to write both the magnitude and direction of forces
in terms of the unit vectors of the your reference frames. This will make your statement of directions
precise and independent of your ability to draw accurately, especially for drawings in three dimensions.
Also remember that reaction forces often constrain more than one degree of freedom, requiring more than
one scalar variable to define. Reaction forces are always equal in magnitude and opposite in direction
under Newton’s third law.

6 Equations of Motion

The equations of motion are a system of scalar di↵erential equations in the variables of motion and their
derivatives. In the direct method which we have learned, these equations come from Newton’s second law.
For any given problem, Newton’s second law will contain a combination of known and unknown forces,
torques, and variables of motion. If the movement is known, we can solve for forces and torques (Type 1
problem). If the forces and torques are known, we can solve for the equations of motion (Type 2 problem).
If some mix of variables are known, we can solve equations for the remainder (Hybrid Type 3 problem).

7 Example: Crane

m

l✓

�

x

⌧

F

ˆ

I

ˆ

J

g

Consider a crane moving a payload of mass m in the presence of
gravity. The crane has three degrees of freedom: the crane arm
can rotate about a fixed pivot, a translating platform can move
along the crane arm, and the mass swings from this platform.
Assume the mass of the crane arm and connecting cable are
negligible compared to the mass of the payload.

(a) Given that the crane moves with a specified x(t), ✓(t), and
�(t), what is the tension T on the cable?

(b) Given that a known torque ⌧ = ⌧ ˆ

K is applied to the crane
arm, and the crane arm exerts a known force F = F ˆ

iA on
the platform, derive the equations of motion.
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Solution

For both questions, we must apply Newton’s second law to find equations in our knowns to find our un-
knowns. Let us find these equations, and then see how they relate to the questions.

First, define reference frames. Define ground frame Ô = (O,ˆI, ˆJ, ˆK) with O located at the first pivot point
of the crane which is fixed in time. Also define intermediate frames Â = (A ⌘ O,ˆiA,ˆjA, ˆkA ⌘ ˆ

K) rotating
with the crane arm and frame B̂ = (B,ˆiB,ˆjB, ˆkB ⌘ ˆ

K) rotating with the cable with origin B at the cable’s
point of contact with the crane arm. For convenience, let ˆiA point from O to B, and ˆ

iB point from B to
m. Note that the variables of motion are x(t), ✓(t), and �(t).

Now let us write down Newton’s second law as it applies to each rigid body in the problem: the arm a,
the cable c, and the mass m. The mass is a point mass, which should lead to three independent equations,
and the arm and the cable are rigid bodies, so these should lead to six independent equations each. Note
that the arm and cable rigid bodies are massless, so their linear and angular momentums must be zero.

X
Fm =

Od

dt
(Opm) = mOam

X
F c =

Od

dt
(⇢

⇢⇢>
0
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X
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⇢⇢>
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◆
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0
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X
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dt
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⇢⇢>
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X
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0
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◆
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0
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To solve these equations, we must draw free body diagrams to find the left side of the equations, and
kinematics to find the right side of the equations. Let us start with kinematics, as there is only one
non-zero right hand side.

Oam =
Od

dt

✓
Od

dt
(Orm)

◆
=

Od

dt

✓
Od

dt
(���*

0
OrA + ArB + Brm)

◆

=
Od

dt

✓
AṙB + O!A ⇥ ArB +���*

0
Bṙm + O!B ⇥ Brm

◆

= Ar̈B + O!A ⇥ AṙB + O!̇A ⇥ ArB + O!A ⇥ (AṙB + O!A ⇥ ArB) +
O!̇B ⇥ Brm + O!B ⇥ (���*

0
Bṙm + O!B ⇥ Brm)

= (ẍˆiA) + (✓̇ẋˆjA) + (✓̈xˆjA) + (✓̇ẋˆjA)� (✓̇2xˆiA) + (�̈lˆjB)� (�̇2lˆiB)

= ẍˆiA + 2✓̇ẋˆjA + ✓̈xˆjA � ✓̇2xˆiA + �̈lˆjB � �̇2lˆiB

Looking at the terms, we have a translational acceleration, a Coriolis term from the movement of B in the
Â reference frame, and an Euler and centripetal acceleration for each rotation. Kinematics is done. Now
we need to draw force body diagrams for the left sides of our equations. It will be useful to know the angle
↵ between ˆ

jA and �ˆiB, such that �ˆiB ⇥ˆ

jA = sin↵ ˆ

K. A little geometry reveals ↵ = ✓ � �.
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Note that F4
ˆ

iA = F = F ˆ

iA and ⌧ = ⌧ ˆ

K.
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Note that F1 is the tension on the cable, with F1 = T =

r
F 2 +

⌧ 2

x2

Thus, for question (a):

