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Problem 1
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A pencil with regular hexagonal cross-section, mass m, and side length l is placed on a no-slip inclined
surface. Define I as the moment of inertia of the pencil about an edge. Given that ✓ > 30�, it begins to
rotate due to gravity.

(a) Find the velocity ~v
A

of point A just before it hits the incline.

(b) Derive a di↵erential equation that describes the motion of point A as a function of ↵.

Solution

(a) The pencil will rotate about point O traversing a circular path. Because of this geometry, we
know that the direction of the velocity ~v

A

when A reaches the incline must be perpendicular to the
inclined surface, or ~v

A

/|~v
A

| = (� sin ✓,� cos ✓). To fine the magnitude of the velocity, we use energy
conservation:

E
i

= E
f

=) �PE = KE
f

=) mgh =
1

2
I!2

From the initial to final positions, the center of mass moves in the direction of the incline by a
distance l, thus taking the vertical component yields h = l sin ✓. Also, since point A is rotating at a
radius r = l, its velocity is related to the angular velocity by l! = |~v

A

|. Combining equations yields:

~v
A

= |~v
A

|(� sin ✓,� cos ✓) =

r
2mgl3 sin ✓

I
(� sin ✓,� cos ✓)
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(b) Gravity drives the movement of the pencil by exerting a torque ⌧ on the pencil’s center of mass. The
magnitude of this torque increases while the pencil rotates as the lever arm r increases. The length
of this lever arm is equal to r = l cos� where � is the angle that the line from the center of mass to
O makes with the horizontal. A little geometry gives us that � = 60� + ↵� ✓. We can use Newton’s
Second law for a rotational system to derive the equation of motion:

I↵̈ = ⌧ = mgr = mglcos(60� + ↵� ✓)

I↵̈�mgl cos(60� + ↵� ✓) = 0

This is a very complicated non-linear di↵erential equation. Solving di↵erential equations like this
is beyond the scope of this course. Even so, it is worth noting that we were still able to derive
information about the system by exploiting energy conservation in part (a).
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Problem 2
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Mass m is connected to a fixed wall by a spring k and dashpot c in the absence of gravity. Initially the
system is at rest with x(0) = 0 and ẋ(0) = 0. At time t = 0, a constant force F î is exerted on the mass.

(a) Derive a di↵erential equation that describes the motion of mass m.

(b) Solve for the position of mass m as a function of time.

Solution

(a) The spring will impart a force kx proportional to displacement x. The dashpot will impart a force
cẋ proportional to velocity ẋ. We can use Newton’s Second law directly to derive the equation of
motion:

mẍ =
X

F = F � kx� cẋ

mẍ+ cẋ+ kx = F

(b) x(t) will be a combination of a homogeneous solution and a particular solution, x(t) = x
h

(t) + x
p

(t)
evaluated using the given initial conditions. The particular solution for a constant force should also
be a constant. ẍ and ẋ terms will go to zero, thus:

x
p

(t) =
F

k

This particular solution represents the steady state behavior of the system. As t ! 1, x(t) will
look like F

k

. The homogeneous solution represents the transient, or time dependent behavior of the
system. The homogeneous solution to a second order damped system will be a family of exponential
solutions of the form Aest. Substituting into the homogeneous equation, we arrive at the di↵erential
equation’s characteristic equation:
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m
d2

dt2
Aest + c

d

dt
Aest + kAest = 0 ms2 + cs+ k = 0 s =

�c±
p
c2 � 4mk

2m

To better understand the parameters of the system, we can make a change of variables to the system’s
natural frequency ! and a non-dimensional damping coe�cient ⇠ given by:

s = �⇠! ± !
p

⇠2 � 1 ! =

r
k

m
⇠ =

c

2
p
m!

We have solved for the exponent of our proposed solution of the form Aest. There are two parts to this
solution. The first part has the form e�⇠!. This negative exponential represents the system’s damping

behavior, with the transient solution decaying to zero as t ! 1. The second part has the form e±!

p
⇠

2�1.
This part has generally two regimes. If ⇠2 � 1 > 0, this part represents additional damping to the system,
and we refer to the system as “over-damped”. If ⇠2 � 1 < 0, this part represents an oscillatory response
with the presence of a complex exponential, and we refer to the system as “under-damped”. The boundary
between these two regimes is when ⇠2 � 1 = 0, and this term vanishes. We call a system on this boundary
“critically damped”. The solution will be di↵erent with respect to each regime.

Over-damped An over-damped system be a linear combination of the two characteristic equation so-
lutions and will have a homogeneous solution of the form:

x
h

(t) = Aes1t +Bes2t s1 = �⇠! + !
p

⇠2 � 1 s2 = �⇠! � !
p

⇠2 � 1

Combining with the particular solution, the initial conditions x(0) = 0 and ẋ(0) = 0 become:

0 = A+B +
F

k
0 = As1 +Bs2 | A =

F

k

s2
s1 � s2

B = �F

k

s1
s1 � s2

Yielding the solution:

x(t) =
F

k
+

F

k

s2e
s1t � s1e

s2t

s1 � s2

Critically Damped A critically damped system has repeated roots so its homogeneous equation will have
the form:

x
h

(t) = (A+Bt)est s1 = �⇠!

