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Abstract. In practice, there are several applications in which logistics service providers
determine the service time windows at the customers, for example, in parcel delivery,
retail, and repair services. These companies face uncertain travel times and service times
that have to be taken into account when determining the time windows and routes prior to
departure. The objective of the proposed robust vehicle routing problemwith timewindow
assignments (RVRP-TWA) is to simultaneously determine routes and time window as-
signments such that the expected travel time and the risk of violating the timewindows are
minimized. We assume that the travel time probability distributions are not completely
known but that some statistics, such as the mean, minimum, and maximum, can be es-
timated. We extend the robust framework based on the requirements’ violation index,
which was originally developed for the case where the specific requirements (time win-
dows) are given as inputs, to the case where they are also part of the decisions. The
subproblem of finding the optimal time window assignment for the customers in a given
route is shown to be convex, and the subgradients can be derived. The RVRP-TWA is
solved by iteratively generating subgradient cuts from the subproblem that are added in a
branch-and-cut fashion. Experiments address the performance of the proposed solution
approach and examine the trade-off between expected travel time and risk of violating the
time windows.
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1. Introduction
In the vehicle routing problem (VRP) with time win-
dows, service time windows are typically an input. In
practice, however, there are many cases in which time
windows are imposed by the service provider or are
based on a mutual agreement or service-level agree-
ment between the service provider and the customer.
This is the case in attended home deliveries, for ex-
ample, furniture delivery (Jabali et al. 2015), online
grocery delivery (Campbell and Savelsbergh 2006),
internet installation (Ulmer and Thomas 2019), and
repair and maintenance services (Vareias, Repoussis,
and Tarantilis 2017). When determining service time
windows, there are often conflicting interests be-
tween customers and the service provider. On the one
hand, customers typically prefer narrow time win-
dows to limit the waiting time and to better plan their
daily activities. The economic loss resulting from
waiting for service at home was estimated at $38
billion in the United States in 2011 (Ellis 2011, Ulmer

and Thomas 2019). On the other hand, service pro-
viders prefer wide time windows to have more routing
flexibility and to lower the risk of violating the time
windowbecause of travel and service time uncertainties.
When planning an attended homedelivery or service,

customers can, in most cases, indicate an exogenous
time window consisting of several hours during which
they are available for service (Agatz et al. 2011, Klein
et al. 2017). To improve the service and satisfaction of
customers, service providers can then assign a smaller
endogenous time window to each customer. The
service providers, however, are faced with uncertain
travel and service times that have to be taken into
account when determining these endogenous time
windows. This chapter considers the case in which a
set of routes and endogenous time windows have
to be generated before the travel times are known.
The goal is to generate a robust routing plan and
assign time windows to customers such that the risk
of violating the time windows is minimized and the
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expected total travel time is below a certain thresh-
old value.

The vehicle routing problem with time window
assignments (VRP-TWA) and uncertain demand was
introduced by Spliet and Gabor (2014). In this prob-
lem, time windows have to be assigned to customers
beforedemand is known.When thedemand is revealed,
a vehicle routing schedule has to be generated that
satisfies the assigned time windows. Spliet and Gabor
(2014) assume that there is a set of demand scenarios
that can occur and that timewindow assignments that
minimize the average routing cost over these sce-
narios have to be found. Jabali et al. (2015) introduce a
similar problem in which the demand is known but
the travel times are uncertain. They assume that a
disruption on an arc can occur with a certain prob-
ability and that the duration of this disruption is a
discrete random variable with a known probability
function. To reduce the number of scenarios, they
assume that a disruption occurs on exactly one arc in a
solution. The goal is to find an a priori routing plan
and time window assignment that minimizes travel
cost and time window violations. Vareias, Repoussis,
and Tarantilis (2017) extend the work of Jabali et al.
(2015) by allowing multiple arcs to be disrupted and
by letting the duration of a disruption be a continuous
random variable. They also propose a second model
in which the travel time of each arc is a discrete
random variable. Both Jabali et al. (2015) and Vareias,
Repoussis, and Tarantilis (2017) solve a stochastic
variant of the VRP-TWA in which the probability dis-
tributions are completely known, and in both papers
a heuristic solution method is proposed. To handle
cases where the probability distributions are hard to
estimate, a robust optimization model can be used.

In this paper, the robust time window assignment
vehicle routing problem (RVRP-TWA) is formulated
in which the travel time probability functions are
uncertain and only some descriptive statistics such
as the mean, minimum, and maximum travel times
are available. To measure the risk of violating the
assigned time windows, the time window violation
index proposed in Jaillet, Qi, and Sim (2016) is used.
Thismeasure incorporates the distributional statistics
and is therefore less conservative than classical robust
approaches where this information is ignored. Fur-
thermore, both the frequency and magnitude of a
violation are taken into account in this measure. The
objective of the RVRP-TWA is to find routes and time
window assignments that minimize the time window
violation index. A solution method is proposed to solve
the subproblem of finding the optimal time window
assignment for each customer in a given route. By
using a subgradient method implemented in a branch-
and-cut framework, the RVRP-TWA is solved to opti-
mality. The stochastic VRP-TWA (SVRP-TWA) is also

discussed and used to illustrate the potential of the
robust model. In the SVRP-TWA, the probability dis-
tributions of the travel times are assumed, violation is
minimized, and the expected total travel time should be
lower than a certain value. The SVRP-TWA is solved
exactly using a branch-and-cut approach.
The main contributions of this research are as fol-

lows: (1) We are the first to propose a robust for-
mulation for the VRP-TWAbased on the riskmeasure
proposed by Jaillet, Qi, and Sim (2016). (2) An efficient
algorithm to optimize the time window assignments
for a given set of routes is proposed.We show that this
subproblem of finding the optimal time window as-
signment for a given route is convex and the sub-
gradient can be derived, which allows for an efficient
solution method. (3) A decomposition method is
proposed to exactly solve the RVRP-TWA using the
subgradient method in a branch-and-cut framework.
(4) An exact solution method is proposed to solve the
stochastic VRP-TWA. (5) Extensive computational ex-
periments are performed to provide insights into
workingwith limiteddata and to create aPareto frontier
of risk and expected total travel time.
The remainder of this chapter is organized as fol-

lows. In Section 2, the literature on robust vehicle
routing and the VRP-TWA is reviewed. In Section 3,
the RVRP-TWA and the feasible routing set are for-
mally described. In Section 4, the robust solution
framework is presented and the subproblem of finding
the optimal time window assignment problem for a
given route is solved. The branch-and-cut framework is
presented in Section 5. The stochastic version of the
VRP-TWA is proposed in Section 6. In Section 7, the
computational results are discussed. Conclusions are
presented in the final section.

2. Literature Review
The vehicle routing problem and many of its deter-
ministic variants have been extensively studied; for
literature reviews, see, for example, Golden, Raghavan,
andWasil (2008) and Toth andVigo (2014). In practice,
however, many parameters, such as customer de-
mand, customer location, and travel times, are un-
certain. Because larger amounts of data are becoming
available, there has been an increase in the number of
studies addressing the uncertain variants of the vehicle
routing problem (Gendreau, Jabali, and Rei 2016).
Generally speaking, there are two ways to deal with
uncertainty: a stochastic approach in which the dis-
tribution of the uncertain parameter is known and a
robust approach in which the probability distribution
is hard to justify or estimate. The VRP with stochastic
travel times was introduced by Laporte, Louveaux, and
Mercure (1992) andextendedbymanyothers (Gendreau,
Jabali, and Rei 2016). The extension including time
windows is considered by, for example, Russell and
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Urban (2008); Taş et al. (2013, 2014); Ehmke,Campbell,
andUrban (2015); andAdulyasak and Jaillet (2016). In
the robust VRP, uncertain parameters are character-
ized by uncertainty sets without information on the
probability function; see, for example, Ordóñez (2010)
for an overview. Recent studies present solution
frameworks that incorporate some statistical infor-
mation in the robust approach. For example, Lee, Lee,
and Park (2012) and Agra et al. (2013) solve the VRP
with timewindows inwhich travel time uncertainty is
defined using the budget of uncertainty as introduced
by Bertsimas and Sim (2004). Jaillet, Qi, and Sim
(2016) propose a method to solve the traveling sales-
man problem (TSP) with time windows in which the
probability distributions of the travel times are un-
knownbut somedescriptive statistics, such as themean,
minimum, and maximum values, are known. They
define amathematical framework to solve this problem
in an efficient and exact way. They propose a new
measure to quantify the risk of violating a timewindow,
taking into account both the frequency and the mag-
nitude of the violations. The routing problem with the
objective ofminimizing the riskmeasure is solved using
the Benders decomposition technique. The authors
show that their robust solution approach is superior to
existing models. Adulyasak and Jaillet (2016) extend
this model to multiple vehicles and propose a sto-
chastic model in which the probability distributions
of the travel times are assumed to be known.
Adulyasak and Jaillet (2016) are able to significantly
reduce the computational time, comparedwith Jaillet,
Qi, and Sim (2016), by using a branch-and-cut solu-
tion approach.

Zhang et al. (2019) propose a modification of the
risk measure of Jaillet, Qi, and Sim (2016), to handle
the TSP with hard time window as opposed to soft
time windows. They assume that a vehicle can wait at
no cost at the location of the customer if it arrives
before the time window, but arriving after the time
window should be avoided. Their proposed risk
measure is less tight in measuring the probability of
violation, but allows for a more tractable formulation
for the VRP with hard time windows. Zhang et al.
(2018) extend the measure of Zhang et al. (2019) by
incorporating a parameter to customize the service
level in terms of probabilistic guarantee of on-time
delivery. They propose a data-driven framework
using theWasserstein ambiguity set, which is derived
from empirical travel time data. In this chapter, we are
dealing with soft time windows, where waiting at a
customer before the start of the time window is im-
possible or costly.