T = �m(Oam + g ˆJ) · ˆiB
T = �m[ẍˆiA + 2✓̇ẋˆjA + ✓̈xˆjA � ✓̇2xˆiA + �̈lˆjB � �̇2lˆiB + g(sin�ˆjB � cos�ˆiB)] ·ˆiB

T = m[(ẍ� ✓̇2x) sin(✓ � �) + (2✓̇ẋ+ ✓̈x) cos(✓ � �) + �̇2l + g cos�]

And for question (b):
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iB = m[ẍˆiA + 2✓̇ẋˆjA + ✓̈xˆjA � ✓̇2xˆiA + �̈lˆjB � �̇2lˆiB + g(sin�ˆjB � cos�ˆiB)]

r
F 2 +

⌧ 2

x2
= m[(ẍ� ✓̇2x) sin(✓ � �) + (2✓̇ẋ+ ✓̈x) cos(✓ � �) + �̇2l + g cos�]

0 = m[�(ẍ� ✓̇2x) cos(✓ � �)� (2✓̇ẋ+ ✓̈x) sin(✓ � �) + �̈l � g sin�]
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1 Basic Concepts

Constraints

In general, connections can constrain possible movement between bodies. A rigid connection means that

an arbitrary reaction force and torque can be sustained in any direction, leading to six scalar reaction

unknowns and zero degrees of freedom. For planar motion, this becomes three scalar unknowns and

zero degrees of freedom. A pinned connection means that in general an arbitrary reaction force can be

sustained in any direction, but no torque, leading to three scaler reaction unknowns and three rotational

degrees of freedom. For planar motion, this becomes two scalar unknowns and one translational degree

of freedom. A surface connection means that the motion must follow a surface or plane which constrains

the object’s rotation, and movement in the normal direction, leading to four scalar reaction unknowns

and two translational degrees of freedom. For planar motion, this becomes two scalar unknowns and one

translational degree of freedom.

Constitutive Relations

Force from gravity is given by F g = mg. Force in a spring with spring constant k obeys Hooke’s Law

F S = �kx where x is the displacement from the spring’s un-stretched length. Force related to a dashpot

or viscous drag with viscous damping coe�cient c can be assumed to obey the following relationship,

FD = �cv where v is either the velocity of the object experiencing drag or the di↵erence in velocity

between the two ends of a dashpot. Force from kinetic friction is usually given by a F f = �µN v
|v| where

µ is a constant related to the contact surface pair, N is the normal force between the surfaces, and � v
|v|

is the direction opposite the object’s movement. Note that for kinetic friction to act, surfaces must slide

relative to each other. Rolling is no-slip, thus kinetic friction is not applicable.

Tensor Review

Define frame Ô = (O,ˆI, ˆJ, ˆK) and frame Â = (O,ˆi,ˆj, ˆk ⌘ ˆ

K) with ˆ

i = cos ✓ˆI + sin ✓ ˆJ. Define a tensor
ˆ

i⌦ˆ

i. We can write this tensor as:

ˆ

i⌦ˆ

i =

A 2

64
1 0 0

0 0 0

0 0 0

3

75 = (cos ✓ˆI+ sin ✓ ˆJ)⌦ (cos ✓ˆI+ sin ✓ ˆJ) =

O 2

64
cos2 ✓ cos ✓ sin ✓ 0

cos ✓ sin ✓ sin2 ✓ 0

0 0 0

3

75

Also, (A⌦B) ·C = (B ·C)A, thus (ˆI⌦ˆ

I) ·ˆI = ˆ

I (ˆI⌦ˆ

I) · ˆJ = 0 (ˆI⌦ˆ

I) ·ˆi = cos ✓ˆI

1



2.003J Spring 2011: Dynamics and Control I Quiz #2 Review

Massachusetts Institute of Technology April 9th, 2011

Department of Mechanical Engineering April 10th, 2011

2 Direct Method

Newton’s Second Law for Rigid Bodies

X
FM = MOaC for OrC =

1

M

ZZZ

V

⇢(OrV )
OrV dV

This must be applied to the center of mass C in an inertial frame Ô. M refers to the total mass of the

rigid body and ⇢(OrV ) represents the density of the body as a function of position. If the locations of the

center of mass of the individual parts of a body are known, the location of the center of mass of the whole

body is just the weighted average of the part centers.

Euler’s Equations for Rigid Bodies

X
⌧B
M =

Od

dt

�
OHB

M

�
+M OvB ⇥ OvC for OHB

M = I

B
M

O!B +M BrC ⇥ OvB

This must be applied in an inertial frame Ô, but the point of rotation B is arbitrary. M refers to the total

mass of the rigid body while O!B refers to a frame B̂ fixed to the rigid body. The underlined terms go to

zero when either B ⌘ C or OvB = 0.