Combining with the particular solution, the initial conditions x(0) = 0 and ẋ(0) = 0 become:

0 = A+
F

k
0 = As+B | A = �F

k
B =

Fs

k

Yielding the solution:

x(t) =
F

k
+

F

k
(st� 1)est
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Under-damped An under-damped system has complex roots and its homogeneous equation will have the
form:

x
h

(t) = e�⇠!t

�
Aei!dt +Be�i!dt

�
!
d

= !
p

1� ⇠2

Remembering a complex exponential identity that cos x = 1
2(e

ix+e�ix) and adjusting our unknown constant
variables, we can rewrite this solution as:

x
h

(t) = e�⇠!t (A sin!
d

t+B cos!
d

t)

Combining with the particular solution, the initial conditions x(0) = 0 and ẋ(0) = 0 become:

0 = B +
F

k
0 = A!

d

� B⇠! | A = �F

k

!

!
d

⇠ B = �F

k

Yielding the solution:

x(t) =
F

k
� F

k
e�⇠!t

✓
!

!
d

⇠ sin!
d

t� cos!
d

t

◆

Below is a graph of all three solutions for three di↵erent values of ⇠. Over-damped is shown as a solid line
with ⇠ = 2. Critically damped is shown as a dashed line with ⇠ = 1. Under-damped is shown as a dotted
line with ⇠ = 0.2. A line at x = F

k

is shown in gray marking the steady state solution. Note that x(0) = 0
and ẋ(0) = 0 as was specified.

 
over-damped
critically damped
under-damped
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Here is the MATLAB code used to generate the above graph.

% define time step and system frequency

t = 0:0.001:1;

omega = 20;

% over-damped damping parameter

xi = 2;

omegad = omega*sqrt(xi^2-1);

s1 = -xi*omega+omegad;

s2 = -xi*omega-omegad;

x1 = (s2*exp(s1*t)-s1*exp(s2*t))/(s1-s2)+1;

% critically damped damping parameter

xi = 1;

s = -xi*omega;

x2 = (s*t-1).*exp(s*t)+1;

% under-damped damping parameter

xi = 0.2;

omegad = omega*sqrt(1-xi^2);

x3 = 1-exp(-xi*omega*t).*(omega/omegad*xi*sin(omega*t)+cos(omegad*t));

% steady state

x4 = t*0+1;

% plot

plot(t,x1,‘k’,t,x2,‘k--’,t,x3,‘k-.’,t,x4,‘k:’)

legend(‘over-damped’,‘critically damped’,‘under-damped’)

axis off; set(gcf,‘Color’,‘w’)
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Problem 1

⌦

!

P

l

ˆ

J

ˆ

I

ˆ

K

A helicopter is hovering in the air. The blades of its main rotor have length l and are spinning with angular
velocity ! with respect to the helicopter. At the time shown, the helicopter is also tilting upward with
constant angular velocity ⌦ with respect to ground. Find the velocity and acceleration of point P at this
instant.

Solution

First, define our reference frames. Define point O as the center of the rotor. Define inertial ground refer-
ence frame Ô = (O,ˆI, ˆJ, ˆK), frame Ĥ = (H,ˆiH ,ˆjH , ˆkH) attached to the helicopter with H ⌘ O, and frame
R̂ = (R,ˆiR,ˆjR, ˆkR) attached to the rotors also with R ⌘ O.

Second, write the given variables with respect to these reference frames. We have:

RrP = lˆiR
O!H = ⌦ ˆ

K

H!R = !ˆjH

Note that at this instant, ˆiR = ˆ

I and ˆ

jH = ˆ

J. These coordinate orientations were chosen for convenience.
Recall the general formula for taking the derivative with respect to frame Ô of a vector r defined in frame
Â. We will use this relation often in our derivation:

Od

dt

�
Arp

�
=

Ad

dt

�
Arp

�
+ O!A ⇥ Arp =

Aṙp +
O!A ⇥ Arp

Now, we solve for variable OvP :

OvP =
Od

dt

�
OrP

�
=

Od

dt

✓
���*

0
OrH +���*

0
HrR + RrP

◆
=

Od

dt
(RrP ) = ⇢

⇢⇢>
0

Rṙp +
O!R ⇥ Rrp =

O!R ⇥ Rrp

Here, we note that the rotation of the rotors with respect to the inertial frame, O!R = O!H + H!R. Thus:

= (O!H + H!R)⇥ Rrp = (!ˆjH + ⌦ ˆ

K)⇥ lˆiR = l(⌦ˆJ� ! ˆ

K)
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Lastly, we solve for OaP :

OaP =
Od

dt

�
OvP

�
=

Od

dt

�
(O!H + H!R)⇥ Rrp

�
=

✓
���* 0
O!̇H +

Od

dt
(H!R)

◆
⇥ Rrp + (O!H + H!R)⇥

Od

dt
(RrP )