In all the papers discussed above, the timewindows
are input, so they do not consider the time window
assignment problem. Therefore, the frameworks of
Jaillet, Qi, and Sim (2016) and Adulyasak and Jaillet

(2016) cannot be directly applied to solve the pro-
posed RVRP-TWA because the time windows are
now decision variables instead of inputs. We will
show that the new robust formulation is convex and
that the subgradient can be derived. To measure the
risk of violating the assigned time windows, the time
window violation index proposed by Jaillet, Qi, and
Sim (2016) will be used. A branch-and-cut approach,
adapted from the original approach proposed in
Adulyasak and Jaillet (2016), is developed to solve the
RVRP-TWA.
The problem of assigning time windows to cus-

tomers was recently introduced by Spliet and Gabor
(2014) to solve a retail distribution problem. They
propose the VRP-TWA with uncertain demand in
which the deliveries to a store should always bemade
in the same fixed time window, whereas demand
fluctuates per delivery. They assume that there is a set
of demand scenarios that can occur and that the best
time window assignments over these scenarios have
to be found. In this VRP-TWA, the time windows
have to be assigned before the demand is known, but
the routes are made after the demand is revealed. As
such, a different route per demand scenario has to be
determined in the optimization process. The problem
is solved using a branch-price-and-cut algorithm.
Dalmeijer and Spliet (2018) improve the results of
Spliet and Gabor (2014) by introducing a novel class
of valid inequalities for this problem. The VRP-TWA
with time-dependent travel times is introduced by
Spliet, Dabia, and Van Woensel (2017). Instead of
fixed travel times, they assume that the arcs have time
dependent travel times to take the daily pattern of
morning and evening rush hours into account.
Subramanyam and Gounaris (2017) show that the

time window assignment problem with uncertain
demand can be reduced to the consistent vehicle
routing problem (ConVRP) with arrival time consis-
tency requirements. In this problem, every customer
must be visitedmultiple times in a certain period, and
the difference between the earliest and latest arrival
times at a customer must be lower than a certain
constant. Using the branch-and-bound algorithm de-
veloped for the ConVRP, they are able to improve
the results of Spliet and Gabor (2014). Their algorithm
can also be used to consider uncertainty in travel
times by constructing scenarios with different travel
time perturbations.
Zhang et al. (2015) introduce the time window

assignment problem for amaritime inventory routing
problem. They look at a periodic setting in which the
routes of the ships and the delivery time windows are
decisions of the vendor. They take into account major
disruptions of several days that result in several days’
delay on a route or at a port. The problem is formulated
as a two-stage stochastic mixed-integer program, and a
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two-phase solution approach is used in which, first, the
routes are generated and, second, the timewindows are
allocated. In the routing phase, time buffers are inserted
and the visits at a port are spread over the planning
horizon. In the second phase, the time windows are
assigned to every route by taking different disruption
scenarios into account.

Jabali et al. (2015) introduce the vehicle routing
problem with self-imposed time windows (VRP-SITW)
in which delivery time windows at the customers are
imposed by a logistic service provider. They assume
that an arc will suffer a delay with a certain probability
and that the duration of the delay is a discrete random
variable with a known probability function. To reduce
the number of scenarios, they assume that exactly one
arc in a solution will suffer a delay. The goal is to
construct an a priori routing plan and time window
assignment such that the travel time, lateness, and
overtime are minimized. A linear programming (LP)
model is proposed to solve the time window assign-
ment problem for a given route inwhich timebuffers are
allocated to customers to cope with possible delays.
Estimates of this LP model are used in the proposed
tabu search heuristic to solve the VRP-SITW. Vareias,
Repoussis, and Tarantilis (2017) extend the work of
Jabali et al. (2015) by allowing multiple arcs to be
disrupted at the same time and by making the time
window length a decision variable. They assume that
the duration of a disruption at an arc is a continuous
random variable with a known distribution. The
model is discretized by partitioning the total density
function into parts of equal probability. Vareias,
Repoussis, and Tarantilis (2017) propose a second
model in which the uncertainty follows from the
stochastic travel times that are modeled as a set of
scenarios. The distribution of the arrival time at a
customer is given by the Cartesian product formed by
all possible scenarios used by the arcs traveled to
reach the customer. For both models, a mathematical
model is proposed to solve the time window as-
signment problem for a given route. The objective of
both models is to minimize the time window width,
overtime, and earliness and lateness at a customer.
The VRP-TWA is solved by an adaptive large neigh-
borhood search algorithm in which, iteratively, the
routing problem and the time window assignment
problem are solved.

Both the papers of Jabali et al. (2015) and Vareias,
Repoussis, and Tarantilis (2017) solve a variant of the
stochastic VRP-TWA and present a heuristic solution
method. We propose a model for the robust VRP-
TWA in which the travel times of the arcs are not
completely known. To the best of our knowledge, we
are the first to tackle this problem. Furthermore, in
our stochastic variant of the VRP-TWA, no scenarios
or disruptions are assumed, but the probability

distribution of the travel time of every arc is assumed
to be known. An exact solution method to solve si-
multaneously the routing and time window assign-
ment problems for both the robust and stochastic
VRP-TWA is proposed.

3. Problem Description
The goal of the RVRP-TWA is to find an a priori
routing solution and time window assignment that
minimizes the risk of timewindow violations in terms
of probability and magnitude of violations while the
expected total travel time is kept below a certain
threshold value, T.
To motivate the need for a robust solution method,

an example of a VRP-based routing solution and a
RVRP-TWA solution are presented in Figure 1. For
the VRP-based solution, first, the routing problem is
solved, and second, the optimal time windows are
determined for the final routing solution. In the
RVRP-TWA, the routing problem and time window
assignments are solved simultaneously, as explained
in Sections 4 and 5. For this instance, the risk of vi-
olating the time windows of the RVRP-TWA solution
is 36% lower than in the VRP-based solution, al-
though the travel time is only 4.3% higher.
In this section, the feasible routing set is described

and the RVRP-TWA is formally proposed. Throughout
this paper, boldface lowercase characters are used to
indicate vectors, and a tilde (.̃) is used to denote an
uncertain parameter.

3.1. Routing Set
The RVRP-TWA is defined on a directed graph G �
(N ,A), with N the set of nodes and A the set of
arcs. Let K � {1, . . . ,K} be the set of vehicles; then
the set of nodes can be denoted by N � {1, . . . ,n − 1,
n′1, . . . , n

′
K, n}, with nodes 1 and n representing the

depot and set N ′ � {n′1,n′2, . . . ,n′K} representing the
destination nodes of the vehicles. Similar to the notation
used in Adulyasak and Jaillet (2016), the nodes in N ′

Figure 1. (Color online) The Routes of the VRP-Based
and RVRP-TWA Solution Approaches for an Instance with
10 Customers
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are copies of the depot node, and all incoming arcs are
the same. The end depot node n is connected only to
the vehicle destination nodes, that is, node n has K
incoming arcs (n′k, n) ∈A with travel times equal to
zero for all k ∈K. We assume that all nodesN must be
visited except for the destination nodes N ′.

Let N T ⊂N be the set of nodes with an exogenous
timewindow, defined by [ei, li] for all i∈N T. To solve
the time window assignment problem, an endoge-
nous time window [τi, τi +εi]⊆ [ei, li] with start point
τi and width εi has to be assigned to each node i∈N T.
The start point of a time window τi is a decision
variable, and εi is a constant. The depot nodes 1 and n
do not have a time window restriction, but the vehi-
cle destination nodes N ′ have fixed time windows,
[en′k , ln′k ] � [en, ln] imposed. Hence, the endogenous
time windows of the vehicle destination nodes N ′

are equal to the exogenous timewindows, that is, τi � ei
and εi � li − ei for all i∈N ′.

We assume that the endogenous time windows
are soft, that is, if a vehicle arrives before or after the
endogenous time window, the customer is immedi-
ately serviced. This is a reasonable assumption in
our solution framework because (i) we enforce the
expected arrival time at each customer to fall within
the assigned time window (through Slater’s condition
described in Section 4.1), and (ii) the risk measure
considered in this framework is an exponential func-
tion that takes into account both the frequency and
magnitude of the time window violations, and thus
routes that can potentially arrive much earlier or
much later than the time window would be highly
discouraged. Furthermore, we assume that the travel
times are independent random variables. Let c̃a rep-
resent the uncertain travel time of arc a ∈A, with
expected travel time ca, minimum value ca, and max-
imum value c̄a. Jaillet, Qi, and Sim (2016) present a
framework to deal with correlated travel times that
can also be used in this setting, as explained in Sec-
tion 8. Furthermore, we assume fixed service times si,
i∈N , which are added to the travel time c̃a with
a � (i, j). Note that the method described in this
chapter can also be used when the service times are
random variables. In this case, for all i∈N \N ′, a
dummy node i′ is created with only one incoming arc
(i, i′), with travel time s̃i.

To formulate the feasible routing set, the binary
decision variables xa and sia are used. Variable xa is one
if arc a is used in the routing solution and zero oth-
erwise, and sia is equal to one if arc a is part of the route
to node i. Variable zi is equal to the number of times
node i∈N is visited. For a given set of nodes H⊂N ,
let δ−(H) � {(i, j) ∈A|i∈N \H, j∈H} be the incoming
arcs and

δ+(H) � {(i, j)∈A|i∈H, j∈N \H} be the outgoing arcs.
The capacity of every vehicle is Q, and let r(H) be the

minimum number of vehicles needed to serve the
nodes in set H. The routing set, S, is defined by

S � {(s, x, z)|(1) − (14)}
1≤ zi ≤K, ∀i � {1, n}, (1)

zi � 1, ∀i∈N \(N ′ ∪ {1, n}), (2)

zi ≤ 1, ∀i∈N ′, (3)∑
a∈δ−(i)

xa � zi, ∀i∈N \{1}, (4)∑
a∈δ+(i)

xa � zi, ∀i∈N \{n}, (5)∑
a∈δ+(1)

sia � zi, ∀i∈N T, (6)∑
a∈δ−(u)

sia −
∑

a∈δ+(u)
sia � 0, ∀i∈N T,u ∈N \{1, i,n}, (7)∑

a∈δ−(i)
sia −

∑
a∈δ+(i)

sia � zi, ∀i∈N T, (8)∑
a∈A

casia ≤T, (9)∑
a∈δ+(H)

xa ≥ r(H), ∀H⊂N {1, n}|H| ≥ 2, (10)∑
a∈A

casia ≥
∑
a∈A

casi+1a , ∀i∈N ′\{n′K}, (11)

0≤ sia ≤ xa, ∀i∈N T,∀a∈A, (12)

zi ∈Z+, ∀i∈N , (13)

xa ∈ {0,1}, ∀a ∈A. (14)

Constraints (1) ensure that the number of vehicles
used does not exceed the number of vehicles avail-
able. Constraints (2) state that all customers must be
visited, and Constraints (3) ensure that the vehicle
destination nodes can be visited at most once. Con-
straints (4) and (5) are the arc flow conservation
constraints. Constraints (6)–(8) ensure the flow bal-
ance for every route to node i∈N T. Every route
should start at the origin (Constraints (6)), and the
flow balance should hold at the intermediate nodes
(Constraints (7)) and the final node (Constraints (8)).
Constraint (9) ensures that the expected total travel
time does not exceed the threshold value T. Con-
straints (10) are the capacity and subtour elimination
constraints. To avoid identical routing solutions with
a different numbering of the vehicles, the symmetry
breaking Constraints (11) are included. These ensure
that the vehicles are numbered in order of decreasing
expected travel time. Constraints (12) link the arc
variables xa and the route variables sia; that is, arc a can
be part of a route only if this arc is traversed in the
solution. Note that s � (si)i∈N T

, with si the binary
solution vector representing the route to node i.
The length of the assigned endogenous time win-

dow and the travel time threshold value T are input
parameters. To find the lowest value of threshold T,
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the VRP with the objective to minimize the average
total travel time can be solved before addressing the
RVRP-TWA. Let T0 be this minimum expected total
travel time; then the travel time threshold value T is
set to T � ρT0 with ρ> 1.