3 Moment of Inertia Tensor

Definition for BrdV = xˆiA + yˆjA + z ˆkA: I

B
M =

ZZZ

V

⇢(BrdV )
⇥
(BrdV · BrdV )13 � (BrdV ⌦ BrdV )

⇤
dV

=

ZZZ

V

⇢(x, y, z)

A 2

64
y2 + z2 �xy �xz

�yx z2 + x2 �yz

�zx �zy x2 + y2

3

75 dx dy dz

While the inertia tensor does not depend on a reference frame, we must specify a reference frame (here

frame Â) to write it in matrix form. The point of rotation B is arbitrary.

Parallel Axis Theorem

Parallel Axis Theorem for BrC = aˆiA + bˆjA + c ˆkA:

I

B
M = I

C
M +M

⇥
(BrC · BrC)13 � (BrC ⌦ BrC)

⇤
= I

C
M +M

A 2

64
b2 + c2 �ab �ac

�ba c2 + a2 �bc

�ca �cb a2 + b2

3

75

2
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The parallel axis theorem only applies when shifting from the rigid body’s center of mass C. Also note

that you can use o↵set vector BrC or CrB = �BrC as the equations will be the same either way due to

squared nature of the moment of inertia.

Principal Axes

In general, a matrix A times a vector b yields a vector Ab = c pointing in a di↵erent direction than the

original vector b. However, an eigenvector x of A has the property such that the product will point in the

same direction as the original vector Ax = �x. Here � is the eigenvalue corresponding to the eigenvector

x of the matrix A.

Define the principal frame of a body about B to be B̂ = (B,ˆiB, ˆjB, ˆ

kB). The principal axes ˆiB, ˆjB,

and ˆ

kB are eigenvectors of a moment of inertia tensor I B
M such that I B

M
ˆ

iB = IBxxˆiB, I
B
M
ˆ

jB = IByyˆjB, and

I

B
M
ˆ

kB = IBzz ˆkB. This is the same as saying that the inertia tensor written in terms of these directions

yields a diagonal matrix. Here we call the eigenvalues IBxx, I
B
yy, and IBzz the principal moments. When

you look up moments of inertia in a table, you are given the principal moments in the principal directions

taken about the centroid of the body: ICxx, I
C
yy, and ICzz.

Rigid Body Rotations About Principal Axes

If a rigid body only undergoes rotation about a principal axis ˆ

K such that O!B = ! ˆ

K, only the ˆ

K ⌦ ˆ

K

component of inertia tensor will contribute to the product I B
m

O!B in Euler’s Equations because (ˆI⌦ˆ

I)· ˆK =

(ˆJ⌦ ˆ

J) · ˆK = 0. Thus, if rotations are about a principal axis ˆ

K, you can write the following:

I

B
M

O!B = IBzz ! ˆ

K for IBzz = I

B
M · (ˆK⌦ ˆ

K)

Also when rotation is about a principal axis ˆ

K, for any r that o↵sets the body’s center of mass C perpen-

dicular to the principal axis to a point B such that r = |BrC | for BrC · ˆK = 0, the parallel axis theorem

reduces to the following.

IBzz = ICzz +mr2

3
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4 Variational Method

Lagrange’s Equations

d

dt

✓
@L
@q̇j

◆
� @L

@qj
= ⌅j

Here, j varies from 1 to n, where n is the number of degrees of freedom of the system, qj refers to the

jth generalized coordinate, ⌅j refers to the jth generalized force, and the Lagrangian L = T � V is the

di↵erence between the kinetic energy T and conservative potential energy V of the system. Lagrange’s

Equations give a total of n equations of motion: one for each degree of freedom of the problem. Note

that each generalized coordinate will always be either a scalar length or angle. Also note that Lagrange’s

equations in this form are restricted to holonomic systems, and can only be used to find equations of

motion, not reaction forces, which must be found using the direct method.

Kinetic Energy

Kinetic energy is the energy associated with motion. Translational kinetic energy is the energy associated

with the movement of the center of mass C of a rigid body m, while rotational kinetic energy is the

energy associated with the rotation of the rigid body about C. As with the angular momentum, you must

take these energies with respect to the movement of and around either the center of mass C or around a

stationary point B with respect to an inertial frame Ô. Let O!B represent the angular velocity of frame

B̂ fixed to the body relative to the ground. Then for either B ⌘ C or OvB = 0:

Ttranslational =
1

2
m(OvB · OvB) Trotational =

1

2
O!B · (I B

m
O!B)

Potential Energy

Potential energy comes from forces that depend only on an object’s position or orientation, and does

not change in time or velocity. We will consider potential energy in two forms: gravitational potential

energy and spring potential energy. We will use generalized forces to express all other types of forces.