=

✓
���* 0
H!̇R + O!H ⇥ H!R

◆
⇥ Rrp + (O!H + H!R)⇥

✓

⇢
⇢⇢>

0
Rṙp +

O!R ⇥ Rrp

◆

=
�
O!H ⇥ H!R

�
⇥ Rrp + (O!H + H!R)⇥

�
(O!H + H!R)⇥ Rrp

�

=
⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠: 0

(⌦ ˆ

K⇥ !ˆjH)⇥ lˆiR + (⌦ ˆ

K+ !ˆjH)⇥
⇣
(⌦ ˆ

K+ !ˆjH)⇥ lˆiR
⌘
= �l(⌦2 + !2)ˆI

Note that the eulerian term
�
O!H ⇥ H!R

�
⇥ Rrp happens to be zero at this particular location in the

reference frame of the blades, but this is not the case in general. If we had instead asked for the the
acceleration of a point P 0 with RrP 0 = l ˆkR, with ˆ

kR = ˆ

K at this instant, we would instead have:

= (⌦ ˆ

K⇥ !ˆjH)⇥ l ˆkR + (⌦ ˆ

K+ !ˆjH)⇥
⇣
(⌦ ˆ

K+ !ˆjH)⇥ l ˆkR

⌘
= �⌦!lˆJ� l(⌦2 + !2)ˆK
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Problem 2

Recall our setup from the Problem Set 01 survey questions, but with the Earth as our planet.

r

R
ˆ

J

ˆ

I

The Earth has an approximate radius r ⇡ 6400 km, and orbits the sun at an approximate radius R ⇡ 150
million km. Given that an earth day is approximately t ⇡ 24 hrs and a year is approximately T ⇡ 365 earth
days, what is the maximum velocity experienced by any point on the earth with respect to a stationary
frame? What is the maximum acceleration? How does this acceleration compare to the acceleration of
gravity on the earth’s surface?

Solution

First, define our reference frames. Define point O as the center of rotation of the earth about the sun
and point B at the center of the earth. Define inertial ground reference frame Ô = (O,ˆI, ˆJ, ˆK), frame
Â = (A,ˆiA,ˆjA, ˆkA) with origin A ⌘ O rotating with the earth about the sun, and frame B̂ = (B,ˆiB,ˆjB, ˆkB)
with origin B and fixed to the earth. Since the motion is planar, we will let ˆ

K = ˆ

kA = ˆ

kB.

Second, write the given variables with respect to these reference frames. We have:

ArB = Rˆ

iA
BrP = rˆiB

O!A =
2⇡

T
ˆ

K

A!B =
2⇡

t
ˆ

K

Recall the general formula for taking the derivative with respect to frame Ô of a vector r defined in frame
Â. We will use this relation often in our derivation:

Od

dt

�
Arp

�
=

Ad

dt

�
Arp

�
+ O!A ⇥ Arp =

Aṙp +
O!A ⇥ Arp
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Now, we solve for variable OvP :

OvP =
Od

dt

�
OrP

�
=

Od

dt

✓
���*

0
OrA + ArB + BrP

◆
=

Od

dt
(ArB) +

Od

dt
(BrP )

=���*
0

AṙB + O!A ⇥ ArB +⇢
⇢⇢>

0
BṙP + O!B ⇥ BrP = O!A ⇥ ArB + O!B ⇥ BrP

Here, we note that the rotation of the earth with respect to the inertial frame, O!B = O!A + A!B. Thus:

OvP = O!A ⇥ ArB + (O!A + A!B)⇥ BrP

= 2⇡
R

T
(ˆK⇥ˆ

iA) + 2⇡
⇣ r

T
+

r

t

⌘
(ˆK⇥ˆ

iB)

This velocity will be at its maximum when ˆ

K⇥ˆ

iA = ˆ

K⇥ˆ

iB, or whenˆiA =ˆ

iB. Thus, plugging in the given
values for R, r, T, and t yields:

��OvP

��
max

= 2⇡

✓
R

T
+

r

T
+

r

t

◆
⇡ 30,352 m/s

Lastly, we solve for OaP :

OaP =
Od

dt

�
OvP

�
=

Od

dt

�
O!A ⇥ ArB + (O!A + A!B)⇥ BrP

�

=���* 0
O!̇A ⇥ ArB + O!A ⇥

Od

dt
(ArB) +

✓
���* 0
O!̇A +���*

0
A!̇B

◆
⇥ BrP + (O!A + A!B)⇥

Od

dt
(BrP )

= O!A ⇥
✓
���*

0
AṙB + O!A ⇥ ArB

◆
+ (O!A + A!B)⇥

✓

⇢
⇢⇢>

0
BṙP + (O!A + A!B)⇥ BrP

◆

= O!A ⇥
�
O!A ⇥ ArB

�
+ (O!A + A!B)⇥

�
(O!A + A!B)⇥ BrP

�

= �4⇡2

✓
R

T 2
ˆ

iA +
⇣ r

T
+

r

t

⌘2
ˆ

iB

◆

The magnitude of the acceleration will be at its maximum when ˆ

iA = ˆ

iB. Thus, plugging in the given
values for R, r, T, and t yields:

��OaP

��
max

= 4⇡2

✓
R

T 2
+
⇣ r

T
+

r

t

⌘2
◆

⇡ 0.03999 m/s2

The acceleration of gravity on the earth’s surface is given by g ⇡ 9.8 m/s2. Because g ⇡ 245
��OaP

��
max

, we

conclude that g �
��OaP

��
max
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Problem 1

L

v(t)

✓

P

rR

ˆ

J

ˆ

I

An ant sits inside a roll of toilet paper with inside and outside radius r and R respectively, which itself
sits on a table. A cat comes by, steps on the free end of the toilet paper, and hits the roll o↵ the table,
sending it unrolling with a variable velocity v(t). After the roll leaves the table, it continues to unroll at
velocity v(t), but also begins to rotate about the corner with angular velocity ✓̇ and angular acceleration
✓̈. Find the velocity and acceleration of the ant located at point P with respect to the ground when the
amount the toilet paper that has unrolled o↵ the table is given by L. Assume that at this time, the ant is
positioned at the top of the inner tube.