3.2. RVRP-TWA Problem Formulation
In the RVRP-TWA, it is assumed that the exact dis-
tribution of the uncertain travel times c̃ is unknown
but it belongs to a family of distributions F. In ad-
dition, the travel times are independent random vari-
ables, and therefore the arrival time at node i is given
by t̃i � c̃si. To obtain a robust solution and to capture
the risk of violating the endogenous time windows, the
exponential disutility function introduced in Jaillet, Qi,
and Sim (2016) will be used. Let Cαi(t̃i) be the deter-
ministic value representing the worst-case certainty
equivalent of random arrival time t̃i at node i under
risk tolerance parameter αi. The term Cαi(t̃i) is de-
fined as

Cαi(t̃i) �
supP∈Fαi lnEP exp

t̃i
αi

( )( )
if αi > 0,

limβ↓0 Cβ( t̃i) if αi � 0.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
This function has some interesting properties thatwill
be used in our solution method. In particular, Jaillet,
Qi, and Sim (2016) show thatCαi(t̃i) is jointly convex in(αi, t̃i). The risk of violating the endogenous time
window [τi, τi +εi] at node i is measured by the time
window violation index defined by

ρτi
� inf {αi + ηi |Cαi(t̃i) ≤ τi +εi,Cηi

(−t̃i) ≤ − τi}.
This is the smallest risk tolerance such that the cer-
tainty equivalent of the arrival time does not exceed
the lower and upper bounds of the endogenous time
window. Note that ρτi

� 0 when the arrival time is
guaranteed to meet the time window [τi, τi +εi] be-
cause α and η are both equal to zero. Furthermore, the
time window violation index takes both the proba-
bility and themagnitude of the violation into account.
More properties and details of the time window vi-
olation index are discussed in Online Appendix A.

The objective of the RVRP-TWA is to find the
routing solution s∈S and endogenous time windows
τ with the lowest time window violation index.
Hence, the optimal route and time window assign-
ments can be found by solving the following opti-
mization problem:

inf
∑
i∈N T

αi + ηi, (15)

s.t. Cαi(c̃si) ≤ τi +εi, ∀i∈N T, (16)

Cηi
(−c̃si) ≤ − τi, ∀i∈N T, (17)

ei ≤ τi ≤ li − εi, ∀i∈N T, (18)

αi,ηi ≥ 0, ∀i∈N T, (19)
s∈S. (20)

The objective function (15) is to minimize the risk
parameters. Constraints (16) and (17) ensure that the
certainty equivalent of the arrival time does not ex-
ceed the bounds of the endogenous timewindow. The
decisionvariables are presented inConstraints (18)–(20),
in which Constraints (18) ensure that the endoge-
nous time windows are included in the exogenous
time windows.

4. Solution Framework
Solving problem (15)–(20) is challenging because
function Cαi is nonlinear in αi and the entire formu-
lation with the routing set S is a mixed-integer
nonlinear program. Therefore, we apply a decom-
position technique to solve this problem. First, the
subproblemofminimizing the timewindowviolation
index for a given routing solution s∈S is investigated.
If c̄si − csi < εi, then αi and ηi are both zero. Otherwise,
the subproblem with objective value f (s) is given by

f (s) � inf
∑
i∈N T

αi + ηi, (21)

s.t. Cαi(c̃si) ≤ τi +εi, ∀i∈N T, (22)

Cηi
(−c̃si) ≤ − τi, ∀i∈N T, (23)

max ei,csi
{ }≤τi≤min{li, c̄si}−εi,

∀i∈N T, (24)

αi,ηi ≥ 0, ∀i∈N T. (25)

Constraints (24) ensure that the start time of the en-
dogenous time window is not lower than the lowest
possible arrival time, csi, and the end time of the en-
dogenous time window is not higher than the latest
possible arrival time, c̄si. Furthermore, the endogenous
time windows are included in the exogenous time win-
dows. Because Cαi is convex in αi, problem (21)–(25)
can be decomposed into |N T | convex problems, each
with three variables, αi, ηi, and τi. Therefore, as stated
in Proposition 1, f (s) is a convex problem, and the
proof can be found in Online Appendix B.

Proposition 1. f (s) is convex in s.

Proposition 1 allows us to derive subgradient cuts
from the solution of f (s). In the next section, we focus
on deriving the subgradient of f (s)using the Lagrange
function, and we show that Benders decomposition
can be used to solve the RVRP-TWA.
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4.1. Derivation of the Subgradient of f(s)
To guarantee feasibility of the problem, εi and the
exogenous time window boundaries ei and li, for all
i∈N T, should be defined such that there exists a
solution s for which the following conditions hold:

lim
αi→∞Cαi(c̃si) � sup

P∈F
EP(c̃si) ≤ li, ∀i∈N T,

lim
ηi→∞Cηi

(−c̃si) � sup
P∈F

EP(−c̃si) ≤ − ei, ∀i∈N T,

sup
P∈F

(EP( c̃si) + EP(−c̃si))< εi, ∀i∈N T.

The first two conditions guarantee that the two worst
cases of the expected arrival time at node i (early
arrival and late arrival) are within the assigned time
window. The third condition guarantees that the
deviation between the twoworst cases of the expected
arrival time must be bounded by the time window
size. These conditions ensure that the routing solution
satisfies the time windows in expectation, which is
important in practice.

Hence, if these three conditions hold, then there
exists a solution s and τ for which the following hold:

lim
αi→∞Cαi(c̃si) � sup

P∈F
EP(c̃si) ≤ τi +εi, ∀i∈N T,

lim
ηi→∞Cηi

(−c̃si) � sup
P∈F

EP(−c̃si) ≤ − τi, ∀i∈N T,

ei ≤ τi ≤ li − εi, ∀i∈N T.

Because Cαi is monotonic decreasing in αi, this implies
that Slater’s condition is satisfied, and therefore f (s) is a
classical convex problem. Strong duality implies that
f (s) � supλ≥0 infα,η,τ≥0L(s,α,η,τ,λ), with the Lagrange
function given by

L(s,α, η, τ,λ)
� ∑

i∈N T

αi +
∑
i∈N T

ηi +
∑
i∈N T

λ̄(Cαi(c̃si) − τi − εi)
+∑
i∈N T

λ(Cηi
(−c̃si) + τi)

+∑
i∈N T

λ1i(ei − τi) +
∑
i∈N T

λ2i(τi − li +εi)
+∑
i∈N T

λ3i csi − τi
( ) + ∑

i∈N T

λ4i(τi − c̄si +εi).

Because L is linear in τ and Cαi(c̃si) is jointly convex in
(αi, si) for all i∈N T, the function L(s,α, η, τ,λ) is
jointly convex in (s,α, η, τ), given λ≥ 0. Based on
strong duality, we will show that the subgradient of
function f (s) is equal to the subgradient of function
L(s,α,η, τ,λ) with respect to s:

f (y) − f (s)
� sup

λ≥0
inf

α,η,τ≥0L(y,α,η, τ,λ) − sup
λ≥0

inf
α,η,τ≥0L(s,α,η, τ,λ)

(26)
≥ inf
α,η,τ≥0L(y,α, η, τ,λ

*) − inf
α,η,τ≥0L(s,α,η, τ,λ

*) (27)

� L(y,αy,ηy, τy,λ*) − L(s,α*,η*, τ*,λ*) (28)

≥dLs (s,α*,η*, τ*,λ*)(y − s) + dLα(s,α*,η*, τ*,λ*)
× (αy − α*)+ (29)

dLη(s,α*,η*, τ*,λ*)(ηy − η*) + dLτ(s,α*,η*, τ*,λ*)
× (τy − τ*)

� dLs (s,α*,η*, τ*,λ*)(y − s). (30)

Note that λ* � argsupλ≥0(inf α,η,τ≥0L(s,α,η, τ,λ)) in the
first inequality (27), and let (αy,ηy, τy) � arginf α,η,τ≥0
L(y,α, η, τ,λ*). Let Z(s) � {(α0,η0,τ0,λ0) :L(α0,η0,τ0,
λ0) � supλ≥0 inf α,η,τ≥0 L(s,α,η,τ,λ)}, (α*,η*,τ*,λ*)∈Z(S),
and
(dLs (s,α*,η*,τ*,λ*),dLα(s,α*,η*,τ*,λ*),dLη(s,α*,η*,τ*,λ*),

dLτ(s,α*,η*,τ*,λ*))be the subgradient vector of function
L(s,α,η, τ,λ*) at (s,α*, η*, τ*). The second inequality
follows from the fact that L(s,α, η, τ,λ) is jointly convex
in (s,α,η, τ). Because (α*,η*, τ*,λ*) ∈Z(s), dLα(s,α*,η*,
τ*,λ*) � 0, dLη(s,α*,η*,τ*,λ*)�0, and dLτ(s,α*,η*,τ*,λ*)�0,
and this shows that dLs (s,α*, η*, τ*,λ*) is equal to the
subgradient of f (s).
For i∈N T with α*

i � η*i � 0, si is optimal; therefore,
the following equation holds:

f (yi) − f (si) � α
y
i + η

y
i ≥ d f

si(s)(yi − si) ≥ 0, ∀yi ∈Si.

This implies that d f
sia
(s) � 0 for all a ∈A.

Let dc1sia (α*
i , s

i) and dc2sia (η*i , si) be the subgradients of
Cαi(c̃si) and Cηi

(−c̃si) with respect to sia at point (α*
i , s

i)
and (η*i , si), respectively. Deriving L along sia, we obtain

dLsia(s,α*,η*, τ*,λ*) � λ̄
*dc1sia (α*

i , s
i) + λ*dc2sia (η*i , si)+λ*

3ica − λ*
4ic̄a.

(31)

For i∈N T with α*
i ≠ 0 or η*i ≠ 0, the Karush–Kuhn–

Tucker (KKT) conditions are used to calculate the
values of λ* in Equation (31). Because strong dual-
ity holds, the KKT conditions are sufficient to find
the optimal solution. Therefore, α*, η* and τ* are
optimal if and only if the KKT conditions, presented
in (32)–(43), hold:

dLαi
(s,α*,η*,τ*,λ*) � 1+ λ̄

*dc1αi
(α*

i ,s
i) � 0⇒ λ̄

* � −1
dc1αi

(α*
i ,si)

,

(32)

dLηi(s,α*,η*,τ*,λ*) � 1+λ*dc2ηi (η*i ,si) � 0⇒λ* � −1
dc2ηi (η*i ,si)

,

(33)

dLτi(s,α*,η*,τ*,λ*) �λ*− λ̄
*−λ*

1i+λ*
2i−λ*

3i+λ*
4i � 0, (34)

λ̄
*(Cα*

i
(c̃si) − τ*i − εi) � 0, (35)

λ*(Cη*i
(−c̃si) + τ*i ) � 0, (36)

λ*
1i(ei − τ*i ) � 0, (37)

λ*
2i(τ*i − li +εi) � 0, (38)

λ*
3i cs

i − τ*i
( ) � 0, (39)
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λ*
4i(τ*i − c̄si +εi) � 0, (40)

Cα*
i
(c̃si) ≤ τ*i +εi, (41)

Cη*i
(−c̃si) ≥ − τ*i , (42)

min ei, csi
{ }≤ τ*i ≤max{li, c̄si} − εi. (43)

If αi ≠ 0 or ηi ≠ 0, then Cα*
i
(c̃si) � τ*i +εi and Cη*i

(−c̃si) �
−τ*i , to keepαi and ηi as low as possible. Otherwise, the
objective can be improved by increasing the time
window length. Using Equations (32) and (33), we get

λ̄
* � −1

dc1αi
(α*

i , si)
and

λ* � −1
dc2ηi (η*i , si)

.