Gravitational potential energy is proportional to the change in position of the center of mass C of a body

m in the direction of gravity. Spring potential energy is proportional to the magnitude squared of the

displacement x from the spring’s un-stretched length.

Vgravitational = �mg · OrC Vspring =
1

2
kx · x

4
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Generalized Forces

⌅j =
NX

i=1

F nc
i · @

@qj
Ori

A generalized force ⌅j is the variation of the work done on the system by nonconservative forces over a

variational displacement of the jth generalized coordinate qj. Again, j varies from 1 to n, where n is

the number of degrees of freedom of the system, so there will be n generalized forces. Here i indexes all

nonconservative forces F nc
i acting on the system at locations Ori. Here i varies from 1 to N , where N is

the number of nonconservative forces acting on the system. Note that if qj is a length, ⌅j will have units

of force, while if qj is an angle, ⌅j will have units of torque.

5 Example: Pendulum Cart

c1

k M

A c2

l

m, 4l

F (t)

ˆ

I

ˆ

J

g
A cart of mass M is connected to a fixed wall to the left by

a spring with spring constant k and a dashpot with damping

coe�cient c1. The cart’s wheels are of negligible mass and roll

on frictionless bearings. A thin rod of mass m and length 4l is

connected to the cart o↵-center via a pivot at point A that expe-

riences viscous damping with damping coe�cient c2. A varying

force F (t)ˆI is applied to the end of the bar. Find the equations

of motion using both the direct and variational methods. What

is the normal force acting on the cart?

Solution

Indirect Method Equations of Motion

Two degree of freedom problem. Let q1 = x be the distance A has traveled relative to the un-stretched

location of the end of the spring O, and let q2 = ✓ be the angle the rod forms with the vertical such

that ArC = l(sin ✓ˆI � cos ✓ ˆJ). Define ground frame Ô = (O,ˆI, ˆJ, ˆK), and translating, rotating frame

Â = (A,ˆiA,ˆjA, ˆkA ⌘ ˆ

K) such that ˆjA = � sin ✓ˆI + cos ✓ ˆJ. Define C to be the position of the center of

mass of the rod given by OrC = xˆI � lˆjA, and center of mass body frame Ĉ = (C,ˆiA,ˆjA, ˆkA ⌘ ˆ

K). Note

that O!A = O!C = ✓̇ ˆ

K.

T =
1

2
M(OvA · OvA) +

1

2
M(OvC · OvC) +

1

2
O!C · (I C

m
O!C), from tables: I

C
m =

1

12
m(4l)2

C 2

64
1 0 0

0 0 0

0 0 1

3

75

5
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OvA = ẋˆI OvC =
Od

dt

h
xˆI� l(� sin ✓ˆI+ cos ✓ ˆJ)

i
= ẋˆI+ l✓̇(cos ✓ˆI+ sin ✓ ˆJ)

T =
1

2
Mẋ2 +

1

2
m

h
(ẋ+ l✓̇ cos ✓)2 + l2✓̇2 sin2 ✓

i
+

2

3
✓̇2ml2 V =

1

2
kx2 +mg(�l cos ✓)

L = T � V =


1

2
Mẋ2 +

1

2
m

⇣
ẋ2 + 2ẋl✓̇ cos ✓ + l2✓̇2

⌘
+

2

3
✓̇2ml2

�
�
✓
1

2
kx2 �mgl cos ✓

◆

⌅j =
NX

i=1

F nc
i · @

@qj
Ori Three nonconservative force acting: F (t) acting at D, OrD = xˆI� 3lˆjA

FD1 = �c1ẋˆI acting at A

A nonconservative torque equivalent to ⌧D2 = �c2✓̇ ˆ

K

⌅1 = F (t)ˆI · @

@x
(xˆI� 3lˆjA) + (�c1ẋˆI) ·

@

@x
(xˆI) = F (t)� c1ẋ

⌅2 = F (t)ˆI · @

@✓
(xˆI� 3lˆjA) + (�c1ẋˆI) ·

@

@✓
(xˆI)� c2✓̇ = 3F (t)l cos ✓ � c2✓̇

d

dt

✓
@L
@ẋ

◆
� @L

@x
= ⌅1

d

dt

⇣
Mẋ+m(ẋ+ l✓̇ cos ✓)