Solution

First, define our reference frames. Define point O ⌘ A at the corner of the table and point T at the center
of the roll. Define inertial ground reference frame Ô = (O,ˆI, ˆJ, ˆK), frame Â = (A = O,ˆi

A

,ˆj
A

, ˆk
A

= ˆ

K)
rotating with the unrolled tissue about the corner, and frame T̂ = (T,ˆi

T

,ˆj
T

, ˆk
A

= ˆ

K). For convenience,
let ˆj

A

point in the direction of the unrolled tissue, and at this time instant, let ˆj
T

point in the ˆ

J direction.

Second, write the given variables with respect to these reference frames. We have at this instant:

Or
A

= 0

Oṙ
A

= 0

Ar
T

= Lˆj
A

+Rˆi
A

Aṙ
T

= v(t)ˆj
A

Tr
P

= rˆj
T

Tṙ
P

= 0

We also must specify the angular velocity of each reference frame with respect to one another. A!T should
be constant and be related to the speed v(t) at which the roll is unrolling, while O!A should be changing
with time according to ✓̇:

O!A = ✓̇ ˆK O!̇A = ✓̈ ˆK A!T =
v(t)

R
ˆ

k

A

A!̇T =
v̇(t)

R
ˆ

k

A
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Recall the general formula for taking the derivative with respect to frame Â of a vector defined in B̂:

Ad

dt

�
Br

p

�
=

Bd

dt

�
Br

p

�
+ A!B ⇥ Br

p

= Bṙ
p

+ A!B ⇥ Br
p

Now we can, we solve for variable Ov
P

:

Ov
P

=
Od

dt
(Or

P

) =
Od

dt
(���*

0
Or

A

+ Ar
T

+ Tr
P

)

= (Aṙ
T

+ O!A ⇥ Ar
T

) + (���*
0

Tṙ
P

+ O!T ⇥ Tr
P

)

= Aṙ
T

+ O!A ⇥ Ar
T

+ (O!A + A!T)⇥ Tr
P

= v(t)ˆj
A

+ ✓̇ ˆK⇥ (Lˆj
A

+Rˆi
A

) +

✓
✓̇ ˆK+

v(t)

R
ˆ

k

A

◆
⇥ rˆj

T

= �✓̇Lˆi
A

+
⇣
v(t) + ✓̇R

⌘
ˆ

j

A

�
⇣
✓̇r +

r

R
v(t)

⌘
ˆ

i

T

Lastly, we solve for Oa
P

:

OaP =
Od

dt
(OvP ) =

Od

dt

⇥
AṙT + O!A ⇥ ArT + (O!A + A!T)⇥ TrP

⇤

= (Ar̈T + O!A ⇥ AṙT ) + (O!̇A ⇥ ArT + O!A ⇥
Od

dt
ArT ) + (O!̇A +

Od

dt
A!T)⇥ TrP + (O!A + A!T)⇥

Od

dt
TrP

= Ar̈T + 2O!A ⇥ AṙT + O!̇A ⇥ ArT + O!A ⇥
�
O!A ⇥ ArT

�
+ (O!̇A + A!̇T +⇠⇠⇠⇠⇠⇠: 0

O!A ⇥ A!T)⇥ TrP + (O!A + A!T)⇥
Od

dt
TrP

= Ar̈T + 2O!A ⇥ AṙT + O!̇A ⇥ ArT + O!A ⇥
�
O!A ⇥ ArT

�
+ (O!̇A + A!̇T)⇥ TrP + (O!A + A!T)⇥ (���*

0
TṙP + O!T ⇥ TrP )

= Ar̈T + 2O!A ⇥ AṙT + O!̇A ⇥ ArT + O!A ⇥
�
O!A ⇥ ArT

�
+ (O!̇A + A!̇T)⇥ TrP + (O!A + A!T)⇥

⇥
(O!A + A!T)⇥ TrP

⇤

= v̇(t)̂jA + 2✓̇K̂⇥ v(t)̂jA + ✓̈K̂⇥ (L̂jA + R̂iA) + ✓̇K̂⇥
h
✓̇K̂⇥ (L̂jA + R̂iA)

i

+

✓
✓̈K̂+

v̇(t)

R
k̂A

◆
⇥ r̂jT +

✓
✓̇K̂+

v(t)

R
k̂A

◆
⇥

✓
✓̇K̂+

v(t)