If τ*i is not bounded by the lower or upper bound, that
is, if min{ei,csi}<τ*i < max{li, c̄si}−εi, then λ*

1i �λ*
2i �

λ*
3i �λ*

4i � 0 and α*
i ,η

*
i >0. Following Equation (34), this

means that λ̄
* � λ*, so dc1αi

(α*
i , s

i) � dc2ηi (η*i , si). If τ*i is
bounded by ei, li − εi, csi, or c̄si − εi, then the corre-
sponding λ*

1i,λ
*
2i,λ

*
3i, or λ

*
4i is nonzero. For example, if

τ*i � csi, then λ*
3i � λ* − λ̄

* to ensure that Equation (34)
is equal to zero. Furthermore, a vehicle cannot arrive
before csi, so if τi � csi, then ηi � 0. Similarly, if
τi � c̄si−εi, then αi � 0. Therefore, the subgradient of
f (s) with respect to sia can be calculated by

dfsia(s) �

λ̄
*dc1sia (α

*
i , s

i) + λ*dc2sia (η
*
i , s

i) α*
i , η

*
i > 0,

λ̄
*dc1sia (α

*
i , s

i) + λ*dc2sia (η
*
i , s

i)
+ λ* − λ̄

*
( )

ca α*
i > 0, η*i � 0,

λ̄
*dc1sia (α

*
i , s

i) + λ*dc2sia (η
*
i , s

i)
+ λ* − λ̄

*
( )

c̄a α*
i � 0, η*i > 0,

0 α*
i � η*i � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(44)

with

λ̄
* � −1

dc1αi
(α*

i , si)
and

λ* � −1
dc2ηi (η*i , si)

.

The details of the computation of the subgradients
dc1sia (α*

i , s
i), dc2sia (η*i , si), dc1αi

(α*
i , s

i), and dc2ηi (η*i , si) are given in
Online Appendix A. Using derivative (44), the RVRP-
TWA model (15)–(20) can be reformulated as

inf w, (45)

s.t. f (p) + dfp(p)(s − p) ≤w, ∀p ∈S, (46)∑
a∈A

sup
p∈F

E(c̃a)sia ≤ li, ∀i∈N T, (47)

∑
a∈A

sup
p∈F

E(−c̃a)sia ≤ ei, ∀i∈N T, (48)

∑
a∈A

sup
p∈F

E( c̃a) − sup
p∈F

E(−c̃a)
( )

sia ≤ εi,

∀i∈N T,

(49)

s∈S. (50)

Constraints (47)–(49) ensure that the solution is fea-
sible. Problem (46)–(50) is solved using a branch-and-
cut approach, described in Section 5. Because the
routing set S is exponential in size, the subgradient
cuts (46) are added in a branch-and-cut fashion.

4.2. Time Window Assignment for a Given Route
To solve problem (45)–(50), an efficient way to de-
termine the optimal time window assignment for a
routing solution is needed. Therefore, in this section, a
method is proposed to efficiently determine the op-
timal values ofα, η, and τ for a given routing solution s.
If c̄si − csi ≤ ε, then τi � csi is optimal because αi � 0
and ηi � 0. Otherwise, if c̄si − csi > ε and min{ei, csi}<
τ*i <max{li, c̄si} − εi, then we know from the KKT
conditions that the optimal values α*

i , η
*
i , and τ*i should

satisfy the following three conditions:
1. Cα*

i
(c̃si) � τ*i +εi,

2. Cη*i
(−c̃si) � −τ*i ,

3. dc1αi
(α*

i , s
i) � dc2ηi (η*i , si).

The first and second conditions ensure that the
values of αi and ηi are as low as possible. The third
condition implies that the objective cannot be im-
proved, because both derivatives are equal; that is,
decreasing αiwill increase ηiwith the same value. This
condition only holds if τ*i is not equal to a boundary
point, that is, τ*i ≠ ei, csi, li − εi, c̄si − εi. Because then
λk � 0 for each k and λ̄

* � λ*. In the proposed ap-
proach, initial checks are performed such that the
boundary case is also covered.
The above three conditions will be used to effi-

ciently solve problem (21)–(25), that is, to find the
optimal values of αi, ηi, and τi for route si. Figure 2
illustrates how the optimal value of τi can be found
for a simple example in which the route to customer i
consists of a single arc a � (0, i). Let c̃a be the travel
time of this arc, with F� {EP(c̃a) � 10, P(c̃a∈[7,15]) � 1}.
Note that the arrival time at customer i is t̃i � c̃a, be-
cause the route consists only of arc a. In the left graph,
examples of the functions Cαi(t̃i) and −Cηi

(−t̃i) are
given. In the right graph, the derivatives of Cαi(t̃i) and
Cηi

(−t̃i) with respect to αi and ηi are shown for dif-
ferent values of τi. When shifting graph dc1αi

by εi units
to the left, the crosspoint of this shifted graph with
graph dc2ηi represents the optimal value of τi; that is, all
three conditions hold at this crosspoint. The optimal
values corresponding to Figure 2 are τ*i � 8.5, α*

i � 5.2,
and η*i � 3.7 given that εi � 3.
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A variant of the binsearch algorithm is used to
quickly determine this crosspoint. Instead of per-
forming the binary search (binsearch) algorithm on
only one variable, it is performed on both τi and the
derivative value dc. The lower and upper bounds of
the derivative are initialized by dlb � −∞ and dub � 0,
respectively. At every iteration, the variable with the
smallest remaining solution space is chosen, and the
midpoint of this solution space is selected as target
value. Before starting the search, checks are carried
out to see whether a crosspoint exists between τlb �
max{ei, csi} and τub � min{li, c̄si} − εi; otherwise, the
optimal value of τi is equal to one of these boundary
points and we are done. The pseudocode of this al-
gorithm is given in Algorithm 1.

Algorithm 1 (Calculate the Optimal τ*i )
1: Initialize: τi � csi − εi/2, τlb � max{ei, csi},

τub � min{li, c̄si} − εi, dlb � 0, and dub � −∞
2: if no crosspoint inside τlb and τub then
3: return τ*i � τlb or τ*i � τub
4: end if
5: Calculate αi and ηi using binsearch, s.t. Cαi(ti) �

τi + ε and Cηi
(−ti) � −τi

6: Calculate the corresponding derivative values
dCα � dc1αi

(αi, si) and dCη � dc2ηi (ηi, si)
7: Update lower and upper bounds:
8: if dCα < dCη then
9: dlb�max{dlb,dCα}, dub�min{dub,dCη}, τub � τi

10: else
11: dlb�max{dlb,dCη}, dub�min{dub,dCα}, τlb � τi
12: end if
13: while τub − τlb > ε and dub − dlb > ε do
14: if dub − dlb < τub − τlb then
15: d � (dub − dlb)/2
16: Calculate the αi and ηi using binsearch,

s.t. dc1αi
(αi, si) � dc2ηi (ηi, si) � d

17: Calculate the corresponding τi values, s.t.
τα � Cαi(ti) − εi and τη � −Cηi

(−ti)
18: Update lower and upper bounds:

19: if τη < τα then
20: τlb � max{τlb, τη}, τub � min{τub, τα}, dlb � d
21: else
22: τlb �max{τlb,τα}, τub � min{τub, τη}, dub � d
23: end if
24: else
25: τi � (τub − τlb)/2
26: Calculate αi and ηi using binsearch, s.t.

Cα(t) � τi + ε and Cη(−t) � −τi
27: Calculate the corresponding derivative

values dCα � dc1αi
(αi, si) and

28: dCη � dc2ηi (ηi, si)
29: Update lower and upper bounds as in

Lines 8–12
30: end if
31: end while
32: return τ*i � (τlb + τub)/2

5. Branch-and-Cut Algorithm
Problem (45)–(50) is solved using a branch-and-cut
algorithm. The subtour elimination Constraints (10)
and the subgradient cuts (46) are added during the
branch-and-bound process. When a solution at a
branch-and-bound node violates the subtour elimi-
nation constraint, the violated constraint is added,
and the problem of the current node is resolved. This
process continuesuntil nomore constraints are violated.
To detect and generate the violated subtour elimina-
tion constraints, the separation procedure of Lysgaard,
Letchford, and Eglese (2004) for the VRP is used. The
subgradient cuts (46) are derived from feasible integer
routing solutions.When a feasible solution is found in
the branch-and-bound tree, the corresponding cut is
generated and added to the problem.
The subgradient cuts (46) constrain the risk of an

entire solution p ∈S. To strengthen the lower bound,
risk cuts for individual customers are added. LetAi

p �
{a∈A|pia � 1}be the set of arcs that are part of the route

Figure 2. (Color online) (Left) Examples of Cαi(t̃i) and −Cηi
(−t̃i) and (Right) the Derivatives of These Functions with Respect to

αi and ηi, Respectively
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to customer i, and letwp
i be the timewindow violation

index encountered at customer i∈N T in solution
p ∈S. The total time window violation index w can be
decomposed in w � ∑

i∈N T
wi, with wi the index of

customer i. Next to the subgradient cuts (46), the
following cuts are added to model (45)–(50) for every
feasible integer solution p ∈S found in the branch-
and-bound tree:

wp
i +

∑
a∈Ai

p

wp
i (sia − pia) ≤wi ∀i∈N T, ∀p ∈S. (51)

The left-hand side of Constraint (51) is equal to wp
i if

the solution vector si is equal to or contains pi, that is,
if Ai

p ⊆Ai
s. Otherwise, the left-hand side is negative.

6. Stochastic VRP-TWA
The objective of the stochastic VRP-TWA is to mini-
mize the expected time window violation while en-
suring that the expected total travel time is below a
certain threshold value, T. In the SVRP-TWA, the
probability distributions of the travel times are as-
sumed to be known. Let t̃i be the uncertain arrival time
variable at node i. Suppose that for a given solution s,
the arrival time density function at node i is given by
f sti . Then, for time window assignment τ, the expected
time window violation at node i is given by

βis(τi) �
∫

τi

−∞
(τi − x)f sti(x)dx +

∫ ∞

τi+εi
(x − τi − εi)f sti(x)dx.