⌘
� (�kx) = F (t)� c1ẋ

(M +m)ẍ+ c1ẋ+ kx+ml(✓̈ cos ✓ � ✓̇2 sin ✓) = F (t)

d

dt

✓
@L
@✓̇

◆
� @L

@✓
= ⌅2

d

dt

✓
mẋl cos ✓ +

7

3
m✓̇l2

◆
� (�mẋl✓̇ sin ✓ �mgl sin ✓) = 3F (t)l cos ✓ � c2✓̇

mẍl cos ✓ +
7

3
m✓̈l2 + c2✓̇ +mgl sin ✓ = 3F (t)l cos ✓

Direct Method Equations of Motion

Cart M Newton’s second law
X

FM = MOaA

Note that the cart does not rotate, so Euler’s equation does not help with equations of motion. Let FN
ˆ

J

be the normal reaction forces between the ground and the cart, and let F1
ˆ

I and F2
ˆ

J be the reaction forces

between the cart and the bar.

X
FM = �Mg ˆJ+ FN

ˆ

J+ F2
ˆ

J+ F1
ˆ

I� kxˆI� cẋˆI OaA = ẍˆI

�Mg ˆJ+ FN
ˆ

J+ F2
ˆ

J+ F1
ˆ

I� kxˆI� cẋˆI = MẍˆI

FN + F2 �Mg = 0 F1 � kx� cẋ = Mẍ

6
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Rod m Newton’s second law
X

Fm = mOaC

Euler’s equations about point A
X

⌧A
m =

Od

dt

�
I

A
m

O!A +m ArC ⇥ OvA

�
+m OvA ⇥ OvC

X
Fm = �mg ˆJ� F2

ˆ

J� F1
ˆ

I+ F (t)ˆI

We choose to take Euler’s Equations about point A to avoid introducing reaction forces at the pivot around

the center of mass. Note that the extra terms do not go to zero.

OaC =
Od

dt


Od

dt
(OrA + ArC)

�
=

Od

dt

h
ẋˆI+ ✓̇l(cos ✓ˆI+ sin ✓ˆJ)

i
= (ẍ+✓̈l cos ✓�✓̇2l sin ✓)ˆI+(✓̈l sin ✓+✓̇2l cos ✓)ˆJ

F (t)� F1 = mẍ+m✓̈l cos ✓ �m✓̇2l sin ✓ �mg � F2 = m✓̈l sin ✓ +m✓̇2l cos ✓

Combining above underlined equations yields one equation of motion.

(M +m)ẍ+ c1ẋ+ kx+ml(✓̈ cos ✓ � ✓̇2 sin ✓) = F (t)

X
⌧A
m = 3F (t)l cos ✓ ˆ

K�mgl sin ✓ ˆ

K� c2✓̇ ˆ

K

I

A
m = I

C
m +m

A 2

64
l2 0 0

0 0 0

0 0 l2

3

75 =
7

3
ml2

A 2

64
1 0 0

0 0 0

0 0 1

3

75

ArC ⇥OvA = (�lˆjA)⇥ (ẋˆI) = �ẋl cos ✓ ˆK OvA⇥OvC = (ẋˆI)⇥ (ẋˆI+ ✓̇l(cos ✓ˆI+sin ✓ˆJ)) = ẋl✓̇ sin ✓ ˆ

K

3F (t)l cos ✓ ˆ

K�mgl sin ✓ ˆ

K� c2✓̇ ˆ

K =
Od

dt

✓
7

3
ml2✓̇ ˆ

K�mẋl cos ✓ ˆK

◆
+mẋl✓̇ sin ✓ ˆ

K

mẍl cos ✓ +
7

3
m✓̈l2 + c2✓̇ +mgl sin ✓ = 3F (t)l cos ✓

Normal Force

Solving for FN in the above equations yields:

FN = (M +m)g �m✓̈l sin ✓ �m✓̇2l cos ✓
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2.003 Final Exam Review

1 Finding Equations of Motion

The first two thirds of 2.003 focused on finding the equations of motion of mechanical systems. The

direct method utilized Newton’s second law and Euler’s equation to find the equations of motion and

the reaction forces in the system. The indirect method utilized Lagrange’s equations and virtual work to

find the equations of motion directly. Both methods require the use of kinematics to find velocities and

accelerations. Please refer to the first two quiz reviews for more information concerning kinematics and

finding equations of motion.

2 Equilibria, Linearization, and Stability

Most non-linear di↵erential equations do not have analytical solutions. However, we would still like to be

able to analyze non-linear systems, especially for small vibrations about stable equilibria. If we assume

that displacements and velocities around the equilibrium points are small, we can linearize the equations

of motion using Taylor series expansions.