R
k̂A

◆
⇥ r̂jT

�

= v̇(t)̂jA � 2✓̇v(t)̂iA � ✓̈L̂iA + ✓̈RĵA + ✓̇K̂⇥
⇣
�✓̇L̂iA + ✓̇RĵA

⌘
�

✓
✓̈ +

v̇(t)

R

◆
r îT +

✓
✓̇K̂+

v(t)

R
k̂A

◆
⇥
h
�
⇣
✓̇r + v(t)

r

R

⌘
îT
i

= v̇(t)̂jA � 2✓̇v(t)̂iA � ✓̈(L̂iA +RĵA)� ✓̇2(L̂jA + R̂iA)�
✓
✓̈ +

v̇(t)

R

◆
r îT �

✓
✓̇ +

v(t)

R

◆2

r ĵT

Here we see six terms. v̇(t)ˆj
A

is the translational acceleration of origin A with respect to frame Ô. 2✓̇v(t)ˆi
A

is the Coriolis term due to a velocity of origin T relative to the rotating frame Â. ✓̈(Lˆi
A

+ Rˆj
A

) is the
Eulerian term due to the angular acceleration of frame Â with respect to frame Ô. ✓̇2(Lˆj

A

+ Rˆi
A

) is the

centripetal term term from the rotation of frame Â with respect to frame Ô.
⇣
✓̈ + v̇(t)

R

⌘
rˆi

T

is the Eulerian

term due to the angular acceleration of frame T̂ with respect to frame Ô. Lastly,
⇣
✓̇ + v(t)

R

⌘2

rˆj
T

is the

centripetal term from the rotation of frame T̂ with respect to frame Ô.
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Problem 2

P�

R

Side ViewIsometric View

v0

ˆ

J

ˆ

I

ˆ

K

A

ˆ

i

A

ˆ

j

A

ˆ

k

A

A roller coster car travels with constant tangential velocity v0, on a helical track with radius R and pitch
angle �. What is the velocity and acceleration of the car with respect to the ground when it reaches point
P , the second peak of the helical track?

Solution

First, define our reference frames. Define point O at the center of rotation in the plane of the start of
the track and point A at the center of rotation of the track traveling along ˆ

I with the car. Define inertial
ground reference frame Ô = (O,ˆI, ˆJ, ˆK), and frame Â = (A,ˆi

A

= ˆ

I,ˆj
A

, ˆk
A

) rotating and translating with
the car so the car is fixed in frame Â. For convenience, let ˆk

A

point in the direction of the car.

Second, write the given variables with respect to these reference frames. Since v0 is the tangential ve-
locity, some component will cause translation and another will cause rotation. We have:

Or
A

= tv0 sin�ˆI
Oṙ

A

= v0 sin�ˆI
Ar

P

= Rˆ

k

A

Aṙ
P

= 0

O!A = �v
o

cos�

R
ˆ

I

Recall the general formula for taking the derivative with respect to frame Â of a vector defined in B̂:

Ad

dt

�
Br

p

�
=

Bd

dt

�
Br

p

�
+ A!B ⇥ Br

p

= Bṙ
p

+ A!B ⇥ Br
p

Now we can, we solve for variable Ov
P

:

Ov
P

=
Od

dt
(Or

P

) =
Od

dt
(Or

A

+ Ar
P

) = Oṙ
A

+���*
0

Aṙ
P

+ O!A ⇥ Ar
P

= v0 sin�ˆI�
v
o

cos�

R
ˆ

I⇥Rˆ

k

A

= v0 sin�ˆI+ v
o

cos�ˆj
A
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Lastly, we solve for Oa
P

:

Oa
P

=
Od

dt
(Ov

P

) =
Od

dt

�
Oṙ

A

+ O!A ⇥ Ar
P

�

=���*
0

Or̈
A

+���* 0
O!̇A ⇥ Ar

P

+ O!A ⇥
Od

dt
Ar

P

= O!A ⇥ (���*
0

Aṙ
P

+ O!A ⇥ Ar
P

)

= O!A ⇥ (O!A ⇥ Ar
P

)

= �v
o

cos�

R
ˆ

I⇥
✓
�v

o

cos�

R
ˆ

I⇥Rˆ

k

A

◆

= �v2
o

cos2 �

R
ˆ

k

A
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Problem 1

v0, F0

✓
rR

S
ˆ

J

ˆ

I

~
g

A spool of mass m and moment of inertia about its center I, with inner radius r and outer radius R sits
on a table, initially at rest but can roll without slipping. A thread wrapped around the inner radius is
pulled at an angle ✓ from the horizontal. Find the velocity of the center of the spool S with respect to the
ground as a function of both time and angle under the following conditions:

(1) Kinematic constraint: The thread is pulled with constant velocity v0

(2) Force constraint: The thread is pulled with constant force F0, with F0 < mg

Solution

Define point O where the spool comes into contact with the ground, and point D where the thread detaches
from the spool. Define inertial ground reference frame Ô = (O,ˆI, ˆJ, ˆK), and frame Ŝ = (S,ˆiA,ˆjA, ˆkA = ˆ

K)
attached to and rotating with the spool. For convenience, let the unit vectors of frame Â point in the same
directions as the unit vectors of frame Ô at this instant. Also, define another convenient set of ground refer-
ence frame unit coordinate vectors Ô = (O,ˆt, r̂, ˆK) such that ˆt = cos ✓ˆI+sin ✓ ˆJ and r̂ = � sin ✓ˆI+cos ✓ ˆJ.