The optimal time window assignment for node i in
solution s can be found by solving βis � minτi∈[ei ,li−εi]
βis(τi), with βis the minimum expected time window
violation for routing solution s∈S. The optimal value
of τi can be found by solving

∂

∂τi

∫
τi

−∞
(τi − x)f sti(x)dx +

∫ ∞

τi+εi
(x − τi − εi)f sti (x)dx

( )
� 0

(52)

⇒

∫
τi

−∞
f sti (x)dx −

∫ ∞

τi+εi
f sti(x)dx � 0 (53)

⇒ Fsti (τi) � 1 − Fsti(τi +εi). (54)

The Leibniz integral rule is used to obtain Equa-
tion (53), and Fsti is the cumulative distribution function.
Because f sti is positive, the second derivative of βsi is
positive, that is, f sti (τi) + f sti (τi +εi) ≥ 0. Therefore, the
value τ*i resulting from solving Equation (54) is the
global minimum. Hence, for the optimal value τ*i ,
the probability of arriving before the start of the time
window (τ*i ) is equal to the probability of arriving
after the closing time of the time window (τ*i +εi).

In the SVRP-TWA, the goal is to find the routing
solution s∈S that minimizes

∑
i∈N T

βis. Hence, the

stochastic model is defined by mins∈S
∑

i∈N T
βis. Be-

cause it is computational intensive to calculate
βis for all I ∈N T for all solutions s∈S, the problem has
been reformulated as follows:

inf
∑
i∈N T

vi, (55)

s.t. βip +
∑
a∈Ai

p

βip(sia − 1) ≤ vi, ∀i∈N T,∀p ∈S, (56)

vi≥0, ∀i∈N T, (57)
s∈S. (58)

The left-hand side of constraint (56) takes the value βip
if the arcs that are part of solutionpi are also contained
in solution si, that is, if Ai

p � Ai
s; otherwise, it takes a

negative value. Similar to the subgradient cuts (46),
Constraints (56) are added in a branch-and-cut fashion.
Note that the time window violation index could

also be used in the stochastic model. In this case, the
supremum term would disappear, and the expected
value in αi lnE(exp(t̃i/αi)) could be calculated by a
sampling-based approach. However, in the stochastic
setting, the distribution is known, and therefore, the
expected time window violation can be calculated
directly, and the time window violation index is not
needed to measure the risk.

6.1. Sampling-Based Approach
For some commonly used travel time distributions,
for example, independent normal or gamma distributed
travel times (Taş et al. 2013; Ehmke, Campbell, and
Urban 2015), the arrival time distribution is easy to
calculate, and thus Equation (54) can be easily solved.
However, in many cases, it will be difficult to cal-
culate the exact arrival time distribution f sti . A com-
mon approach to calculate βis is to perform a Monte
Carlo sampling approach in which a set of scenar-
ios of the travel time vector c̃ is generated. Let Ω be
the set of scenarios, and let t1i , . . . , t

|Ω|
i be the corre-

sponding arrival times at node i for solution s. It is
assumed thatτi is an integer, for example, representing
minutes. The optimal value of τi can be determined
by solving

min
τi∈[ei,li−εi]

β̃
i
s(τi) � min

τi∈[ei ,li−εi]
1
|Ω|

∑
ω∈Ω

|min{tωi − τi, τi +εi

− tωi , 0}|.
(59)

In this sampling approach, β̃is(τi) represents the av-
erage violation of time window [τi, τi +εi] at node
i∈N T in solution s and can be used in Constraint (56).
Note that |min{tωi − τi, τi +εi − tωi , 0}| is a piecewise
linear convex function with respect to τi. Thus, β̃

i
s(τi)

is a piecewise linear convex function and, therefore,
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only one search direction, β̃is(τ*i + 1) or β̃is(τ*i − 1), can
lead to an improvement of β̃

i
s(τ*i ). This is used in

Algorithm 2 to determine the optimal value of τi, that
is, to solve Equation (59).

Algorithm 2 (Determine Optimal Value τ*i )
1: Initialize: τ*i � min{max{ei, 1

|Ω|

∑
ω∈Ωtωi − εi

2}, li − εi}
2: if β̃is(τ*i + 1)< β̃

i
s(τ*i ) then

3: while β̃
i
s(τ*i + 1)< β̃

i
s(τ*i ) and τ*i + 1≤ li − εi do

4: τ*i � τ*i + 1
5: end while
6: else
7: while β̃

i
s(τ*i − 1)< β̃

i
s(τ*i ) and τ*i − 1≥ ei do

8: τ*i � τ*i − 1
9: end while

10: end if

7. Results
Various computational experiments are performed to
evaluate the performance of the proposed algorithms.
All algorithms are implemented in C# under Win-
dows 7 using CPLEX 12.8.0. The experiments are
performed on a single core of a workstation with a 2.1
GHz Intel Core E5-2683 v4 processor and 128 GB of
random access memory. The maximum running time
is set to two hours. Unless stated otherwise, the fol-
lowing parameter settings are used. The timewindow
length is set to 30 minutes for all customers, that is,
εi � ε̂ � 30 for all i∈N T. The exogenous timewindow
is set to nine hours for all nodes i∈N T. The average
total travel time can increase with maximum 5%
comparedwith theminimal expected total travel time
T0, that is, ρ � 1.05. Furthermore, we assume that a
time window has to be assigned to all customers, that
is, N T � N \{1, n}.

7.1. Instances
As shown by Jaillet, Qi, and Sim (2016), the compu-
tational time of their algorithm using the binary
variables sia is very sensitive to the number of arcs.
Jaillet, Qi, and Sim (2016) and Adulyasak and Jaillet
(2016) use instances with 3n arcs that were randomly
selected. As a result, in many of their instances, there
is only a single feasible routing solution with an ex-
pected total travel time below 1.1T0 (i.e., 10% above
the optimal expected total travel time based on the
VRP solution), whichmakes their instances not useful
to examine the trade-off between the risk and ex-
pected total travel time of various routing solutions.
Therefore, we generated new instances for the RVRP-
TWA based on the Solomon (1987) instances, and
an arc selection method is proposed to reduce the
number of arcs.

7.1.1. RVRP-TWA Instance Generation. In the RVRP-
TWA, the mean, minimum, and maximum travel

times of each arc are known. To compare the results of
the RVRP-TWA with the results of the SVRP-TWA,
we based these characteristics on specific distribu-
tions. In particular, instances based on triangular and
shifted gamma distributed travel times were gener-
ated, because these distributions are often assumed in
the stochastic VRP (Taş et al. 2013; Adulyasak and
Jaillet 2016; Vareias, Repoussis, and Tarantilis 2017).
The first three instance sets (T1, T2, and T3) are made
using the triangular distribution, characterized by a
minimumvalue ca, amaximumvalue c̄a, and amodema.
Let ua be the Euclidean distance of arc a∈A; then
the minimum value of the travel time of this arc is
randomly drawn from the interval ca ∈ [0.8ua, 1.2ua],
and the maximum value is similarly drawn from
c̄a ∈ [1.25ua, 2.5ua]. The T1 instances are symmetric
with mode ma � ca+c̄a

2 , and the T2 and T3 instances are
right skewed with ma � ca + c̄a−ca

4 and ma � ca, respec-
tively. The mean travel time needed in the robust
approach is calculated by ca � ca+c̄a+ma

3 . Instance sets
G1, G2, and G3 are based on the shifted gamma
distribution, and they are characterized by the shape
parameter α and the rate parameter λ. For every arc
a∈A, parameters αa and λa are randomly drawn from
the intervals in Table 1. Let G(0.01) be the inverse
cumulative gamma distribution with probability 0.01.
The travel time distribution of arc a is equal to the
gamma distribution shifted ua − G(0.01) to the right.
Therefore, the characteristics of the travel time of arc a
are given by ca � ua, c̄a � ua − G(0.01) + G(0.99), and
ca � αaλa. Note that the α and λ values in Table 1 are
generated such that the average difference between
the maximum and minimum travel times of an arc is
between 16.2 and 17.2 for G1, G2, and G3. For the
triangular instances, the minimum and maximum
values are the same for the three instance sets T1, T2,
and T3.
Per instance set, six different instances were gen-

erated based on the Solomon (1987) instances. To
ensure feasible solutions with finite time window
violation index values, the exogenous timewindow of
every customer and that of the depot (planning ho-
rizon) are each set to nine hours. Because the time
windows are the only difference between the in-
stances in a Solomon (1987) set, there is one instance
per Solomon (1987) set, that is, c1, c2, r1, r2, rc1, and
rc2. The service times of the customers are adjusted
based on the modification in the planning horizon;

Table 1. Parameters of the Different Types of
Gamma Instances

Instance α λ

G1 [5,20] 1
G2 [2,3] [1.5, 3]
G3 1 [2,5.5]
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that is, if the planning horizon increases by factor x,
then the service time increases by factor x as well. The
vehicle capacity and the location and demand of
the customers remain the same as in the original
Solomon (1987) instances. If instances with N cus-
tomers are considered, then the first N customers of
the original 100 customers are taken into account.

7.1.2. Arc Selection Measures. Because using a com-
plete graph in the solution method unnecessar-
ily leads to high computation times, we must find a
way to reduce the number of arcs while maintaining
high-quality solutions. Because the risk of violating the
assigned timewindows is beingminimized, it is unlikely
that arcs with a wide travel time distribution are used in
the optimal solution. Furthermore, the expected travel
time cannot increase too much compared with the
minimum expected travel time of the capacitated vehicle
routing problem (CVRP). Therefore, arcs with a high
mean travel time andwidedistribution are unlikely to be
used in the optimal solution. Let ca be the mean travel
time of arc a, and let Δa � c̄a − ca be the difference
between the maximum and minimum values of the
travel time of arc a. To reduce the number of arcs, an
arc measure is used to rank the arcs. Let a � (i, j) be an
arc; then the measure is given by ca/Eb∈δ− ( j)cb +
Δa/Eb∈δ− ( j)Δb. The mean travel time of arc (i, j) is di-
vided by the average mean travel time of the in-
coming arcs of node j, to measure the performance of
the arc relative to the other incoming arcs of node j.
The same holds for the difference parameter Δa. To
reduce the number of arcs, the best three incoming
arcs and the best three outgoing arcs are selected for
every node. The performance of this arc selection

measure compared with other measures is tested in
Online Appendix C. The new instances generated by
this measure have, on average, 5.7N edges in total.
The characteristics of the instances are given inOnline
Appendix D. The average mean arc length decreases
from G1 to G3 and from T1 to T3. Furthermore, the
average difference between the maximum and min-
imum travel times, denoted by Δ, fluctuates by less
than 1% between G1, G2, and G3 and between T1,
T2, and T3.