2.1 Equilibrium points

Equilibrium requires that the system be at rest. By setting all velocities and accelerations in our equation

of motion to zero, we find an equation for which equilibrium positions must be solutions. For example, if

our equation of motion has the form:

f(x)ẍ+ g(x, ẋ)ẋ+ h(x) = 0

Equilibrium will be satisfied when ẋ = ẍ = 0, and solutions to the equation h(x) = 0 will yield the m

equilibrium points (x(1)
eq

, x

(2)
eq

, . . . , x

(m)
eq

) of the non-linear system.

2.2 Linearization

In order to linearize an equation of motion about a point, we use Taylor series to approximate the equation

to the first order, only keeping terms that are first order in a single variable of motion. While linearization

1
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derives from the Taylor series, it is sometimes useful and easier to linearize parts of the equation first, and

then linearize the whole. For example, if our equation of motion has the form:

f(x)ẍ+ g(x, ẋ)ẋ+ h(x) = 0

Let’s linearize each coe�cient function about an equilibrium point. Let x = x

eq

+ ✏, ẋ = ✏̇, ẍ = ✏̈. Then:

f(x)ẍ = f(x
eq

+ ✏)✏̈ =

 
f(x

eq

) + ✏


@

@x

f(x)

�

x=xeq

+ . . .

!
✏̈ ⇡ f(x

eq

)✏̈

For linear approximation, ✏✏̈ and higher order terms are negligibly small compared to ✏̈.

g(x, ẋ)ẋ = g(x
eq

+ ✏, ✏̇)✏̇ =

✓
g(x

eq

, 0) + ✏


@

@x

g(x, ẋ)

�
x=xeq
ẋ=0

+ ✏̇


@

@ẋ

g(x, ẋ)

�
x=xeq
ẋ=0

+ . . .

◆
✏̇ ⇡ g(x

eq

, 0)✏̇

For linear approximation, ✏✏̇, ✏̇2, and higher order terms are negligibly small compared to ✏̇.

h(x
eq

+ ✏) =

 
h(x

eq

) + ✏


@

@x

h(x)

�

x=xeq

+ . . .

!
⇡⇠⇠⇠⇠: 0

h(x
eq

) + ✏


@

@x

h(x)

�

x=xeq

For linear approximation, ✏2 and higher order terms are negligibly small compared to ✏. Note that by

definition of an equilibrium point, h(x
eq

) = 0.

Thus, for any single degree of freedom system that can be described in the form f(x)ẍ+g(x, ẋ)ẋ+h(x) = 0,

the first order linear approximation about an equilibrium point x
eq

can be written as:

f(x
eq

)✏̈+ g(x
eq

, 0)✏̇+ ✏


@

@x

h(x)

�

x=xeq

= 0

Note that f(x
eq

), g(x
eq

, 0), and
⇥

@

@x

h(x)
⇤
x=xeq

= 0 are all constants. In a lumped parameter model, these

would correspond to the m, c, and k coe�cients respectively.

2.3 Stability

If a system is perturbed from an equilibrium position by a small amount and has a tendency to move

back toward the equilibrium position, we call this system stable. If the system has a tendency to move

away from the equilibrium position, we call this system unstable. We will see in the following section that

2
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second-order linear systems have exponential solutions. Stable systems correspond to exponential solutions

that have a negative real part. It can be shown that second-order linear di↵erential equations of the form

mẍ+ cẋ+ kx = 0 are stable if and only if all coe�cients m, c, k have the same sign.

3 Solving Stable Second-order Linear Di↵erential Equations

Stable second-order linear di↵erential equations of motions have analytical solutions which are studied in

18.03. We call these systems lumped-parameter-systems because we can write them in the form mẍ+ cẋ+

kx = F (t). Solutions to these equations can be written as a sum of a homogeneous and particular solution

x(t) = x

h

(t) + x

p

(t). For convenience, let us define a natural frequency !

n

=
q

k

m

and a non-dimensional

damping parameter ⇣ = c

2
p
mk

such that our equation of motion can be written as ẍ+2⇣!
n

ẋ+!

2
n

x = F (t)/m.

3.1 Homogeneous Solutions (Transient Response)

The homogeneous solution x

h

(t) solves the equation ẍ

h

+ 2⇣!
n

ẋ

h

+ !

2
n

x

h

= 0. Solutions to this equation

are of the form x

h

(t) = Ae

st. Plugging in yields the characteristic equation s

2 + 2⇣!
n

s + !