Write the given variables with respect to these reference frames. We have:

OrS = R ˆ

J

OṙS = vs(t)ˆI
SrD = �r r̂ O!S = !s(t) ˆK

Note that both vs(t) and !s are unknown. We must solve for the magnitude vs(t) of the velocity
OṙS given

two di↵erent constraints. In each case, we will need at least two equations since we have two unknowns.

(1) Kinematic constraint: The thread is pulled with constant velocity v0

This constraint dictates that OṙT · ˆt = v0. We know the velocity of point O and point T which will give
us two equations. First, the velocity of point O is zero because of the no-slip condition:

0 =
Od

dt
OrO =

Od

dt
(OrS + SrO) =

OṙS +⇢
⇢⇢>

0
SṙO + O!S ⇥ SrO = [vs(t) + !s(t)R]ˆI
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Yielding the familiar result vs(t) = �!s(t)R. Second, is the velocity constraint:

v0 =
OṙT ·ˆt =

Od

dt
(OrS + SrT ) ·ˆt = (OṙS +⇢

⇢⇢>
0

SṙT + O!S ⇥ SrT ) ·ˆt = vs(t)ˆI ·ˆt+ !s(t)rˆt ·ˆt

Since ˆI = cos ✓ˆt � sin ✓ r̂, the component in the ˆt direction yields, v0 = vs(t) cos ✓ + !s(t)r, and plugging
in for !s(t) gives:

vs =
v0

cos ✓ � r/R

Note that this velocity is constant in time and diverges when cos ✓ = r/R. This happens because the
kinematic velocity constraint we have applied is not a reasonable constraint for certain angles under our
model that the spool does not lift o↵ the table. Let us examine a force constraint instead.

(2) Force constraint: The thread is pulled with constant force F0, with F0 < mg

This constraint dictates that F T = F0
ˆ

t. As in part (1), the no-slip condition still applies, so vs(t) =
�!s(t)R and as(t) = �!̇s(t)R. There are four forces acting on the spool: gravity, normal force from the
table, frictional force from the table, and tension from the string. We have:

X
F = F g + FN + F f + F T =

d

dt
(p) = mas (Ff + F0 cos ✓)ˆI+ (FN �mg + F0 sin ✓) ˆJ = masˆI

This adds two unknowns (FN and Ff ) but gives us two more equations. To get our last equation, we
balance torques about the center of mass.

X
⌧ S =

◆
◆◆7

0

⌧ S
g +�

�✓
0

⌧ S
N + ⌧ S

f + ⌧ S
T =

d

dt
(h) = I!̇s or RFf + rFT = I!̇s(t)

Substituting in for FN and Ff yields:

I!̇s(t) = R [mas(t)� F0 cos ✓] + rF0

And finally, knowing that as(t) = �!̇s(t)R:

as =
F0 R

2(cos ✓ � r/R)

I +mR2
and since as(t) is constant in time, vs(t) =

F0 R
2(cos ✓ � r/R)

I +mR2
t

Note now when cos ✓ = r/R, the acceleration is zero and the spool does not move. This explains the
paradox in the kinematic problem. Assuming we don’t lift the spool o↵ the ground (i.e. F0 < mg) and
friction will keep the spool from sliding, we will be unable to move the spool or string when pulling at this
angle.
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Problem 2

ˆ

J

ˆ

I

r

L

✓

!0

mm

A figure skater holds two weights of equal mass m at her sides (✓0 = 0) while spinning in place at constant
angular velocity !0. At t = 0, she lifts her arms outwards at a constant angular velocity ✓̇. What
torque does the figure skater need to apply with her feet in order to maintain constant angular velocity
!0 throughout the motion as a function of ✓ and ✓̇ for 0� < ✓ < 90�? Solve first by considering the forces
acting on the masses directly, then second, by using the angular momentum formulation.

Solution

Define point O ⌘ A between the head and the shoulders on the axis of rotation, point B at the center of
the right arm’s vertical rotation, point M at the center of the right mass, and point N at the center of the
left mass. Define inertial ground reference frame Ô = (O,ˆI, ˆJ, ˆK), frame Â = (A,ˆiA,ˆjA = ˆ

J, ˆkA) attached
to and rotating with the skater’s body, and frame B̂ = (B,ˆiB,ˆjB, ˆkB = ˆ

kA) attached to and rotating with
the right arm. For convenience, let the unit vectors of frame Â point in the same directions as the unit
vectors of frame Ô at this instant, and choose ˆiB to point parallel to BM such that ˆiB = sin ✓ˆiA � cos ✓ˆjA.