7.2. Performance of the Branch-and-Cut Algorithm
In this section, the performance of branch-and-cut
algorithm for the RVRP-TWA is tested. The objec-
tive is to find the routing solutionwith the lowest time
window violation index while the expected travel
time is below a certain threshold value. This threshold
value is set to 1.05T0, with T0 the minimum expected
travel time of the VRP. For the VRP-based solution,
the time windows are assigned such that the time
window violation index is minimized; that is, the
method in Section 4.2 is used to determine τi for all
i∈N T in the final routing solution. Hence, it is a two-
step procedure of routing first and TWA second.
The average results of the triangular and gamma

instances are presented in Tables 2 and 3, respec-
tively. The number of customers in each instance is
denoted in the first column. The number of instances
solved out of six instances is reported in column “nS.”
The average number of vehicle used is reported in the
column “nV,” and the average computational time in
seconds is reported in the column “Time.” The av-
erage upper bound of the time window violation
index is presented in column “Risk,” and the average

Table 2. Average Results of the Triangular Instances

T1 T2 T3

N nS nV Time Risk nC Δrisk (%) Δtt (%) nS nV Time Risk nC Δrisk (%) Δtt (%) nS nV Time Risk nC Δrisk (%) Δtt (%)

10 6 1.2 0 36 6 −13 3 6 1.2 1 55 13 −38 3 6 1.2 1 74 7 −25 3
15 6 1.5 8 37 15 −57 3 6 1.5 17 52 20 −40 3 6 1.5 6 68 14 −44 4
20 6 1.7 22 104 17 −21 3 6 1.7 79 81 32 −47 3 6 1.7 31 134 17 −34 4
25 6 2.3 1,001 73 46 −52 4 6 2.0 405 176 36 −40 3 6 2.0 491 86 76 −31 4
30 2 2.5 4,921 107 32 −49 4 4 2.5 3,993 131 77 −34 4 3 2.5 5,108 185 79 −49 4
35 0 2.8 7,200 128 64 −35 5 1 2.8 6,608 132 44 −28 4 1 2.8 6,171 99 68 −38 4

Table 3. Average Results of the Gamma Instances

G1 G2 G3

N nS nV Time Risk nC Δrisk (%) Δtt (%) nS nV Time Risk nC Δrisk (%) Δtt (%) nS nV Time Risk nC Δrisk (%) Δtt (%)

10 6 1.2 3 133 37 −19 4 6 1.2 2 125 28 −19 4 6 1.2 2 95 17 −26 3
15 6 1.5 65 233 71 −24 4 6 1.5 35 222 64 −23 4 6 1.5 24 176 29 −28 4
20 6 2.0 1,970 363 162 −26 4 6 2.0 1,001 352 106 −21 5 6 1.8 197 289 40 −31 5
25 3 2.3 4,661 450 159 −20 4 4 2.3 4,842 394 189 −34 4 6 2.0 2,558 446 129 −26 3
30 0 2.8 7,200 539 109 −26 4 1 2.7 6,833 711 102 −20 5 1 2.7 6,246 373 84 −26 5
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number of subgradient cuts added to the formulation
is presented in the column “nC.” In columns “Δrisk”
and “Δtt,” the relative difference of the violation in-
dex and the travel time comparedwith the VRP-based
solution are given. The difference is computed by
(R − R0)/R0, with R0 denoting the violation index
corresponding to the VRP-based solution and R the
violation index of the RVRP-TWA solution. A similar
calculation is performed for the difference in travel
time. If an instance is not solvedwithin two hours and
the upper bound of time window violation index is
equal to zero, then no feasible solution is found and
this solution is not taken into account when calcu-
lating the average values. The detailed results per
instance can be found in Online Appendix E.

For the triangular instances, the time window vi-
olation index of both the VRP-based and the RVRP-
TWA solutions increase on average from T1 to T3.
Hence, instances with skewed travel times have a
higher risk, because the magnitude of the violations
increases. The difference in risk value between the
robust solution and the VRP-based solution is, on
average, 39%, whereas the travel time increases by
only 3.6% on average. In Figure 1, the routing solu-
tions of theVRP andRVRP-TWAare presented for the
T3-r2 instance with 10 customers. It should be noted
that for different values of N, the time window vio-
lation index of instance c1 is already zero for the VRP-
based solution. Therefore, in this case, the RVRP-
TWA will not improve the risk value.

For the gamma instances, the time window viola-
tion index values of both the RVRP-TWA and the
VRP-based solutions decrease from G1 to G3. This is
because the standard deviation of the difference be-
tween the maximum and minimum travel time in-
creases fromG1 toG3, whereas the average difference
stays the same (see Online Appendix D). Therefore,
for the G3 instances, there are more arcs with low
variability, which results in lower risk values. The
computational time also decreases from G1 to G3.
The average difference in risk value compared with
the VRP-based solution is 25%, whereas the travel
time increases by, on average, 4.2%. The solutions of
theG3 instances result in the highest reduction in time
window violation index compared with the VRP-
based solutions.

For both the triangular and gamma instances, the
Set 2 Solomon (1987) instances have a higher time
window violation index than the Set 1 instances. This
is due to the larger vehicle capacity and shorter ser-
vice times of the Set 2 instances (see Section 7.1.1 for
the description of these adjusted Solomon (1987) in-
stances). As a result, fewer vehicles are used andmore
customers are included in a single route, resulting in
more uncertainty than in the Set 1 instances. Fur-
thermore, for instances with N ≤ 20 customers, the

Set 2 Solomon (1987) instances are easier to solve than
the Set 1 instances, because the Set 2 instances need
only a single vehicle. The branch-and-cut algorithm
solves all triangular instances with 25 or fewer cus-
tomers to optimality and all gamma instances with 20
or fewer customers. For the instances with 30 cus-
tomers, the algorithm solves nine triangular instances
but only two gamma instances. The triangular instances
are easier to solve because the standard deviation of
the mean travel time and the standard deviation of the
difference between themaximumandminimum travel
time are both much higher in the triangular instances
than in the gamma instances (see Online Appendix D).
If the standard deviation of the mean travel time is
larger, many arcs cannot be used in the optimal so-
lution because of the constraint on the total expected
travel time, which makes the instances easier to solve.
Furthermore, the high standard deviation of the dif-
ference between the maximum and minimum travel
times indicates that there are arcs with very low var-
iability,which results in a low risk value. Therefore, the
time window violation indexes of the triangular in-
stances are lower than those of the gamma instances.
Overall, the computational time of the branch-and-

cut algorithm is higherwhenmore cuts are generated.
The number of cuts represents the number of feasible
solutions found by the algorithm. The computational
time of the branch-and-cut algorithm significantly
increases when the number of customers increases.
The computational times of instances with 20 cus-
tomers are, on average, 69 and 419 times higher than
those of the instances with 10 customers, for the tri-
angular and gamma instances, respectively. Note that
if an instance is not solved, the lower bound is rela-
tively low.

7.3. Evaluation of the Optimal Time Window
Assignment Method

In the proposed solution framework, a time window
assignment method is used to minimize the time
window violation index for a given route, as de-
scribed in Section 4.2. In this section, the performance
of this time window assignment method is compared
with other time window assignments policies. As in
Vareias, Repoussis, and Tarantilis (2017), three dif-
ferent policies for τi are evaluated: τi is selected
symmetrically around the average arrival time, that
is, τi � csi − εi/2; τi is skewed left with respect to the
average arrival time, that is, τi � csi − εi; and τi is
skewed right with respect to the average arrival time,
τi � csi. In these policies, the value of τi is fixed given
the average arrival time at customer i. These policies
can also be used in our solution framework. The
definition of f (s) and the subgradient of f (s) for these
three policies are described in Online Appendix F.
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The average results of the four time window as-
signment policies on the instances with 10, 15, 20, and
25 customers are presented in Table 4. The results of
the algorithm with the minimum time window vio-
lation index policy, described in Section 4.2, are
presented in column “Min.” The results of the algo-
rithm with τi determined by the symmetric, left-
skewed, and right-skewed policies around the aver-
age arrival time are presented in the columns “Sym”
“Left,” and “Right,” respectively. For every time
window assignment policy, the average timewindow
violation index and the expected travel time of the
final routing solution are reported in columns “Risk”
and “tt,” respectively. The average time window
violation as defined in Section 6 is calculated using a
simulation with 100,000 scenarios. This average vi-
olation and the corresponding standard deviation are
given in columns “V” and “sdV,” respectively.

Our proposed policy and the symmetric policy
perform significantly better than the skewed left and
right policies. Because the travel time distributions
are right skewed, the probability of arriving earlier
than the mean value is higher; therefore, the left-skew
policy performs better than the right-skew policy.
Our proposed policy has the lowest time window
violation index. However, according to the simula-
tion results, the symmetric policy performs slightly
better in terms of average violation than our proposed
policy. This is because the total travel time distribu-
tion is a sum of the travel time distribution of all arcs,
and by the law of large numbers, the total distribution
is flatter and more symmetric around the mean value
than the original travel time distributions. Because
the aim of the robust approach is to seek a robust
solution that minimizes the worst-case distributions
(shown in the column “Risk”), the robust solution
may not necessarily be the best in terms of the average
violation under a given distribution. However, one
can see that the differences in the expected violations
between the robust solution (column “Min”) and the
symmetric case (column “Sym”) are very small. It
should be noted that the difference in the average
violations of the minimum and symmetric policies

increases when the travel time distributions are more
skewed (from T1 to T3 and G1 to G3).
In reality, some arcs are less sensitive to disruptions

than others. Therefore, the instances were adjusted by
assuming that 50% of the arcs in the arc set have a
uniform travel time of length two around the mean
travel time. The new instances are denoted by a prime
symbol. The results of the minimum and symmetric
time window assignment policies on these new in-
stances are presented in Table 5. Because of the re-
duction of the variability of the travel times, the av-
erage time window violation index and average time
window violation are lower for these new instances.
Table 5 shows that the proposed minimum policy
performs better than the symmetric policy in terms of
the violation index, average violation, and standard
deviation. The difference in risk between these two
policies increases when the travel time distributions
are more skewed. The lower standard deviation in-
dicates that the proposed solution is more robust than
the symmetric method. Based on these experiments,
we conjecture that the difference between the mini-
mum and symmetric policies increases when less arcs
are sensitive to disruptions.

7.4. Comparison with Other Models
In this section, the proposed RVRP-TWA is compared
with the SVRP-TWA and the VRP-based approach.
The VRP-based approach is a two-step process of

Table 4. Average Results for the Different Time Window Assignment Policies

Min Sym Left Right

Instance Risk tt V sdV Risk tt V sdV Risk tt V sdV Risk tt V sdV

T1 62.2 278.7 0.18 1.0 62.4 278.8 0.18 0.9 437.0 278.5 8.02 12.0 484.7 279.3 8.92 12.2
T2 91.1 266.3 0.66 2.3 91.2 266.2 0.66 2.3 557.0 267.0 9.89 15.3 709.0 266.6 12.69 16.9
T3 90.7 253.5 1.20 4.6 91.1 253.1 1.21 4.7 499.7 252.2 10.88 18.3 890.1 252.9 19.06 24.8
Average 81.4 266.2 0.68 2.6 81.6 266.0 0.68 2.6 497.9 265.9 9.59 15.2 694.6 266.3 13.56 18.0
G1 296.7 316.3 4.96 13.5 297.2 316.3 4.94 13.4 2,123.8 316.5 31.01 43.2 2,379.2 315.6 34.60 41.7
G2 239.9 275.7 4.80 13.9 240.7 275.7 4.71 13.7 1,525.2 274.7 25.65 38.3 2,015.0 275.2 33.66 37.7
G3 252.1 273.3 8.13 21.8 253.2 273.3 7.88 21.3 1,406.9 272.6 25.33 42.7 2,171.7 271.8 41.56 42.2
Average 262.9 288.4 5.96 16.4 263.7 288.4 5.84 16.1 1,685.3 287.9 27.33 41.4 2,188.6 287.5 36.60 40.5

Table 5. Average Results for the Minimum and Symmetric
Time Window Assignment Policies

Min Sym

Instance Risk tt V sdV Risk tt V sdV

T1′ 26.4 284.0 0.06 0.4 26.4 284.6 0.05 0.4
T2′ 14.8 273.7 0.01 0.1 14.9 273.3 0.01 0.2
T3′ 39.2 264.7 0.29 1.8 39.8 264.6 0.36 2.1
Average 26.8 274.1 0.12 0.8 27.0 274.2 0.14 0.9
G1′ 101.7 334.5 1.27 4.7 102.1 334.7 1.31 4.7
G2′ 60.6 295.8 0.72 3.9 61.3 295.8 0.75 4.2
G3′ 50.0 299.9 0.85 6.0 51.1 299.8 0.98 6.6
Average 70.8 310.0 0.95 4.9 71.5 310.1 1.01 5.2
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route first and TWA second; that is, first, the routes
are determined by minimizing the expected travel
time, and second, the time windows are assigned for
the final routing solution. In the VRP-based approach
the travel time uncertainty is ignored when con-
structing the route, and the time windows are as-
signed such that the time window violation index is
minimized, that is, using the method described in
Section 4.2. This model will be compared with the
proposed RVRP-TWA that takes characteristics of the
travel time distributions into account.

The proposed SVRP-TWA assumes that the travel
time distributions are known and the expected time
window violation is minimized. The proposed al-
gorithm for the SVRP-TWA is described in Section 6,
and the sampling method with 100,000 scenarios is
used in this experiment. Even though the stochastic
and robust VRP-TWA models are developed for dif-
ferent purposes in which different assumptions and
objectives are taken into account, the computational
comparisons in this section provide interesting insights
between the two approaches on different aspects.

The solutions of the three models are tested in a
simulation to calculate the average time window
violation, that is, the average number of minutes
that a vehicle arrives too early or too late at all cus-
tomers in the solution. To evaluate the robustness of
the solutions, two different travel time distributions
with the same characteristics are used. The first dis-
tribution is the triangular (or gamma) distribution of
the original instances described in Section 7.1. As
the second distribution, a mixture of two triangular
distribution is used (called the MT distribution)
which has the same mean, minimum, and maximum
values as the original instance. This MT distribution
has two modes which are different from the mode of
the original function. Online Appendix G describes
how these MT distributions are generated from the

original distributions. For the VRP-based and robust
approaches, the final solution will be the same for both
distributions. For the stochastic approach, the distri-
bution does matter. Therefore, two different travel
time distributions of the SVRP-TWA are tested: one in
which the original distribution is assumed (Stoch-T or
Stoch-G) and one in which the new MT distribution is
assumed (Stoch-MT). When the same scenarios are
used in the SVRP-TWA as in the simulation, the SVRP-
TWA gives the optimal solution when minimizing the
average time window violation. This is not the case
when the distribution used in the optimization model
of the SVRP-TWA is different from the distribution
used in the simulation.
The average results for each model are reported in

Tables 6 and 7 for the instances with 10, 15, 20, and 25
customers. The results of the instances that were
solved by all models are reported. The distribution
used in the simulation is reported in the first column,
the number of instances solved by all models is re-
ported in the second column, and the model is given
in the third column. For each method, the average
computational time in seconds and the average time
window violation index are presented in the columns
“Time” and “Risk,” respectively. The other columns
present the results from the simulation, with columns
“avTT” and “sdTT” showing the average and stan-
dard deviation of the total travel time, respectively.
The average number of minutes that all vehicles in a
solution are too early, too late, and in total outside the
time windows are reported in the columns “lbV,”
“ubV,” and “V,” respectively. The standard deviation
of the total violation is reported in column “sdV,” and
the maximum violation over all scenarios in column
“maxV.” In the last two columns, the numbers of
scenarios with no time window violations and five or
more violations are reported.

Table 6. Results for the VRP-Based Approach, RVRP-TWA, and SVRP-TWAwith the Same Distribution in the SVRP-TWA as
in the Simulation

Dist. Solved Model Time Risk avTT sdTT lbV ubV V sdV maxV

#V(× 1000)

0 ≥5
T 71/72 VRP 14 126.2 254.5 16.3 0.5 1.0 1.5 5.0 101.2 89.8 3.0

Robust 138 80.8 263.4 16.5 0.2 0.5 0.7 2.6 64.8 93.4 1.4
Stoch-T 198 85.5 263.1 16.5 0.2 0.4 0.6 2.4 62.9 93.9 1.4

T-MT 70/72 VRP 13 126.7 254.3 16.7 38.1 42.7 80.8 40.9 247.2 29.8 55.8
Robust 115 81.4 263.1 16.9 27.5 30.6 58.1 29.4 183.4 35.2 47.4
Stoch-MT 184 99.4 263.4 16.9 23.0 33.4 56.4 31.4 188.2 35.8 47.2

G 59/72 VRP 4 338.2 278.5 17.4 2.9 6.3 9.2 23.3 419.7 65.5 12.6
Robust 374 260.2 289.8 17.6 1.7 4.3 6.0 16.7 328.7 71.9 8.8
Stoch-G 242 267.8 289.8 17.6 2.0 3.6 5.6 15.0 308.9 71.5 8.7

G-MT 58/72 VRP 4 332.8 274.7 18.0 69.0 76.6 145.6 84.6 571.3 4.3 80.3
Robust 351 256.1 285.8 18.2 52.5 59.7 112.2 67.7 469.1 5.7 73.7
Stoch-MT 200 288.3 285.7 18.2 46.7 63.5 110.2 70.5 475.8 5.6 75.2

Note. The bold font indicates the best results of the three different models. Dist., Distribution.
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In Table 6, the distributions used in the stochastic
model and in the simulation are the same. As ex-
pected, the average total travel time is lowest for the
VRP-based approach, and the robust solution has the
lowest time window violation index. The standard
deviation of the total travel time is also lowest for the
VRP-based approach. The travel time of the RVRP-
TWA can increase by a maximum of 5% compared
with the VRP-based solution; however, the results
show that the increase in travel time is less than 4% on
average. The average decrease in the time window
violation index when using the RVRP-TWA instead
of the VRP-based solution is 30%, and the decrease
in the average violation is even higher (36%). The
standard deviation and maximum violations are
lower for the RVRP-TWA. Furthermore, for the so-
lution of the RVRP-TWA, there are more scenarios
without violations, and the number of scenarios with
five violations or more is lower for the RVRP-TWA
than for the VRP-based approach. Hence, for a rela-
tively small increase in travel time (4%), the accuracy
of being on time increases a lot when using the RVRP-
TWA instead of the VRP-based approach.

The stochastic model gives the optimal solution
when minimizing the average violation. The RVRP-
TWA increases by, on average, 6% comparedwith the
optimal SVRP-TWA. However, the numbers of sce-
narios without violations or with five violations or
more are similar for the twomodels. Furthermore, for
the MT distribution, the standard deviation of the
violation and the maximum violation are lower for
the robust model. The average and standard devia-
tion of the travel time are almost the same for the
robust and stochastic models. Thus, although the
robust method has fewer data requirements than
the stochastic variant, it performs very well.

In Table 7, the distribution assumed in the sto-
chastic model and the distribution used in the sim-
ulation are different. Because the characteristic of
both distributions are the same, the solutions of the
VRP-based and the robust model stay the same as in
Table 6. Therefore, the VRP-based results are excluded

from this table. Table 7 compares the performance of
the stochastic and robust approaches when no ac-
curate estimate could be made on the actual travel
time distributions. The results show that the robust
model performs significantly better than the sto-
chastic model. The average violation of the RVRP-
TWA is, on average, 14% lower than that of the SVRP-
TWA model, and the number of scenarios with five
violations or more is lower for the RVRP-TWA.
Furthermore, in most cases, the standard deviation
and the maximum violation of the robust model are
also lower than those of the stochastic model. Hence,
the robust solution method is much less sensitive to
distributional uncertainty than the stochastic solu-
tion approach.
Overall, the simulation with the MT distribution

leads to higher violations and more violations per
scenario. This is because the modes in the MT dis-
tribution are further away from the mean travel time.
It should be noted that if the time window violation
index decreases a lot, then the average time window
violation decreases as well. If the differences in time
window violation index are small, then a higher in-
dex value does not imply a higher average time

Table 7. Results for the RVRP-TWA and SVRP-TWAwith Different Distribution in the Stochastic Model and in the Simulation

Dist. Solved Model Time Risk avTT sdTT lbV ubV V sdV maxV

#V(× 1000)

0 ≥5
T 70/72 Robust 115 81.4 263.0 16.5 0.2 0.5 0.7 2.6 65.6 93.3 1.4

Stoch-MT 184 99.4 263.3 16.5 0.2 0.8 1.0 3.3 73.0 91.2 1.8
T-MT 71/72 Robust 138 80.8 263.4 16.9 27.2 30.4 57.6 29.2 182.9 34.9 47.7

Stoch-T 198 85.5 263.2 17.0 30.7 29.1 59.8 30.1 183.1 32.4 49.2
G 58/72 Robust 351 256.1 285.9 17.5 1.7 4.3 6.0 16.7 329.6 72.2 8.7

Stoch-MT 245 288.3 286.1 17.5 1.1 6.1 7.2 18.8 340.5 69.5 9.4
G-MT 59/72 Robust 374 260.2 289.7 18.3 52.0 59.2 111.2 67.6 471.5 5.8 73.4

Stoch-G 242 267.8 289.7 18.3 58.9 53.8 112.7 65.8 449.2 6.4 74.7

Note. The bold font indicates the best results of the three different models. Dist., Distribution.

Table 8. Average Time Window Violation Index
Values and Computational Times for Different Time
Window Lengths

ε̂ � 15 ε̂ � 30 ε̂ � 45

Inst. N Solved Time Risk Time Risk Time Risk

T 10 18/18 0.7 156.4 0.6 54.8 0.5 24.2
15 18/18 10.9 153.2 10.4 52.2 6.5 22.6
20 18/18 57.1 277.2 44.2 106.6 34.6 53.3
25 18/18 699.0 268.5 632.1 111.7 1,092.4 64.0

Average 191.9 213.8 171.8 81.3 283.5 41.0
G 10 18/18 2.1 271.8 2.3 117.9 2.3 64.7

15 18/18 33.1 473.7 41.3 210.5 40.7 119.9
20 15/18 167.3 777.9 182.7 360.0 186.7 215.9
25 12 2,492.5 972.8 2,574.3 456.7 2,833.9 276.5

Average 524.6 583.5 546.3 266.5 596.5 156.8

Note. Inst., Instance.
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window violation. Thus, the time window violation
index is a good measure for the average time win-
dow violation when the difference between solu-
tions is not too small.

7.5. Pareto Frontier
In the RVRP-TWA, the time window violation index
is minimized, and the expected travel time must be
below ρT0. Until now, it has been assumed that
ρ � 1.05; hence, the expected travel time could in-
crease by a maximum of 5% compared with the
minimum expected travel time of the VRP. Further-
more, the time window length was set to εi � ε̂ � 30
∀i∈N T, where ε̂ is a predefined window length. In
this section, we will investigate the sensitivity of
the proposed branch-and-cut algorithm to these two
parameters and show the trade-off between travel
time and the risk value.

In Table 8, the average timewindowviolation index
values and computational times are given for dif-
ferent values of ε̂ for the triangular and gamma in-
stances. The second column represents the number of
customers taken into account, and the number of
instances solved is reported in column “Solved.” An
instance is taken into account only if it is solved for all

ε̂ values. Trivially, the time window violation index
decreases when the time window length increases.
For the triangular instances, the time window vio-
lation index decreases by, on average, 62% from
ε̂ � 15 to ε̂ � 30, and by 50% from ε̂ � 30 to ε̂ � 45. For
the gamma instances, these decreases are 54% and
41%. Hence, the decrease in the time window viola-
tion index is not linear. The incremental decrease in
the risk value declines when the number of customers
increases. For instance T2-r1, the Pareto frontier for
different time window lengths and travel time thresh-
old values is presented in Figure 3. For this instance, it
is shown that the risk gap between time window
lengths of 15 and 30 minutes is much larger than the
gap between 30 and 45 minutes. Because the travel
time threshold is set to ρ � 1.05, the average travel
time stays the same for all ε values.
The influence of the travel time threshold param-

eter ρ is presented in Table 9. When the threshold
increases, the solution space of the feasible routing
solutions increases, and therefore the computational
time increases. On average, the computational time
increases faster when more customers are taken into
account in the instances. Because of this increase in
solution space, the time window violation index
decreases. This decrease in violation index is, on
average, 14% from ρ � 1 to ρ � 1.025 and 16% from
ρ � 1.025 to ρ � 1.05. For larger threshold values, this
incremental decrease in the time window violation
index declines. The example in Figure 3 illustrates the
steep decrease in the time window violation index
when ρ is increased from 1.01 to 1.03 and that this
decrease tapers off when ρ increases. The frontier is S
shaped because ρ should increase enough such that
there exists a new routing solution with a lower vi-
olation index, and when the optimal routing solution
is found, increasing ρ does not help anymore. In
column “Δtt,” the difference in the average travel time
compared with the VRP-based solution (ρ � 0) is
shown. When the average travel time threshold is set

Figure 3. (Color online) Pareto Frontier for Instance T2-r1
with 20 Customers

Table 9. Average Time Window Violation Index Values and Computational Times for Different Threshold Values

ρ � 1 ρ � 1.025 ρ � 1.05 ρ � 1.075 ρ � 1.1

Inst. N Solved Time Risk Time Risk Δtt (%) Time Risk Δtt (%) Time Risk Δtt (%) Time Risk Δtt (%)

T 10 18/18 0 81 0 70 0.6 1 55 3.1 1 41 5.4 1 39 6.2
15 18/18 2 92 3 71 1.4 9 52 3.6 22 49 4.8 42 48 6.4
20 18/18 3 176 15 137 1.4 51 107 3.4 110 102 5.4 259 99 6.8
25 12/18 7 150 50 133 1.6 238 128 3.3 567 126 5.1 1,695 125 6.8

Average 3 122 14 100 1.3 60 81 3.4 140 75 5.2 391 73 6.6
G 10 18/18 0 147 1 131 1.0 2 118 3.9 5 109 5.2 10 106 7.7

15 18/18 1 275 8 235 1.8 40 210 4.1 171 193 6.3 643 184 8.7
20 14/18 8 469 28 428 1.8 177 343 4.4 1,150 316 6.6 1,573 301 8.7

Average 3 283 11 251 1.6 65 214 4.2 385 198 6.1 675 189 8.4

Note. Inst., Instance.
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to ρ � 1.05, an increase of 5% of the travel time is
allowed.However, the travel time of thefinal solution
increases by, on average, 3.4% for a triangle instance
and by 4.2% for a gamma instance.

From a managerial point of view, the risk of vio-
lating a time window can be significantly reduced by
allowing the travel time to increase by only 2.5%–5%.
Furthermore, the time window length can be chosen
corresponding to the preferred risk certainty.

8. Conclusions and Future Research
In the VRP-TWA, the time window assignment prob-
lem and the vehicle routing problem are combined.
Recent papers proposed heuristic solution methods to
solve the stochastic VRP-TWA in which the probability
distributions of the travel times are known. We are the
first to formulate the robust VRP-TWA to handle cases
in which the probability distributions are hard to esti-
mate. In the RVRP-TWA, it is assumed that the distri-
butions of the travel times are uncertain and only some
descriptive statistics are available. The risk of violating
the assigned time windows is minimized, while en-
suring that the expected travel time is lower than a
certain threshold value. Tomeasure the risk of violating
the assigned time windows, the time window violation
index based on the requirement violation index pro-
posed by Jaillet, Qi, and Sim (2016) is used. An exact
method is proposed to solve the subproblem of
assigning a time window to each customer in a given
route with a minimum time window violation index.
We show that this subproblem is convex and that the
subgradient cuts can be generated. These cuts are used
in a branch-and-cut framework to exactly solve the
RVRP-TWA. The experiments show that the branch-
and-cut algorithm is able to solve instanceswithup to 35
customers. Furthermore, the trade-off between the ex-
pected total travel time and the time window violation
index is shown.Allowing the travel time to increase by a
maximum of 5% compared with the minimum travel
time decreases the time window violations by, on av-
erage, 33%.

The solution quality and robustness of the RVRP-
TWAmodel are tested by comparing it to a stochastic
variant of the VRP-TWA in which the travel time
distributions are known. An exact solution method is
proposed for the SVRP-TWA using a branch-and-cut
framework. Using the SVRP-TWA model, we have
shown that the robust solution is close to the optimal
solution. Furthermore, when the travel time distri-
butions are uncertain, the robust approach performs
better than the stochastic approach.

To solve larger instances, the subproblem of min-
imizing the time window violation index for a given

routing solution could be incorporated in a heuristic
framework. Furthermore, the variant of the VRP-TWA
with hard time windows, in which the vehicle has to
wait when it arrives before the time window, could be
an interesting topic for future research. Hard time
windows are more difficult to solve exactly, because
the arrival time cannot be calculated by the sum of the
independent travel times of the arcs. However, the
stochastic variant can be solved with the sampling-
based approach proposed in this chapter. It would also
be interesting to develop new risk measures for the
robust approach that take other characteristics of the
travel time distribution into account.

8.1. Extensions: Variable Time Window Length and
Correlated Travel Times

In this section, two extensions of the proposed method
are discussed: time window length as a decision vari-
able and correlated travel times.

8.1.1. Variable TimeWindow Length. We assumed that
the length of a time window per customer is an input
variable that can be chosen by the decisionmaker. Our
approach can be extended to the case where εi is a
decision variable with linear cost. The problem will
become even more complex because the solution
space will increase for a given route. However, the
same proposed methodology and solution method
can be used. Because of the extra decision variable, an
extra KKT conditionmust be added, and therefore the
subgradient will be slightly adjusted.

8.1.2. Correlated Travel Times. In practice, the travel
times of arcs may be correlated. However, most pa-
pers on travel time uncertainty assume independent
travel times to avoid a tremendous increase in model
complexity or because of data availability. Jaillet, Qi,
and Sim (2016) propose a way to include correlation
without increasing the complexity of the algorithm
too much. We briefly describe how this approach can
be applied in our setting.
As suggested by Jaillet, Qi, and Sim (2016), the

travel times can be expressed as a linear function of
independent factors, that is,

z̃a � z0a +
∑B
j�1

zjac̃j, ∀a ∈A,

where c̃1, . . . , c̃B are independent distributed factors
that represent, for example, the weather conditions,
the occurrence of traffic jams, etc. The coefficients of
these factors can be estimated by a linear regression.
Note that this method can be used only when a lot of
data are available to, first, create the distribution of
these factors and, second, estimate the coeffients by
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regression. When the formula for z̃a is estimated, then
this can be incorporated as follows:

Cαi(t̃i) �Cαi(z̃si) �Cαi

∑
a∈A

(z0a +
∑B
j�1

zjac̃j)sia
( )

.

�Cαi

(
z0Tsi +∑B

j�1
c̃jzj

Tsi
)
� z0si +∑B

j�1
Cαi

(
c̃jzj

Tsi
)
.

When using this function in the problem formulation,
the calculation of the functions Cαi(z̃si) and Cηi

(−z̃si)
and their subgradients will change. The subgradients
can be calculated in a relatively straightforward man-
ner, and the proposed methodology in this paper can
be applied directly.
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Ordóñez F (2010) Robust vehicle routing. Hasenbein JJ, ed. INFORMS
TutORials in Operations Research, (INFORMS, Catonsville, MD),
153–178.

Russell R, Urban T (2008) Vehicle routingwith soft timewindows and
Erlang travel times. J. Oper. Res. Soc. 59(9):1220–1228.

Solomon MM (1987) Algorithms for the vehicle routing and sched-
uling problems with time window constraints. Oper. Res. 35(2):
254–265.

Spliet R, Gabor AF (2014) The time window assignment vehicle
routing problem. Transportation Sci. 49(4):721–731.

Spliet R, Dabia S, VanWoensel T (2017) The timewindow assignment
vehicle routing problem with time-dependent travel times.
Transportation Sci. 52(2):261–276.

Subramanyam A, Gounaris CE (2017) Strategic allocation of time
windows in vehicle routing problems under uncertainty. Proc.
Found. Comput.-Aided Process Oper./Chemical Process Control,
Tucson, AZ, 62.
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