2
n

= 0, which

has solutions:

s = �⇣!

n

± !

n

p
⇣

2 � 1

Overdamped System: ⇣ > 1

When ⇣ > 1,
p

⇣

2 � 1 will be real, and both solutions of s will be real. The homogeneous solution will

have the form:

x

h

(t) = Ae

s1t +Be

s2t for s1 = �⇣!

n

+ !

n

p
⇣

2 � 1 s2 = �⇣!

n

� !

n

p
⇣

2 � 1

Critically Damped System: ⇣ = 1

When ⇣ = 1,
p

⇣

2 � 1 will be zero, and both solutions of s will be the same. The homogeneous solution

will have the form:

x

h

(t) = (A+Bt)e�!nt

3
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Underdamped System: 0 < ⇣ < 1

When 0 < ⇣ < 1,
p

⇣

2 � 1 will be imaginary, and both solutions of s will be imaginary. The homogeneous

solution will have the form:

x

h

(t) = e

�⇣!nt[A sin(!
d

t) + B cos(!
d

t)] for !

d

= !

n

p
1� ⇣

2

Undamped System: ⇣ = 0

When ⇣ = 0,
p

⇣

2 � 1 = i. The homogeneous solution will have the form:

x

h

(t) = A sin(!
n

t) + B cos(!
n

t)

Each of these homogeneous solutions represent a family of solutions determined by constants A and B.

These constants can be found substituting initial conditions into the complete solution. Responses to an

unforced system for each ⇣ regime given initial conditions x(0) = x0 and ẋ(0) = 0 are graphed below. Note

that the transient response dies out (goes to zero) for all but the undamped system.

t [s]

x(t) [m]

x0

0

Undamped ⇣ = 0

Underdamped 0 < ⇣ < 1

Critically Damped ⇣ = 1

Overdamped 1 < ⇣

3.2 Particular Solution (Steady State Response)

The particular solution of mẍ+ cẋ+ kx = F (t) depends on the nature of F (t).

Free Response: If F (t) = 0, x
p

(t) will also be zero:

x

p

(t) = 0

Step Response: If F (t) = F0 (constant), x
p

(t) will also be constant:

x

p

(t) =
F0

k

4
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Harmonic Response: If F (t) = F0 sin(!t), xp

(t) will oscillate at the same frequency:

x

p

(t) = A sin(!t) + B cos(!t)

Note that this can be written as a single sinusoid using Euler’s Formula, ei✓ = cos ✓+ i sin ✓, and the polar

representation of a complex number, A + iB =
p
A

2 +B

2 exp[i atan2 (B,A)]. We are using the function

atan2(y, x) which gives angles for the entire [0, 2⇡) domain, as opposed to arctan(y/x) which only returns

angles in the domain [�⇡/2, ⇡/2]. See wikipedia for further explanation.

A sin(!t) + B cos(!t) = Im{(A+ iB)[cos(!t) + i sin(!t)]}

= Im{(A+ iB)ei!t}

= Im{(
p
A

2 +B

2
e

i�)ei!t} for � = atan2 (B,A)

= Im{X e

i(!t+�)} for X =
p
A

2 +B

2

= X Im{cos(!t+ �) + i sin(!t+ �)}

= X sin(!t+ �)

We will derive the values of the amplitude X and phase � constants below.

3.3 Complete Solution

To solve for the complete solution x(t) = x

h

(t) + x

p

(t), we can find the values of the constants A and B in

the homogeneous equation by using initial conditions x(0) = x0 and ẋ(0) = v0.

4 Frequency Response

When a system is driven with a harmonic input (oscillatory of the form F (t) = F0 sin(!t)), we have seen

that the system’s steady state response will be a sinusoid of the same frequency as the input, but could

have di↵erent amplitude and phase (x
p

(t) = X sin(!t+ �)). Let us derive what this amplitude and phase

must be assuming this form of the solution.

mẍ+ cẋ+ kx = F0 sin(!t) for x(t) = X sin(!t+ �)

X(�!

2
m+ k) sin(!t+ �) +X(!c) cos(!t+ �) = F0 sin(!t)

Im{X(�!

2
m+ k)ei(!t+�) +X(i!c)ei(!t+�)} = Im{F0e

i!t}

X Im{ei�ei(!t)(�!

2
m+ k + i!c)} = F0 Im{ei!t}

X

p
(k �m!

2)2 + (!c)2 Im
�
e

i�

e

i(!t) exp
⇥
i atan2

�
!c, k �m!

2
�⇤ 

= F0 Im{ei!t}

5
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X(!) =
F0p

(k �m!

2)2 + (!c)2
�(!) = � atan2

�
!c, k �m!

2
�

We can also rewrite this amplitude and phase response in terms of ⇣ and the non-dimensionalized input

frequency r = !/!

n

:

X(r) =
F0

k

1p
(1� r

2)2 + (2⇣r)2
�(r) = � atan2

�
2⇣r, 1� r

2
�

Below are plotted the normalized amplitude response X(r) k

F0
and phase response �(r) as functions of the

non-dimensional input frequency. Values of ⇣ starting from zero are (0, 0.1, 0.2, 0.3, 0.5, 1, 2, 5). Note

that the peak damped amplitude response occurs to the left of the natural frequency. Indeed the peak is

given by:

r

peak

=
p

1� 2⇣2 !

peak

= !

n

p
1� 2⇣2 X

peak

=
F0

2k⇣
p
1� ⇣

2

Amplitude Response

X(!) k

F0
= 1p

(1�r

2)2+(2⇣r)2

r = !

!n

X(!) k

F0

0 0.5 1 1.5 2 2.5
0

1

2

3

4

⇣ = 0

�(!) = � atan2 (2⇣r, 1� r

2)

r = !

!n

�(r)

0 0.5 1 1.5 2 2.5
0

45

90

135

180

⇣ = 0

Phase Response
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Frequency response is often useful in non-destructively identifying unknown systems. By forcing the

system with a known oscillatory force F0 sin(!t) for di↵erent !, we can arrive at a dimensional version of

the above plots. We can readily find the value of k for the system by seeing that X(0) = F0/k. Also for

an underdamped system, we can estimate the natural frequency from the peak frequency to find m. Then

we can take any other point on the curve to solve for c.

5 Vibration Modes

In general, when finding the equations of motion for multi-degree of freedom systems, our choice of gener-

alized coordinates will yield a coupled system of equations. Let us examine a general two degree of freedom

undamped system with two coupled equations of motion:

m1ẍ1 + (k1 + k3)x1 � k3x2 = 0

m2ẍ2 + (k2 + k3)x2 � k3x1 = 0
or

"
m1 0

0 m2

#"
ẍ1

ẍ2

#
+

"
k1 + k3 �k3

�k3 k2 + k3

#"
x1

x2

#
=

"
0

0

#

Modes of vibration occur when the entire system is vibrating at the same frequency. Let us then assume

a solution of the following form for which a1, a2, and ! are unknowns.
"

x1

x2

#
=

"
a1

a2

#
sin(!t+ �)

Plugging into our equations of motion yields:
 
�!

2

"
m1a1

m2a2

#
+

"
(k1 + k3) �k3

�k3 (k2 + k3)

#"
a1

a2

#!

⇠⇠⇠⇠⇠⇠
sin(!t+ �) =

"
0

0

#

This equation must hold for all time, thus the term in the parenthesis must be zero. We now have two

equations in three unknowns. We can solve for ! by solving each equation for a1/a2.

a1

a2
=

k3

(k1 + k3)�m1!
2
=

(k2 + k3)�m2!
2

k3

k

2
3 = (k1 + k3 �m1!

2)(k2 + k3 �m2!
2)

m1m2!
4 � [m1k2 +m2k1 + (m1 +m2)k3]! + [k1k2 + (k1 + k2)k3] = 0

!

2 =
[m1k2 +m2k1 + (m1 +m2)k3]±

p
[m1k2 +m2k1 + (m1 +m2)k3]2 � 4m1m2[k1k2 + (k1 + k2)k3]

2m1m2

7
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For m1 = m2 = m and k1 = k2 = k3 = k, !1 =

r
k

m

, !2 =

r
3k

m

,


a1

a2

�

1

= 1,


a1

a2

�

2

= �1

For 2m1 = m2 = 2m and k1 = k2 = 0, !1 = 0, !2 =

r
3k

2m
,


a1

a2

�

1

= 1,


a1

a2

�

2

= �2

The following will not be tested on the final, but is useful in understanding the purpose of studying vibra-

tion modes. The amplitude ratios can be thought of as a generalized eigenvectors or normal modes for

the system, while the corresponding vibration frequency would be the associated eigenvalue or resonant

frequency.

These vibration modes can be thought of as defining a new independent set of generalized coordinates

that decouple the equations of motion. It is possible to find new generalized coordinates by summing

the original equations of motion in proportions related to the normal modes. For example, for the case

where m1 = m2 = m and k1 = k2 = k3 = k, we can define two new orthogonal generalized coordinates

⌘1 = x1 + x2 and ⌘2 = x1 � x2 for which the equations of motion are decoupled:

m⌘̈1 + k⌘1 = 0

m⌘̈2 + 3k⌘2 = 0

For the case where 2m1 = m2 = 2m and k1 = k2 = 0, we can define two new orthogonal generalized

coordinates ⌘1 = x1 + 2x2 and ⌘2 = x1 � x2 for which the equations of motion are also decoupled:

⌘̈1 = 0

2m⌘̈2 + 3k⌘2 = 0

We say that the modes of vibrations are orthogonal to each other because vibration in one mode does not

a↵ect the vibration in another. Moreover, all possible motions of a multi-degree of freedom undamped

system will be a linear combination of its vibration modes.
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