Write the given variables with respect to these reference frames. We have:

O!A = !0
ˆ

J

A!B = ✓̇ ˆkA
OrA = 0

ArB = rˆiA
BrM = LˆiB

Approach 1

Our first approach is to consider the kinematics of the problem and use Newton’s second law to calculate
the necessary torque. We are given that !0 and ✓̇ are constant. To lift the weights, the skater must exert
a force on each mass. From Newton’s first law, these forces must be equal and opposite to the forces the
weights exert on the skater. In order to use Newton’s second law to find the magnitude and direction of
these forces, we must find the acceleration of each weight. Examine the acceleration of the right mass:
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OaM =
Od

dt

✓
Od

dt
OrM

◆
=

Od

dt

✓
Od

dt
(���*

0
OrA + ArB + BrM)

◆

=
Od

dt


(���*

0
AṙB + O!A ⇥ ArB) + (���* 0

BṙM + O!B ⇥ BrM)

�

=


���* 0
O!̇A ⇥ ArB + O!A ⇥ (���*

0
AṙB + O!A ⇥ ArB)

�
+

Od

dt

⇥
(O!A + A!B)⇥ BrM

⇤

= O!A ⇥ (O!A ⇥ ArB) + (���* 0
O!̇A +���*

0
A!̇B + O!A ⇥ A!B)⇥ BrM + (O!A + A!B)⇥ (���* 0

BṙM + O!B ⇥ BrM)

= O!A ⇥ (O!A ⇥ ArB) + (O!A ⇥ A!B)⇥ BrM + (O!A + A!B)⇥
⇥
(O!A + A!B)⇥ BrM

⇤

= O!A ⇥ (O!A ⇥ ArB) + (O!A ⇥ A!B)⇥ BrM

+ O!A ⇥ (O!A ⇥ BrM) + A!B ⇥ (A!B ⇥ BrM) + O!A ⇥ (A!B ⇥ BrM) + A!B ⇥ (O!A ⇥ BrM)

Using the vector identity A⇥ (B⇥C) = (A⇥B)⇥C +B⇥ (A⇥C), we can combine underlined terms:

OaM = O!A ⇥
⇥
O!A ⇥ (ArB + BrM)

⇤
+ A!B ⇥ (A!B ⇥ BrM) + 2O!A ⇥ (A!B ⇥ BrM)

= �!2
0(r + L sin ✓)ˆiA � ✓̇2LˆiB � 2!0✓̇L cos ✓ˆkA

= �
h
!2
0(r + L sin ✓) + ✓̇2L sin ✓

i
ˆ

iA + ✓̇2L cos ✓ˆjA � 2!0✓̇L cos ✓ˆkA

The first and second terms represent the centripetal accelerations due to the rotations, while the third term
is the Coriolis acceleration due to a rotation in a rotating frame. By symmetry, the left mass’s acceleration
should be the same, except the ˆiA and ˆ

kA components should be opposite in sign, thus:

OaN =
h
!2
0(r + L sin ✓) + ✓̇2L sin ✓

i
ˆ

iA + ✓̇2L cos ✓ˆjA + 2!0✓̇L cos ✓ ˆkA

The only torques about O should be the torques exerted by each mass on the body and the torque ⌧O

applied by the skater. These should all sum to zero as the angular velocity !0 of the skater is constant.

X
⌧ = ⌧O +

X
r ⇥ F = ⌧O + OrN ⇥ (�mOaN) +

OrM ⇥ (�mOaM) = I���* 0
O!̇A = 0

Just like with the accelerations, the ˆiA components of the lever arms should be negatives of each other:
OrM = (r + L sin ✓)ˆiA � L cos ✓ˆjA and OrN = �(r + L sin ✓)ˆiA � L cos ✓ˆjA. Because all the ˆiA and ˆ

kA

components are negatives of each other, cross terms of the form ˆ

iA ⇥ˆ

jA, ˆjA ⇥ˆ

iA, and ˆ

jA ⇥ ˆ

kA should all
cancel, leaving only the ˆiA ⇥ ˆ

kA terms, thus:

⌧O = m(OrN ⇥ OaN + OrM ⇥ OaM) = 4m!0✓̇L cos ✓(r + L sin ✓)ˆJ

We have solved the problem directly by calculating accelerations, but perhaps an easier way to look at this
problem is recognizing that the angular momentum is conserved.
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Approach 2

Our second approach is to exploit the concept of angular momentum. Again, we are given that !0 and ✓̇
are constant. Thus, the rotational form of Newton’s second law becomes:

X
⌧ = ⌧O =

Od

dt
OHO +���*

0
OvO ⇥ OpM =

Od

dt
(OhO

M + OhO
N)

Solving for the angular momentum of the right mass OhO
M directly:

OhO
M = mOrM ⇥ OvM

= mOrM ⇥
Od

dt
(���*

0
OrA + ArB + BrM)

= mOrM ⇥ (���*
0

AṙB + O!A ⇥ ArB +���* 0
BṙM + O!B ⇥ BrM)

= mOrM ⇥
⇥
O!A ⇥ ArB + (O!A + A!B)⇥ BrM

⇤

= m
h
(r + L sin ✓)ˆiA � L cos ✓ˆjA

i
⇥

h
�!0(r + L sin ✓)ˆkA + ✓̇L(cos ✓ˆiA + sin ✓ˆjA)

i

= m!0(r + L sin ✓)2ˆjA +m!0L cos ✓(r + L sin ✓)ˆiA +m
h
✓̇L2 cos2 ✓ + ✓̇L sin ✓(r + L sin ✓)

i
ˆ

kA

Again, due to symmetry, the left mass’s angular momentum OhO
N should be the same as the right’s except

that the ˆ

iA and ˆ

kA components should be negative. Thus, when they add together, their ˆiA and ˆ

kA

components must cancel:

OHO = OhO
M + OhO

N = 2m!0(r + L sin ✓)2ˆjA

Taking a time derivative yields the required torque:

⌧O =
Od

dt
(OhO

M + OhO
N) =

Od

dt
(2m!0(r + L sin ✓)2ˆjA)

= 4m!0✓̇L cos ✓(r + L sin ✓) ˆJ
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Problem 1

ˆ

J

ˆ

I

gl

✓ m

c

k

A small ball of mass m hangs from an elastic string which can be modeled as a spring with coe�cient k in
parallel with a dashpot with coe�cient c. The spring has a natural length l. Consider the motion of this
pendulum in a plane in the presence of gravity. Derive the equations of motion for the system. Are the
equations of motion coupled in general? Are the equations of motion coupled for small angles?

Solution

Define inertial reference frame Ô = (O,ˆI, ˆJ, ˆK) with origin at the pivot point. Define a rotating reference
frame Â = (A ⌘ O,ˆiA,ˆjA, ˆkA ⌘ ˆ

K) with origin also at the pivot point, with vector ˆiA pointing toward the
mass. Also, let r be the position of the mass in the ˆiA direction, with l being the natural length of the
spring in the same direction.

Since only one frame rotates with respect to the other, we can directly apply the formula for the acceleration
of a particle in a single intermediate frame frame of reference, where p is the position of the mass:

Oam = Or̈A + Ar̈m + 2OwA ⇥ Aṙm + OẇA ⇥ Arm + OwA ⇥ (OwA ⇥ Arm)

Here, Or̈A = 0, Ar̈m = r̈ˆiA, OwA = ✓̇ ˆ

K, Aṙm = ṙˆiA, and Arm = rˆiA. This results in the polar coordinate
equation for acceleration we’ve seen in class.

Oam = (r̈ � r✓̇2)ˆiA + (r✓̈ + 2ṙ✓̇)ˆjA

To find the equations of motion, first balance the forces in the radial direction ˆ

iA taking into account the
force from the spring, the dashpot, and gravity.

X
Fm ·ˆiA = mOam ·ˆiA

�k(r � l)� cṙ +mg cos ✓ = m(r̈ � r✓̇2)

0 = m(r̈ � r✓̇2) + cṙ + kr �mg cos ✓ � kl
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The second equation of motion comes from considering the tangential component ˆjA, where the only
external force is due to gravity.

X
Fm ·ˆjA = mOam ·ˆjA

�mg sin ✓ = mr✓̈ + 2mṙ✓̇

0 = r✓̈ + 2ṙ✓̇ + g sin ✓

Both equations of motion include both r and ✓ even after small angle approximations are used for the sin ✓
and cos ✓, implying that the two equations of motion are coupled.
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Problem 2

P

m

g
l

✓

ˆ

J

ˆ

I

Consider a pendulum consisting of a point mass m and rigid rod of length L with negligible mass moving
in the presence of gravity. The pivot point P of the pendulum is not fixed but follows some non-zero
trajectory OrP (t). Derive the equations of motion for the system. Then derive the equations of motion for
the specific pivot trajectory OrP (t) = A cos(!t)ˆJ.

Solution

Define inertial reference frame Ô = (O,ˆI, ˆJ, ˆK) with origin fixed at the initial location of the pivot.
Define a rotating reference frame P̂ = (P,ˆiP ,ˆjP , ˆkP ⌘ ˆ

K) with origin moving with the pivot, with vector
ˆ

iP = sin ✓ˆI � cos ✓ˆJ pointing toward the mass. We write Newton’s Second Law for the sum of the forces
on mass m: X

Fm = �mg ˆJ� FT
ˆ

iP =
Od

dt
Opm = mOam

The sum of the forces on the mass should be gravity and a tension force from the rod. The tension force
must lie in the direction of the rod as the sum of the torques on the massless rod about any point must
be zero. From Kinematics:

Oam =
Od

dt

✓
Od

dt

�
Orm

�◆
=

Od

dt

✓
Od

dt

�
OrP + Prm

�◆

=
Od

dt

✓
OṙP +���*

0
Pṙm + O!A ⇥ Prm

◆

= Or̈P + O!̇A ⇥ Prm + O!A ⇥ (���*
0

Pṙm + O!A ⇥ Prm)

= Or̈P (t) + ✓̈LˆjP � ✓̇2LˆiP

Taking the sum of the forces in the ˆjP direction yields the general equation of motion.

ˆ

jP · [�mg ˆJ� FT
ˆ

iP = m(Or̈P (t) + ✓̈LˆjP � ✓̇2LˆiP )]

�g sin ✓ = Or̈P (t) ·ˆjP + ✓̈L

✓̈ = � 1

L

⇣
Or̈P (t) ·ˆjP + g sin ✓

⌘
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For OrP (t) = A cos(!t)ˆJ, we just plug in to our general equation.

✓̈ = � 1

L

⇣
(�A!2 cos(!t)ˆJ) ·ˆjP + g sin ✓

⌘

✓̈ =
sin ✓

L

�
A!2 cos(!t)� g

�


